uvm_fault.c revision 1.56.2.5 1 /* $NetBSD: uvm_fault.c,v 1.56.2.5 2001/09/21 22:37:12 nathanw Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/lwp.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mman.h>
50 #include <sys/user.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 *
56 * a word on page faults:
57 *
58 * types of page faults we handle:
59 *
60 * CASE 1: upper layer faults CASE 2: lower layer faults
61 *
62 * CASE 1A CASE 1B CASE 2A CASE 2B
63 * read/write1 write>1 read/write +-cow_write/zero
64 * | | | |
65 * +--|--+ +--|--+ +-----+ + | + | +-----+
66 * amap | V | | ----------->new| | | | ^ |
67 * +-----+ +-----+ +-----+ + | + | +--|--+
68 * | | |
69 * +-----+ +-----+ +--|--+ | +--|--+
70 * uobj | d/c | | d/c | | V | +----| |
71 * +-----+ +-----+ +-----+ +-----+
72 *
73 * d/c = don't care
74 *
75 * case [0]: layerless fault
76 * no amap or uobj is present. this is an error.
77 *
78 * case [1]: upper layer fault [anon active]
79 * 1A: [read] or [write with anon->an_ref == 1]
80 * I/O takes place in top level anon and uobj is not touched.
81 * 1B: [write with anon->an_ref > 1]
82 * new anon is alloc'd and data is copied off ["COW"]
83 *
84 * case [2]: lower layer fault [uobj]
85 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
86 * I/O takes place directly in object.
87 * 2B: [write to copy_on_write] or [read on NULL uobj]
88 * data is "promoted" from uobj to a new anon.
89 * if uobj is null, then we zero fill.
90 *
91 * we follow the standard UVM locking protocol ordering:
92 *
93 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
94 * we hold a PG_BUSY page if we unlock for I/O
95 *
96 *
97 * the code is structured as follows:
98 *
99 * - init the "IN" params in the ufi structure
100 * ReFault:
101 * - do lookups [locks maps], check protection, handle needs_copy
102 * - check for case 0 fault (error)
103 * - establish "range" of fault
104 * - if we have an amap lock it and extract the anons
105 * - if sequential advice deactivate pages behind us
106 * - at the same time check pmap for unmapped areas and anon for pages
107 * that we could map in (and do map it if found)
108 * - check object for resident pages that we could map in
109 * - if (case 2) goto Case2
110 * - >>> handle case 1
111 * - ensure source anon is resident in RAM
112 * - if case 1B alloc new anon and copy from source
113 * - map the correct page in
114 * Case2:
115 * - >>> handle case 2
116 * - ensure source page is resident (if uobj)
117 * - if case 2B alloc new anon and copy from source (could be zero
118 * fill if uobj == NULL)
119 * - map the correct page in
120 * - done!
121 *
122 * note on paging:
123 * if we have to do I/O we place a PG_BUSY page in the correct object,
124 * unlock everything, and do the I/O. when I/O is done we must reverify
125 * the state of the world before assuming that our data structures are
126 * valid. [because mappings could change while the map is unlocked]
127 *
128 * alternative 1: unbusy the page in question and restart the page fault
129 * from the top (ReFault). this is easy but does not take advantage
130 * of the information that we already have from our previous lookup,
131 * although it is possible that the "hints" in the vm_map will help here.
132 *
133 * alternative 2: the system already keeps track of a "version" number of
134 * a map. [i.e. every time you write-lock a map (e.g. to change a
135 * mapping) you bump the version number up by one...] so, we can save
136 * the version number of the map before we release the lock and start I/O.
137 * then when I/O is done we can relock and check the version numbers
138 * to see if anything changed. this might save us some over 1 because
139 * we don't have to unbusy the page and may be less compares(?).
140 *
141 * alternative 3: put in backpointers or a way to "hold" part of a map
142 * in place while I/O is in progress. this could be complex to
143 * implement (especially with structures like amap that can be referenced
144 * by multiple map entries, and figuring out what should wait could be
145 * complex as well...).
146 *
147 * given that we are not currently multiprocessor or multithreaded we might
148 * as well choose alternative 2 now. maybe alternative 3 would be useful
149 * in the future. XXX keep in mind for future consideration//rechecking.
150 */
151
152 /*
153 * local data structures
154 */
155
156 struct uvm_advice {
157 int advice;
158 int nback;
159 int nforw;
160 };
161
162 /*
163 * page range array:
164 * note: index in array must match "advice" value
165 * XXX: borrowed numbers from freebsd. do they work well for us?
166 */
167
168 static struct uvm_advice uvmadvice[] = {
169 { MADV_NORMAL, 3, 4 },
170 { MADV_RANDOM, 0, 0 },
171 { MADV_SEQUENTIAL, 8, 7},
172 };
173
174 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
175
176 /*
177 * private prototypes
178 */
179
180 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
181 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
182
183 /*
184 * inline functions
185 */
186
187 /*
188 * uvmfault_anonflush: try and deactivate pages in specified anons
189 *
190 * => does not have to deactivate page if it is busy
191 */
192
193 static __inline void
194 uvmfault_anonflush(anons, n)
195 struct vm_anon **anons;
196 int n;
197 {
198 int lcv;
199 struct vm_page *pg;
200
201 for (lcv = 0 ; lcv < n ; lcv++) {
202 if (anons[lcv] == NULL)
203 continue;
204 simple_lock(&anons[lcv]->an_lock);
205 pg = anons[lcv]->u.an_page;
206 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
207 uvm_lock_pageq();
208 if (pg->wire_count == 0) {
209 pmap_clear_reference(pg);
210 uvm_pagedeactivate(pg);
211 }
212 uvm_unlock_pageq();
213 }
214 simple_unlock(&anons[lcv]->an_lock);
215 }
216 }
217
218 /*
219 * normal functions
220 */
221
222 /*
223 * uvmfault_amapcopy: clear "needs_copy" in a map.
224 *
225 * => called with VM data structures unlocked (usually, see below)
226 * => we get a write lock on the maps and clear needs_copy for a VA
227 * => if we are out of RAM we sleep (waiting for more)
228 */
229
230 static void
231 uvmfault_amapcopy(ufi)
232 struct uvm_faultinfo *ufi;
233 {
234 for (;;) {
235
236 /*
237 * no mapping? give up.
238 */
239
240 if (uvmfault_lookup(ufi, TRUE) == FALSE)
241 return;
242
243 /*
244 * copy if needed.
245 */
246
247 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
248 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
249 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
250
251 /*
252 * didn't work? must be out of RAM. unlock and sleep.
