uvm_fault.c revision 1.56.2.8 1 /* $NetBSD: uvm_fault.c,v 1.56.2.8 2002/01/08 00:35:00 nathanw Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.56.2.8 2002/01/08 00:35:00 nathanw Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/lwp.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/user.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ----------->new| | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----| |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in top level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * given that we are not currently multiprocessor or multithreaded we might
151 * as well choose alternative 2 now. maybe alternative 3 would be useful
152 * in the future. XXX keep in mind for future consideration//rechecking.
153 */
154
155 /*
156 * local data structures
157 */
158
159 struct uvm_advice {
160 int advice;
161 int nback;
162 int nforw;
163 };
164
165 /*
166 * page range array:
167 * note: index in array must match "advice" value
168 * XXX: borrowed numbers from freebsd. do they work well for us?
169 */
170
171 static struct uvm_advice uvmadvice[] = {
172 { MADV_NORMAL, 3, 4 },
173 { MADV_RANDOM, 0, 0 },
174 { MADV_SEQUENTIAL, 8, 7},
175 };
176
177 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
178
179 /*
180 * private prototypes
181 */
182
183 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
184 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
185
186 /*
187 * inline functions
188 */
189
190 /*
191 * uvmfault_anonflush: try and deactivate pages in specified anons
192 *
193 * => does not have to deactivate page if it is busy
194 */
195
196 static __inline void
197 uvmfault_anonflush(anons, n)
198 struct vm_anon **anons;
199 int n;
200 {
201 int lcv;
202 struct vm_page *pg;
203
204 for (lcv = 0 ; lcv < n ; lcv++) {
205 if (anons[lcv] == NULL)
206 continue;
207 simple_lock(&anons[lcv]->an_lock);
208 pg = anons[lcv]->u.an_page;
209 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
210 uvm_lock_pageq();
211 if (pg->wire_count == 0) {
212 pmap_clear_reference(pg);
213 uvm_pagedeactivate(pg);
214 }
215 uvm_unlock_pageq();
216 }
217 simple_unlock(&anons[lcv]->an_lock);
218 }
219 }
220
221 /*
222 * normal functions
223 */
224
225 /*
226 * uvmfault_amapcopy: clear "needs_copy" in a map.
227 *
228 * => called with VM data structures unlocked (usually, see below)
229 * => we get a write lock on the maps and clear needs_copy for a VA
230 * => if we are out of RAM we sleep (waiting for more)
231 */
232
233 static void
234 uvmfault_amapcopy(ufi)
235 struct uvm_faultinfo *ufi;
236 {
237 for (;;) {
238
239 /*
240 * no mapping? give up.
241 */
242
243 if (uvmfault_lookup(ufi, TRUE) == FALSE)
244 return;
245
246 /*
247 * copy if needed.
248 */
249
250 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
251 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
252 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
253
254 /*
255 * didn't work? must be out of RAM. unlock and sleep.
256 */
257
258 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
259 uvmfault_unlockmaps(ufi, TRUE);
260 uvm_wait("fltamapcopy");
261 continue;
262 }
263
264 /*
265 * got it! unlock and return.
266 */
267
268 uvmfault_unlockmaps(ufi, TRUE);
269 return;
270 }
271 /*NOTREACHED*/
272 }
273
274 /*
275 * uvmfault_anonget: get data in an anon into a non-busy, non-released
276 * page in that anon.
277 *
278 * => maps, amap, and anon locked by caller.
279 * => if we fail (result != 0) we unlock everything.
280 * => if we are successful, we return with everything still locked.
281 * => we don't move the page on the queues [gets moved later]
282 * => if we allocate a new page [we_own], it gets put on the queues.
283 * either way, the result is that the page is on the queues at return time
284 * => for pages which are on loan from a uvm_object (and thus are not
285 * owned by the anon): if successful, we return with the owning object
286 * locked. the caller must unlock this object when it unlocks everything
287 * else.
288 */
289
290 int
291 uvmfault_anonget(ufi, amap, anon)
292 struct uvm_faultinfo *ufi;
293 struct vm_amap *amap;
294 struct vm_anon *anon;
295 {
296 boolean_t we_own; /* we own anon's page? */
297 boolean_t locked; /* did we relock? */
298 struct vm_page *pg;
299 int error;
300 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
301
302 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
303
304 error = 0;
305 uvmexp.fltanget++;
306 /* bump rusage counters */
307 if (anon->u.an_page)
308 curproc->l_proc->p_stats->p_ru.ru_minflt++;
309 else
310 curproc->l_proc->p_stats->p_ru.ru_majflt++;
311
312 /*
313 * loop until we get it, or fail.