253 */
254
255 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
256 uvmfault_unlockmaps(ufi, TRUE);
257 uvm_wait("fltamapcopy");
258 continue;
259 }
260
261 /*
262 * got it! unlock and return.
263 */
264
265 uvmfault_unlockmaps(ufi, TRUE);
266 return;
267 }
268 /*NOTREACHED*/
269 }
270
271 /*
272 * uvmfault_anonget: get data in an anon into a non-busy, non-released
273 * page in that anon.
274 *
275 * => maps, amap, and anon locked by caller.
276 * => if we fail (result != 0) we unlock everything.
277 * => if we are successful, we return with everything still locked.
278 * => we don't move the page on the queues [gets moved later]
279 * => if we allocate a new page [we_own], it gets put on the queues.
280 * either way, the result is that the page is on the queues at return time
281 * => for pages which are on loan from a uvm_object (and thus are not
282 * owned by the anon): if successful, we return with the owning object
283 * locked. the caller must unlock this object when it unlocks everything
284 * else.
285 */
286
287 int
288 uvmfault_anonget(ufi, amap, anon)
289 struct uvm_faultinfo *ufi;
290 struct vm_amap *amap;
291 struct vm_anon *anon;
292 {
293 boolean_t we_own; /* we own anon's page? */
294 boolean_t locked; /* did we relock? */
295 struct vm_page *pg;
296 int error;
297 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
298
299 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
300
301 error = 0;
302 uvmexp.fltanget++;
303 /* bump rusage counters */
304 if (anon->u.an_page)
305 curproc->l_proc->p_stats->p_ru.ru_minflt++;
306 else
307 curproc->l_proc->p_stats->p_ru.ru_majflt++;
308
309 /*
310 * loop until we get it, or fail.
311 */
312
313 for (;;) {
314 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
315 pg = anon->u.an_page;
316
317 /*
318 * if there is a resident page and it is loaned, then anon
319 * may not own it. call out to uvm_anon_lockpage() to ensure
320 * the real owner of the page has been identified and locked.
321 */
322
323 if (pg && pg->loan_count)
324 pg = uvm_anon_lockloanpg(anon);
325
326 /*
327 * page there? make sure it is not busy/released.
328 */
329
330 if (pg) {
331
332 /*
333 * at this point, if the page has a uobject [meaning
334 * we have it on loan], then that uobject is locked
335 * by us! if the page is busy, we drop all the
336 * locks (including uobject) and try again.
337 */
338
339 if ((pg->flags & PG_BUSY) == 0) {
340 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
341 return (0);
342 }
343 pg->flags |= PG_WANTED;
344 uvmexp.fltpgwait++;
345
346 /*
347 * the last unlock must be an atomic unlock+wait on
348 * the owner of page
349 */
350
351 if (pg->uobject) { /* owner is uobject ? */
352 uvmfault_unlockall(ufi, amap, NULL, anon);
353 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
354 0,0,0);
355 UVM_UNLOCK_AND_WAIT(pg,
356 &pg->uobject->vmobjlock,
357 FALSE, "anonget1",0);
358 } else {
359 /* anon owns page */
360 uvmfault_unlockall(ufi, amap, NULL, NULL);
361 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
362 0,0,0);
363 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
364 "anonget2",0);
365 }
366 } else {
367
368 /*
369 * no page, we must try and bring it in.
370 */
371
372 pg = uvm_pagealloc(NULL, 0, anon, 0);
373 if (pg == NULL) { /* out of RAM. */
374 uvmfault_unlockall(ufi, amap, NULL, anon);
375 uvmexp.fltnoram++;
376 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
377 0,0,0);
378 uvm_wait("flt_noram1");
379 } else {
380 /* we set the PG_BUSY bit */
381 we_own = TRUE;
382 uvmfault_unlockall(ufi, amap, NULL, anon);
383
384 /*
385 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
386 * page into the uvm_swap_get function with
387 * all data structures unlocked. note that
388 * it is ok to read an_swslot here because
389 * we hold PG_BUSY on the page.
390 */
391 uvmexp.pageins++;
392 error = uvm_swap_get(pg, anon->an_swslot,
393 PGO_SYNCIO);
394
395 /*
396 * we clean up after the i/o below in the
397 * "we_own" case
398 */
399 }
400 }
401
402 /*
403 * now relock and try again
404 */
405
406 locked = uvmfault_relock(ufi);
407 if (locked && amap != NULL) {
408 amap_lock(amap);
409 }
410 if (locked || we_own)
411 simple_lock(&anon->an_lock);
412
413 /*
414 * if we own the page (i.e. we set PG_BUSY), then we need
415 * to clean up after the I/O. there are three cases to
416 * consider:
417 * [1] page released during I/O: free anon and ReFault.
418 * [2] I/O not OK. free the page and cause the fault
419 * to fail.
420 * [3] I/O OK! activate the page and sync with the
421 * non-we_own case (i.e. drop anon lock if not locked).
422 */
423
424 if (we_own) {
425 if (pg->flags & PG_WANTED) {
426 wakeup(pg);
427 }
428 if (error) {
429 /* remove page from anon */
430 anon->u.an_page = NULL;
431
432 /*
433 * remove the swap slot from the anon
434 * and mark the anon as having no real slot.
435 * don't free the swap slot, thus preventing
436 * it from being used again.
437 */
438
439 uvm_swap_markbad(anon->an_swslot, 1);
440 anon->an_swslot = SWSLOT_BAD;
441
442 /*
443 * note: page was never !PG_BUSY, so it
444 * can't be mapped and thus no need to
445 * pmap_page_protect it...
446 */
447
448 uvm_lock_pageq();
449 uvm_pagefree(pg);
450 uvm_unlock_pageq();
451
452 if (locked)
453 uvmfault_unlockall(ufi, amap, NULL,
454 anon);
455 else
456 simple_unlock(&anon->an_lock);
457 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
458 return error;
459 }
460
461 /*
462 * we've successfully read the page, activate it.
463 */
464
465 uvm_lock_pageq();
466 uvm_pageactivate(pg);
467 uvm_unlock_pageq();
468 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
469 UVM_PAGE_OWN(pg, NULL);
470 if (!locked)
471 simple_unlock(&anon->an_lock);
472 }
473
474 /*
475 * we were not able to relock. restart fault.
476 */
477
478 if (!locked) {
479 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
480 return (ERESTART);
481 }
482
483 /*
484 * verify no one has touched the amap and moved the anon on us.
485 */
486
487 if (ufi != NULL &&
488 amap_lookup(&ufi->entry->aref,
489 ufi->orig_rvaddr - ufi->entry->start) != anon) {
490
491 uvmfault_unlockall(ufi, amap, NULL, anon);
492 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
493 return (ERESTART);
494 }
495
496 /*
497 * try it again!
498 */
499
500 uvmexp.fltanretry++;
501 continue;
502 }
503 /*NOTREACHED*/
504 }
505
506 /*
507 * F A U L T - m a i n e n t r y p o i n t
508 */
509
510 /*
511 * uvm_fault: page fault handler
512 *
513 * => called from MD code to resolve a page fault
514 * => VM data structures usually should be unlocked. however, it is
515 * possible to call here with the main map locked if the caller
516 * gets a write lock, sets it recusive, and then calls us (c.f.
517 * uvm_map_pageable). this should be avoided because it keeps
518 * the map locked off during I/O.
519 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
520 */
521
522 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
523 ~VM_PROT_WRITE : VM_PROT_ALL)
524
525 int
526 uvm_fault(orig_map, vaddr, fault_type, access_type)
527 struct vm_map *orig_map;
528 vaddr_t vaddr;
529 vm_fault_t fault_type;
530 vm_prot_t access_type;
531 {
532 struct uvm_faultinfo ufi;
533 vm_prot_t enter_prot;
534 boolean_t wired, narrow, promote, locked, shadowed;
535 int npages, nback, nforw, centeridx, error, lcv, gotpages;
536 vaddr_t startva, objaddr, currva, offset, uoff;
537 paddr_t pa;
538 struct vm_amap *amap;
539 struct uvm_object *uobj;
540 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
541 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
542 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
543
544 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
545 orig_map, vaddr, fault_type, access_type);
546
547 anon = NULL;
548 pg = NULL;
549
550 uvmexp.faults++; /* XXX: locking? */
551
552 /*
553 * init the IN parameters in the ufi
554 */
555
556 ufi.orig_map = orig_map;
557 ufi.orig_rvaddr = trunc_page(vaddr);
558 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
559 if (fault_type == VM_FAULT_WIRE)
560 narrow = TRUE; /* don't look for neighborhood
561 * pages on wire */
562 else
563 narrow = FALSE; /* normal fault */
564
565 /*
566 * "goto ReFault" means restart the page fault from ground zero.
567 */
568 ReFault:
569
570 /*
571 * lookup and lock the maps
572 */
573
574 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
575 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
576 return (EFAULT);
577 }
578 /* locked: maps(read) */
579
580 #ifdef DIAGNOSTIC
581 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
582 printf("Page fault on non-pageable map:\n");
583 printf("ufi.map = %p\n", ufi.map);
584 printf("ufi.orig_map = %p\n", ufi.orig_map);
585 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
586 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
587 }
588 #endif
589
590 /*
591 * check protection
592 */
593
594 if ((ufi.entry->protection & access_type) != access_type) {
595 UVMHIST_LOG(maphist,
596 "<- protection failure (prot=0x%x, access=0x%x)",
597 ufi.entry->protection, access_type, 0, 0);
598 uvmfault_unlockmaps(&ufi, FALSE);
599 return EACCES;
600 }
601
602 /*
603 * "enter_prot" is the protection we want to enter the page in at.
604 * for certain pages (e.g. copy-on-write pages) this protection can
605 * be more strict than ufi.entry->protection. "wired" means either
606 * the entry is wired or we are fault-wiring the pg.
607 */
608
609 enter_prot = ufi.entry->protection;
610 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
611 if (wired)
612 access_type = enter_prot; /* full access for wired */
613
614 /*
615 * handle "needs_copy" case. if we need to copy the amap we will
616 * have to drop our readlock and relock it with a write lock. (we
617 * need a write lock to change anything in a map entry [e.g.
618 * needs_copy]).
619 */
620
621 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
622 if ((access_type & VM_PROT_WRITE) ||
623 (ufi.entry->object.uvm_obj == NULL)) {
624 /* need to clear */
625 UVMHIST_LOG(maphist,
626 " need to clear needs_copy and refault",0,0,0,0);
627 uvmfault_unlockmaps(&ufi, FALSE);
628 uvmfault_amapcopy(&ufi);
629 uvmexp.fltamcopy++;
630 goto ReFault;
631
632 } else {
633
634 /*
635 * ensure that we pmap_enter page R/O since
636 * needs_copy is still true
637 */
638 enter_prot &= ~VM_PROT_WRITE;
639
640 }
641 }
642
643 /*
644 * identify the players
645 */
646
647 amap = ufi.entry->aref.ar_amap; /* top layer */
648 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
649
650 /*
651 * check for a case 0 fault. if nothing backing the entry then
652 * error now.
653 */
654
655 if (amap == NULL && uobj == NULL) {
656 uvmfault_unlockmaps(&ufi, FALSE);
657 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
658 return (EFAULT);
659 }
660
661 /*
662 * establish range of interest based on advice from mapper
663 * and then clip to fit map entry. note that we only want
664 * to do this the first time through the fault. if we
665 * ReFault we will disable this by setting "narrow" to true.
666 */
667
668 if (narrow == FALSE) {
669
670 /* wide fault (!narrow) */
671 KASSERT(uvmadvice[ufi.entry->advice].advice ==
672 ufi.entry->advice);
673 nback = MIN(uvmadvice[ufi.entry->advice].nback,
674 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
675 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
676 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
677 ((ufi.entry->end - ufi.orig_rvaddr) >>
678 PAGE_SHIFT) - 1);
679 /*
680 * note: "-1" because we don't want to count the
681 * faulting page as forw
682 */
683 npages = nback + nforw + 1;
684 centeridx = nback;
685
686 narrow = TRUE; /* ensure only once per-fault */
687
688 } else {
689
690 /* narrow fault! */
691 nback = nforw = 0;
692 startva = ufi.orig_rvaddr;
693 npages = 1;
694 centeridx = 0;
695
696 }
697
698 /* locked: maps(read) */
699 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
700 narrow, nback, nforw, startva);
701 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
702 amap, uobj, 0);
703
704 /*
705 * if we've got an amap, lock it and extract current anons.
706 */
707
708 if (amap) {
709 amap_lock(amap);
710 anons = anons_store;
711 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
712 anons, npages);
713 } else {
714 anons = NULL; /* to be safe */
715 }
716
717 /* locked: maps(read), amap(if there) */
718
719 /*
720 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
721 * now and then forget about them (for the rest of the fault).
722 */
723
724 if (ufi.entry->advice == MADV_SEQUENTIAL) {
725
726 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
727 0,0,0,0);
728 /* flush back-page anons? */
729 if (amap)
730 uvmfault_anonflush(anons, nback);
731
732 /* flush object? */
733 if (uobj) {
734 objaddr =
735 (startva - ufi.entry->start) + ufi.entry->offset;
736 simple_lock(&uobj->vmobjlock);
737 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
738 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
739 }
740
741 /* now forget about the backpages */
742 if (amap)
743 anons += nback;
744 startva += (nback << PAGE_SHIFT);
745 npages -= nback;
746 nback = centeridx = 0;
747 }
748
749 /* locked: maps(read), amap(if there) */
750
751 /*
752 * map in the backpages and frontpages we found in the amap in hopes
753 * of preventing future faults. we also init the pages[] array as
754 * we go.
755 */
756
757 currva = startva;
758 shadowed = FALSE;
759 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
760
761 /*
762 * dont play with VAs that are already mapped
763 * except for center)
764 */
765 if (lcv != centeridx &&
766 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
767 pages[lcv] = PGO_DONTCARE;
768 continue;
769 }
770
771 /*
772 * unmapped or center page. check if any anon at this level.
773 */
774 if (amap == NULL || anons[lcv] == NULL) {
775 pages[lcv] = NULL;
776 continue;
777 }
778
779 /*
780 * check for present page and map if possible. re-activate it.
781 */
782
783 pages[lcv] = PGO_DONTCARE;
784 if (lcv == centeridx) { /* save center for later! */
785 shadowed = TRUE;
786 continue;
787 }
788 anon = anons[lcv];
789 simple_lock(&anon->an_lock);
790 /* ignore loaned pages */
791 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
792 (anon->u.an_page->flags & PG_BUSY) == 0) {
793 uvm_lock_pageq();
794 uvm_pageactivate(anon->u.an_page);
795 uvm_unlock_pageq();
796 UVMHIST_LOG(maphist,
797 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
798 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
799 uvmexp.fltnamap++;
800
801 /*
802 * Since this isn't the page that's actually faulting,
803 * ignore pmap_enter() failures; it's not critical
804 * that we enter these right now.
805 */
806
807 (void) pmap_enter(ufi.orig_map->pmap, currva,
808 VM_PAGE_TO_PHYS(anon->u.an_page),
809 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
810 enter_prot,
811 PMAP_CANFAIL |
812 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
813 }
814 simple_unlock(&anon->an_lock);
815 pmap_update(ufi.orig_map->pmap);
816 }
817
818 /* locked: maps(read), amap(if there) */
819 /* (shadowed == TRUE) if there is an anon at the faulting address */
820 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
821 (uobj && shadowed == FALSE),0,0);
822
823 /*
824 * note that if we are really short of RAM we could sleep in the above
825 * call to pmap_enter with everything locked. bad?
826 *
827 * XXX Actually, that is bad; pmap_enter() should just fail in that
828 * XXX case. --thorpej
829 */
830
831 /*
832 * if the desired page is not shadowed by the amap and we have a
833 * backing object, then we check to see if the backing object would
834 * prefer to handle the fault itself (rather than letting us do it
835 * with the usual pgo_get hook). the backing object signals this by
836 * providing a pgo_fault routine.
837 */
838
839 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
840 simple_lock(&uobj->vmobjlock);
841
842 /* locked: maps(read), amap (if there), uobj */
843 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
844 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
845
846 /* locked: nothing, pgo_fault has unlocked everything */
847
848 if (error == ERESTART)
849 goto ReFault; /* try again! */
850 /*
851 * object fault routine responsible for pmap_update().
852 */
853 return error;
854 }
855
856 /*
857 * now, if the desired page is not shadowed by the amap and we have
858 * a backing object that does not have a special fault routine, then
859 * we ask (with pgo_get) the object for resident pages that we care
860 * about and attempt to map them in. we do not let pgo_get block
861 * (PGO_LOCKED).
862 */
863
864 if (uobj && shadowed == FALSE) {
865 simple_lock(&uobj->vmobjlock);
866
867 /* locked (!shadowed): maps(read), amap (if there), uobj */
868 /*
869 * the following call to pgo_get does _not_ change locking state
870 */
871
872 uvmexp.fltlget++;
873 gotpages = npages;
874 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
875 (startva - ufi.entry->start),
876 pages, &gotpages, centeridx,
877 access_type & MASK(ufi.entry),
878 ufi.entry->advice, PGO_LOCKED);
879
880 /*
881 * check for pages to map, if we got any
882 */
883
884 uobjpage = NULL;
885
886 if (gotpages) {
887 currva = startva;
888 for (lcv = 0; lcv < npages;
889 lcv++, currva += PAGE_SIZE) {
890 if (pages[lcv] == NULL ||
891 pages[lcv] == PGO_DONTCARE) {
892 continue;
893 }
894
895 /*
896 * if center page is resident and not
897 * PG_BUSY|PG_RELEASED then pgo_get
898 * made it PG_BUSY for us and gave
899 * us a handle to it. remember this
900 * page as "uobjpage." (for later use).
901 */
902
903 if (lcv == centeridx) {
904 uobjpage = pages[lcv];
905 UVMHIST_LOG(maphist, " got uobjpage "
906 "(0x%x) with locked get",
907 uobjpage, 0,0,0);
908 continue;
909 }
910
911 /*
912 * calling pgo_get with PGO_LOCKED returns us
913 * pages which are neither busy nor released,
914 * so we don't need to check for this.
915 * we can just directly enter the pages.
916 */
917
918 uvm_lock_pageq();
919 uvm_pageactivate(pages[lcv]);
920 uvm_unlock_pageq();
921 UVMHIST_LOG(maphist,
922 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
923 ufi.orig_map->pmap, currva, pages[lcv], 0);
924 uvmexp.fltnomap++;
925
926 /*
927 * Since this page isn't the page that's
928 * actually fauling, ignore pmap_enter()
929 * failures; it's not critical that we
930 * enter these right now.
931 */
932
933 (void) pmap_enter(ufi.orig_map->pmap, currva,
934 VM_PAGE_TO_PHYS(pages[lcv]),
935 pages[lcv]->flags & PG_RDONLY ?
936 VM_PROT_READ : enter_prot & MASK(ufi.entry),
937 PMAP_CANFAIL |
938 (wired ? PMAP_WIRED : 0));
939
940 /*
941 * NOTE: page can't be PG_WANTED or PG_RELEASED
942 * because we've held the lock the whole time
943 * we've had the handle.
944 */
945
946 pages[lcv]->flags &= ~(PG_BUSY);
947 UVM_PAGE_OWN(pages[lcv], NULL);
948 }
949 pmap_update(ufi.orig_map->pmap);
950 }
951 } else {
952 uobjpage = NULL;
953 }
954
955 /* locked (shadowed): maps(read), amap */
956 /* locked (!shadowed): maps(read), amap(if there),
957 uobj(if !null), uobjpage(if !null) */
958
959 /*
960 * note that at this point we are done with any front or back pages.
961 * we are now going to focus on the center page (i.e. the one we've
962 * faulted on). if we have faulted on the top (anon) layer
963 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
964 * not touched it yet). if we have faulted on the bottom (uobj)
965 * layer [i.e. case 2] and the page was both present and available,
966 * then we've got a pointer to it as "uobjpage" and we've already
967 * made it BUSY.
968 */
969
970 /*
971 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
972 */
973
974 /*
975 * redirect case 2: if we are not shadowed, go to case 2.
976 */
977
978 if (shadowed == FALSE)
979 goto Case2;
980
981 /* locked: maps(read), amap */
982
983 /*
984 * handle case 1: fault on an anon in our amap
985 */
986
987 anon = anons[centeridx];
988 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
989 simple_lock(&anon->an_lock);
990
991 /* locked: maps(read), amap, anon */
992
993 /*
994 * no matter if we have case 1A or case 1B we are going to need to
995 * have the anon's memory resident. ensure that now.
996 */
997
998 /*
999 * let uvmfault_anonget do the dirty work.
1000 * if it fails (!OK) it will unlock everything for us.
1001 * if it succeeds, locks are still valid and locked.
1002 * also, if it is OK, then the anon's page is on the queues.
1003 * if the page is on loan from a uvm_object, then anonget will
1004 * lock that object for us if it does not fail.
1005 */
1006
1007 error = uvmfault_anonget(&ufi, amap, anon);
1008 switch (error) {
1009 case 0:
1010 break;
1011
1012 case ERESTART:
1013 goto ReFault;
1014
1015 case EAGAIN:
1016 tsleep(&lbolt, PVM, "fltagain1", 0);
1017 goto ReFault;
1018
1019 default:
1020 return error;
1021 }
1022
1023 /*
1024 * uobj is non null if the page is on loan from an object (i.e. uobj)
1025 */
1026
1027 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1028
1029 /* locked: maps(read), amap, anon, uobj(if one) */
1030
1031 /*
1032 * special handling for loaned pages
1033 */
1034
1035 if (anon->u.an_page->loan_count) {
1036
1037 if ((access_type & VM_PROT_WRITE) == 0) {
1038
1039 /*
1040 * for read faults on loaned pages we just cap the
1041 * protection at read-only.
1042 */
1043
1044 enter_prot = enter_prot & ~VM_PROT_WRITE;
1045
1046 } else {
1047 /*
1048 * note that we can't allow writes into a loaned page!
1049 *
1050 * if we have a write fault on a loaned page in an
1051 * anon then we need to look at the anon's ref count.
1052 * if it is greater than one then we are going to do
1053 * a normal copy-on-write fault into a new anon (this
1054 * is not a problem). however, if the reference count
1055 * is one (a case where we would normally allow a
1056 * write directly to the page) then we need to kill
1057 * the loan before we continue.
1058 */
1059
1060 /* >1 case is already ok */
1061 if (anon->an_ref == 1) {
1062
1063 /* get new un-owned replacement page */
1064 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1065 if (pg == NULL) {
1066 uvmfault_unlockall(&ufi, amap, uobj,
1067 anon);
1068 uvm_wait("flt_noram2");
1069 goto ReFault;
1070 }
1071
1072 /*
1073 * copy data, kill loan, and drop uobj lock
1074 * (if any)
1075 */
1076 /* copy old -> new */
1077 uvm_pagecopy(anon->u.an_page, pg);
1078
1079 /* force reload */
1080 pmap_page_protect(anon->u.an_page,
1081 VM_PROT_NONE);
1082 uvm_lock_pageq(); /* KILL loan */
1083 if (uobj)
1084 /* if we were loaning */
1085 anon->u.an_page->loan_count--;
1086 anon->u.an_page->uanon = NULL;
1087 /* in case we owned */
1088 anon->u.an_page->pqflags &= ~PQ_ANON;
1089 uvm_unlock_pageq();
1090 if (uobj) {
1091 simple_unlock(&uobj->vmobjlock);
1092 uobj = NULL;
1093 }
1094
1095 /* install new page in anon */
1096 anon->u.an_page = pg;
1097 pg->uanon = anon;
1098 pg->pqflags |= PQ_ANON;
1099 pg->flags &= ~(PG_BUSY|PG_FAKE);
1100 UVM_PAGE_OWN(pg, NULL);
1101
1102 /* done! */
1103 } /* ref == 1 */
1104 } /* write fault */
1105 } /* loan count */
1106
1107 /*
1108 * if we are case 1B then we will need to allocate a new blank
1109 * anon to transfer the data into. note that we have a lock
1110 * on anon, so no one can busy or release the page until we are done.
1111 * also note that the ref count can't drop to zero here because
1112 * it is > 1 and we are only dropping one ref.
1113 *
1114 * in the (hopefully very rare) case that we are out of RAM we
1115 * will unlock, wait for more RAM, and refault.
1116 *
1117 * if we are out of anon VM we kill the process (XXX: could wait?).
1118 */
1119
1120 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1121
1122 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1123 uvmexp.flt_acow++;
1124 oanon = anon; /* oanon = old, locked anon */
1125 anon = uvm_analloc();
1126 if (anon) {
1127 /* new anon is locked! */
1128 pg = uvm_pagealloc(NULL, 0, anon, 0);
1129 }
1130
1131 /* check for out of RAM */
1132 if (anon == NULL || pg == NULL) {
1133 if (anon) {
1134 anon->an_ref--;
1135 simple_unlock(&anon->an_lock);
1136 uvm_anfree(anon);
1137 }
1138 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1139 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1140 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1141 UVMHIST_LOG(maphist,
1142 "<- failed. out of VM",0,0,0,0);
1143 uvmexp.fltnoanon++;
1144 return ENOMEM;
1145 }
1146
1147 uvmexp.fltnoram++;
1148 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1149 goto ReFault;
1150 }
1151
1152 /* got all resources, replace anon with nanon */
1153 uvm_pagecopy(oanon->u.an_page, pg);
1154 uvm_pageactivate(pg);
1155 pg->flags &= ~(PG_BUSY|PG_FAKE);
1156 UVM_PAGE_OWN(pg, NULL);
1157 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1158 anon, 1);
1159
1160 /* deref: can not drop to zero here by defn! */
1161 oanon->an_ref--;
1162
1163 /*
1164 * note: oanon is still locked, as is the new anon. we
1165 * need to check for this later when we unlock oanon; if
1166 * oanon != anon, we'll have to unlock anon, too.
1167 */
1168
1169 } else {
1170
1171 uvmexp.flt_anon++;
1172 oanon = anon; /* old, locked anon is same as anon */
1173 pg = anon->u.an_page;
1174 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1175 enter_prot = enter_prot & ~VM_PROT_WRITE;
1176
1177 }
1178
1179 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1180
1181 /*
1182 * now map the page in.
1183 */
1184
1185 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1186 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1187 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1188 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1189 != 0) {
1190
1191 /*
1192 * No need to undo what we did; we can simply think of
1193 * this as the pmap throwing away the mapping information.
1194 *
1195 * We do, however, have to go through the ReFault path,
1196 * as the map may change while we're asleep.
1197 */
1198
1199 if (anon != oanon)
1200 simple_unlock(&anon->an_lock);
1201 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1202 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1203 if (uvmexp.swpgonly == uvmexp.swpages) {
1204 UVMHIST_LOG(maphist,
1205 "<- failed. out of VM",0,0,0,0);
1206 /* XXX instrumentation */
1207 return ENOMEM;
1208 }
1209 /* XXX instrumentation */
1210 uvm_wait("flt_pmfail1");
1211 goto ReFault;
1212 }
1213
1214 /*
1215 * ... update the page queues.
1216 */
1217
1218 uvm_lock_pageq();
1219 if (fault_type == VM_FAULT_WIRE) {
1220 uvm_pagewire(pg);
1221
1222 /*
1223 * since the now-wired page cannot be paged out,
1224 * release its swap resources for others to use.
1225 * since an anon with no swap cannot be PG_CLEAN,
1226 * clear its clean flag now.
1227 */
1228
1229 pg->flags &= ~(PG_CLEAN);
1230 uvm_anon_dropswap(anon);
1231 } else {
1232 uvm_pageactivate(pg);
1233 }
1234 uvm_unlock_pageq();
1235
1236 /*
1237 * done case 1! finish up by unlocking everything and returning success
1238 */
1239
1240 if (anon != oanon)
1241 simple_unlock(&anon->an_lock);
1242 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1243 pmap_update(ufi.orig_map->pmap);
1244 return 0;
1245
1246 Case2:
1247 /*
1248 * handle case 2: faulting on backing object or zero fill
1249 */
1250
1251 /*
1252 * locked:
1253 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1254 */
1255
1256 /*
1257 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1258 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1259 * have a backing object, check and see if we are going to promote
1260 * the data up to an anon during the fault.
1261 */
1262
1263 if (uobj == NULL) {
1264 uobjpage = PGO_DONTCARE;
1265 promote = TRUE; /* always need anon here */
1266 } else {
1267 KASSERT(uobjpage != PGO_DONTCARE);
1268 promote = (access_type & VM_PROT_WRITE) &&
1269 UVM_ET_ISCOPYONWRITE(ufi.entry);
1270 }
1271 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1272 promote, (uobj == NULL), 0,0);
1273
1274 /*
1275 * if uobjpage is not null then we do not need to do I/O to get the
1276 * uobjpage.
1277 *
1278 * if uobjpage is null, then we need to unlock and ask the pager to
1279 * get the data for us. once we have the data, we need to reverify
1280 * the state the world. we are currently not holding any resources.
1281 */
1282
1283 if (uobjpage) {
1284 /* update rusage counters */
1285 curproc->l_proc->p_stats->p_ru.ru_minflt++;
1286 } else {
1287 /* update rusage counters */
1288 curproc->l_proc->p_stats->p_ru.ru_majflt++;
1289
1290 /* locked: maps(read), amap(if there), uobj */
1291 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1292 /* locked: uobj */
1293
1294 uvmexp.fltget++;
1295 gotpages = 1;
1296 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1297 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1298 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1299 PGO_SYNCIO);
1300 /* locked: uobjpage(if no error) */
1301
1302 /*
1303 * recover from I/O
1304 */
1305
1306 if (error) {
1307 if (error == EAGAIN) {
1308 UVMHIST_LOG(maphist,
1309 " pgo_get says TRY AGAIN!",0,0,0,0);
1310 tsleep(&lbolt, PVM, "fltagain2", 0);
1311 goto ReFault;
1312 }
1313
1314 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1315 error, 0,0,0);
1316 return error;
1317 }
1318
1319 /* locked: uobjpage */
1320
1321 uvm_lock_pageq();
1322 uvm_pageactivate(uobjpage);
1323 uvm_unlock_pageq();
1324
1325 /*
1326 * re-verify the state of the world by first trying to relock
1327 * the maps. always relock the object.
1328 */
1329
1330 locked = uvmfault_relock(&ufi);
1331 if (locked && amap)
1332 amap_lock(amap);
1333 simple_lock(&uobj->vmobjlock);
1334
1335 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1336 /* locked(!locked): uobj, uobjpage */
1337
1338 /*
1339 * verify that the page has not be released and re-verify
1340 * that amap slot is still free. if there is a problem,
1341 * we unlock and clean up.
1342 */
1343
1344 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1345 (locked && amap &&
1346 amap_lookup(&ufi.entry->aref,
1347 ufi.orig_rvaddr - ufi.entry->start))) {
1348 if (locked)
1349 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1350 locked = FALSE;
1351 }
1352
1353 /*
1354 * didn't get the lock? release the page and retry.
1355 */
1356
1357 if (locked == FALSE) {
1358 UVMHIST_LOG(maphist,
1359 " wasn't able to relock after fault: retry",
1360 0,0,0,0);
1361 if (uobjpage->flags & PG_WANTED)
1362 wakeup(uobjpage);
1363 if (uobjpage->flags & PG_RELEASED) {
1364 uvmexp.fltpgrele++;
1365 uvm_pagefree(uobjpage);
1366 goto ReFault;
1367 }
1368 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1369 UVM_PAGE_OWN(uobjpage, NULL);
1370 simple_unlock(&uobj->vmobjlock);
1371 goto ReFault;
1372 }
1373
1374 /*
1375 * we have the data in uobjpage which is busy and
1376 * not released. we are holding object lock (so the page
1377 * can't be released on us).
1378 */
1379
1380 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1381 }
1382
1383 /*
1384 * locked:
1385 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1386 */
1387
1388 /*
1389 * notes:
1390 * - at this point uobjpage can not be NULL
1391 * - at this point uobjpage can not be PG_RELEASED (since we checked
1392 * for it above)
1393 * - at this point uobjpage could be PG_WANTED (handle later)
1394 */
1395
1396 if (promote == FALSE) {
1397
1398 /*
1399 * we are not promoting. if the mapping is COW ensure that we
1400 * don't give more access than we should (e.g. when doing a read
1401 * fault on a COPYONWRITE mapping we want to map the COW page in
1402 * R/O even though the entry protection could be R/W).
1403 *
1404 * set "pg" to the page we want to map in (uobjpage, usually)
1405 */
1406
1407 /* no anon in this case. */
1408 anon = NULL;
1409
1410 uvmexp.flt_obj++;
1411 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1412 enter_prot &= ~VM_PROT_WRITE;
1413 pg = uobjpage; /* map in the actual object */
1414
1415 /* assert(uobjpage != PGO_DONTCARE) */
1416
1417 /*
1418 * we are faulting directly on the page. be careful
1419 * about writing to loaned pages...
1420 */
1421
1422 if (uobjpage->loan_count) {
1423 if ((access_type & VM_PROT_WRITE) == 0) {
1424 /* read fault: cap the protection at readonly */
1425 /* cap! */
1426 enter_prot = enter_prot & ~VM_PROT_WRITE;
1427 } else {
1428 /* write fault: must break the loan here */
1429
1430 /* alloc new un-owned page */
1431 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1432
1433 if (pg == NULL) {
1434
1435 /*
1436 * drop ownership of page, it can't
1437 * be released
1438 */
1439
1440 if (uobjpage->flags & PG_WANTED)
1441 wakeup(uobjpage);
1442 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1443 UVM_PAGE_OWN(uobjpage, NULL);
1444
1445 uvmfault_unlockall(&ufi, amap, uobj,
1446 NULL);
1447 UVMHIST_LOG(maphist,
1448 " out of RAM breaking loan, waiting",
1449 0,0,0,0);
1450 uvmexp.fltnoram++;
1451 uvm_wait("flt_noram4");
1452 goto ReFault;
1453 }
1454
1455 /*
1456 * copy the data from the old page to the new
1457 * one and clear the fake/clean flags on the
1458 * new page (keep it busy). force a reload
1459 * of the old page by clearing it from all
1460 * pmaps. then lock the page queues to
1461 * rename the pages.
1462 */
1463
1464 uvm_pagecopy(uobjpage, pg); /* old -> new */
1465 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1466 pmap_page_protect(uobjpage, VM_PROT_NONE);
1467 if (uobjpage->flags & PG_WANTED)
1468 wakeup(uobjpage);
1469 /* uobj still locked */
1470 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1471 UVM_PAGE_OWN(uobjpage, NULL);
1472
1473 uvm_lock_pageq();
1474 offset = uobjpage->offset;
1475 uvm_pagerealloc(uobjpage, NULL, 0);
1476
1477 /*
1478 * at this point we have absolutely no
1479 * control over uobjpage
1480 */
1481
1482 /* install new page */
1483 uvm_pageactivate(pg);
1484 uvm_pagerealloc(pg, uobj, offset);
1485 uvm_unlock_pageq();
1486
1487 /*
1488 * done! loan is broken and "pg" is
1489 * PG_BUSY. it can now replace uobjpage.
1490 */
1491
1492 uobjpage = pg;
1493 }
1494 }
1495 } else {
1496
1497 /*
1498 * if we are going to promote the data to an anon we
1499 * allocate a blank anon here and plug it into our amap.
1500 */
1501 #if DIAGNOSTIC
1502 if (amap == NULL)
1503 panic("uvm_fault: want to promote data, but no anon");
1504 #endif
1505
1506 anon = uvm_analloc();
1507 if (anon) {
1508
1509 /*
1510 * The new anon is locked.
1511 *
1512 * In `Fill in data...' below, if
1513 * uobjpage == PGO_DONTCARE, we want
1514 * a zero'd, dirty page, so have
1515 * uvm_pagealloc() do that for us.
1516 */
1517
1518 pg = uvm_pagealloc(NULL, 0, anon,
1519 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1520 }
1521
1522 /*
1523 * out of memory resources?
1524 */
1525
1526 if (anon == NULL || pg == NULL) {
1527 if (anon != NULL) {
1528 anon->an_ref--;
1529 simple_unlock(&anon->an_lock);
1530 uvm_anfree(anon);
1531 }
1532
1533 /*
1534 * arg! must unbusy our page and fail or sleep.
1535 */
1536
1537 if (uobjpage != PGO_DONTCARE) {
1538 if (uobjpage->flags & PG_WANTED)
1539 /* still holding object lock */
1540 wakeup(uobjpage);
1541
1542 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1543 UVM_PAGE_OWN(uobjpage, NULL);
1544 }
1545
1546 /* unlock and fail ... */
1547 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1548 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1549 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1550 UVMHIST_LOG(maphist, " promote: out of VM",
1551 0,0,0,0);
1552 uvmexp.fltnoanon++;
1553 return ENOMEM;
1554 }
1555
1556 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1557 0,0,0,0);
1558 uvmexp.fltnoram++;
1559 uvm_wait("flt_noram5");
1560 goto ReFault;
1561 }
1562
1563 /*
1564 * fill in the data
1565 */
1566
1567 if (uobjpage != PGO_DONTCARE) {
1568 uvmexp.flt_prcopy++;
1569 /* copy page [pg now dirty] */
1570 uvm_pagecopy(uobjpage, pg);
1571
1572 /*
1573 * promote to shared amap? make sure all sharing
1574 * procs see it
1575 */
1576
1577 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1578 pmap_page_protect(uobjpage, VM_PROT_NONE);
1579 /*
1580 * XXX: PAGE MIGHT BE WIRED!
1581 */
1582 }
1583
1584 /*
1585 * dispose of uobjpage. it can't be PG_RELEASED
1586 * since we still hold the object lock.
1587 * drop handle to uobj as well.
1588 */
1589
1590 if (uobjpage->flags & PG_WANTED)
1591 /* still have the obj lock */
1592 wakeup(uobjpage);
1593 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1594 UVM_PAGE_OWN(uobjpage, NULL);
1595 simple_unlock(&uobj->vmobjlock);
1596 uobj = NULL;
1597
1598 UVMHIST_LOG(maphist,
1599 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1600 uobjpage, anon, pg, 0);
1601
1602 } else {
1603 uvmexp.flt_przero++;
1604
1605 /*
1606 * Page is zero'd and marked dirty by uvm_pagealloc()
1607 * above.
1608 */
1609
1610 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1611 anon, pg, 0, 0);
1612 }
1613 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1614 anon, 0);
1615 }
1616
1617 /*
1618 * locked:
1619 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1620 * anon(if !null), pg(if anon)
1621 *
1622 * note: pg is either the uobjpage or the new page in the new anon
1623 */
1624
1625 /*
1626 * all resources are present. we can now map it in and free our
1627 * resources.
1628 */
1629
1630 UVMHIST_LOG(maphist,
1631 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1632 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1633 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1634 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1635 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1636 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1637
1638 /*
1639 * No need to undo what we did; we can simply think of
1640 * this as the pmap throwing away the mapping information.
1641 *
1642 * We do, however, have to go through the ReFault path,
1643 * as the map may change while we're asleep.
1644 */
1645
1646 if (pg->flags & PG_WANTED)
1647 wakeup(pg);
1648
1649 /*
1650 * note that pg can't be PG_RELEASED since we did not drop
1651 * the object lock since the last time we checked.
1652 */
1653
1654 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1655 UVM_PAGE_OWN(pg, NULL);
1656 uvmfault_unlockall(&ufi, amap, uobj, anon);
1657 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1658 if (uvmexp.swpgonly == uvmexp.swpages) {
1659 UVMHIST_LOG(maphist,
1660 "<- failed. out of VM",0,0,0,0);
1661 /* XXX instrumentation */
1662 return ENOMEM;
1663 }
1664 /* XXX instrumentation */
1665 uvm_wait("flt_pmfail2");
1666 goto ReFault;
1667 }
1668
1669 uvm_lock_pageq();
1670 if (fault_type == VM_FAULT_WIRE) {
1671 uvm_pagewire(pg);
1672 if (pg->pqflags & PQ_AOBJ) {
1673
1674 /*
1675 * since the now-wired page cannot be paged out,
1676 * release its swap resources for others to use.
1677 * since an aobj page with no swap cannot be PG_CLEAN,
1678 * clear its clean flag now.
1679 */
1680
1681 pg->flags &= ~(PG_CLEAN);
1682 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1683 }
1684 } else {
1685 uvm_pageactivate(pg);
1686 }
1687 uvm_unlock_pageq();
1688 if (pg->flags & PG_WANTED)
1689 wakeup(pg);
1690
1691 /*
1692 * note that pg can't be PG_RELEASED since we did not drop the object
1693 * lock since the last time we checked.
1694 */
1695
1696 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1697 UVM_PAGE_OWN(pg, NULL);
1698 uvmfault_unlockall(&ufi, amap, uobj, anon);
1699 pmap_update(ufi.orig_map->pmap);
1700 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1701 return 0;
1702 }
1703
1704 /*
1705 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1706 *
1707 * => map may be read-locked by caller, but MUST NOT be write-locked.
1708 * => if map is read-locked, any operations which may cause map to
1709 * be write-locked in uvm_fault() must be taken care of by
1710 * the caller. See uvm_map_pageable().
1711 */
1712
1713 int
1714 uvm_fault_wire(map, start, end, access_type)
1715 struct vm_map *map;
1716 vaddr_t start, end;
1717 vm_prot_t access_type;
1718 {
1719 vaddr_t va;
1720 int error;
1721
1722 /*
1723 * now fault it in a page at a time. if the fault fails then we have
1724 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1725 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1726 */
1727
1728 /*
1729 * XXX work around overflowing a vaddr_t. this prevents us from
1730 * wiring the last page in the address space, though.
1731 */
1732 if (start > end) {
1733 return EFAULT;
1734 }
1735
1736 for (va = start ; va < end ; va += PAGE_SIZE) {
1737 error = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1738 if (error) {
1739 if (va != start) {
1740 uvm_fault_unwire(map, start, va);
1741 }
1742 return error;
1743 }
1744 }
1745 return 0;
1746 }
1747
1748 /*
1749 * uvm_fault_unwire(): unwire range of virtual space.
1750 */
1751
1752 void
1753 uvm_fault_unwire(map, start, end)
1754 struct vm_map *map;
1755 vaddr_t start, end;
1756 {
1757 vm_map_lock_read(map);
1758 uvm_fault_unwire_locked(map, start, end);
1759 vm_map_unlock_read(map);
1760 }
1761
1762 /*
1763 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1764 *
1765 * => map must be at least read-locked.
1766 */
1767
1768 void
1769 uvm_fault_unwire_locked(map, start, end)
1770 struct vm_map *map;
1771 vaddr_t start, end;
1772 {
1773 struct vm_map_entry *entry;
1774 pmap_t pmap = vm_map_pmap(map);
1775 vaddr_t va;
1776 paddr_t pa;
1777 struct vm_page *pg;
1778
1779 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1780
1781 /*
1782 * we assume that the area we are unwiring has actually been wired
1783 * in the first place. this means that we should be able to extract
1784 * the PAs from the pmap. we also lock out the page daemon so that
1785 * we can call uvm_pageunwire.
1786 */
1787
1788 uvm_lock_pageq();
1789
1790 /*
1791 * find the beginning map entry for the region.
1792 */
1793 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1794 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1795 panic("uvm_fault_unwire_locked: address not in map");
1796
1797 for (va = start; va < end; va += PAGE_SIZE) {
1798 if (pmap_extract(pmap, va, &pa) == FALSE)
1799 panic("uvm_fault_unwire_locked: unwiring "
1800 "non-wired memory");
1801
1802 /*
1803 * make sure the current entry is for the address we're
1804 * dealing with. if not, grab the next entry.
1805 */
1806
1807 KASSERT(va >= entry->start);
1808 if (va >= entry->end) {
1809 KASSERT(entry->next != &map->header &&
1810 entry->next->start <= entry->end);
1811 entry = entry->next;
1812 }
1813
1814 /*
1815 * if the entry is no longer wired, tell the pmap.
1816 */
1817 if (VM_MAPENT_ISWIRED(entry) == 0)
1818 pmap_unwire(pmap, va);
1819
1820 pg = PHYS_TO_VM_PAGE(pa);
1821 if (pg)
1822 uvm_pageunwire(pg);
1823 }
1824
1825 uvm_unlock_pageq();
1826 }
1827