314 */
315
316 for (;;) {
317 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
318 pg = anon->u.an_page;
319
320 /*
321 * if there is a resident page and it is loaned, then anon
322 * may not own it. call out to uvm_anon_lockpage() to ensure
323 * the real owner of the page has been identified and locked.
324 */
325
326 if (pg && pg->loan_count)
327 pg = uvm_anon_lockloanpg(anon);
328
329 /*
330 * page there? make sure it is not busy/released.
331 */
332
333 if (pg) {
334
335 /*
336 * at this point, if the page has a uobject [meaning
337 * we have it on loan], then that uobject is locked
338 * by us! if the page is busy, we drop all the
339 * locks (including uobject) and try again.
340 */
341
342 if ((pg->flags & PG_BUSY) == 0) {
343 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
344 return (0);
345 }
346 pg->flags |= PG_WANTED;
347 uvmexp.fltpgwait++;
348
349 /*
350 * the last unlock must be an atomic unlock+wait on
351 * the owner of page
352 */
353
354 if (pg->uobject) { /* owner is uobject ? */
355 uvmfault_unlockall(ufi, amap, NULL, anon);
356 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
357 0,0,0);
358 UVM_UNLOCK_AND_WAIT(pg,
359 &pg->uobject->vmobjlock,
360 FALSE, "anonget1",0);
361 } else {
362 /* anon owns page */
363 uvmfault_unlockall(ufi, amap, NULL, NULL);
364 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
365 0,0,0);
366 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
367 "anonget2",0);
368 }
369 } else {
370
371 /*
372 * no page, we must try and bring it in.
373 */
374
375 pg = uvm_pagealloc(NULL, 0, anon, 0);
376 if (pg == NULL) { /* out of RAM. */
377 uvmfault_unlockall(ufi, amap, NULL, anon);
378 uvmexp.fltnoram++;
379 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
380 0,0,0);
381 uvm_wait("flt_noram1");
382 } else {
383 /* we set the PG_BUSY bit */
384 we_own = TRUE;
385 uvmfault_unlockall(ufi, amap, NULL, anon);
386
387 /*
388 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
389 * page into the uvm_swap_get function with
390 * all data structures unlocked. note that
391 * it is ok to read an_swslot here because
392 * we hold PG_BUSY on the page.
393 */
394 uvmexp.pageins++;
395 error = uvm_swap_get(pg, anon->an_swslot,
396 PGO_SYNCIO);
397
398 /*
399 * we clean up after the i/o below in the
400 * "we_own" case
401 */
402 }
403 }
404
405 /*
406 * now relock and try again
407 */
408
409 locked = uvmfault_relock(ufi);
410 if (locked && amap != NULL) {
411 amap_lock(amap);
412 }
413 if (locked || we_own)
414 simple_lock(&anon->an_lock);
415
416 /*
417 * if we own the page (i.e. we set PG_BUSY), then we need
418 * to clean up after the I/O. there are three cases to
419 * consider:
420 * [1] page released during I/O: free anon and ReFault.
421 * [2] I/O not OK. free the page and cause the fault
422 * to fail.
423 * [3] I/O OK! activate the page and sync with the
424 * non-we_own case (i.e. drop anon lock if not locked).
425 */
426
427 if (we_own) {
428 if (pg->flags & PG_WANTED) {
429 wakeup(pg);
430 }
431 if (error) {
432 /* remove page from anon */
433 anon->u.an_page = NULL;
434
435 /*
436 * remove the swap slot from the anon
437 * and mark the anon as having no real slot.
438 * don't free the swap slot, thus preventing
439 * it from being used again.
440 */
441
442 uvm_swap_markbad(anon->an_swslot, 1);
443 anon->an_swslot = SWSLOT_BAD;
444
445 /*
446 * note: page was never !PG_BUSY, so it
447 * can't be mapped and thus no need to
448 * pmap_page_protect it...
449 */
450
451 uvm_lock_pageq();
452 uvm_pagefree(pg);
453 uvm_unlock_pageq();
454
455 if (locked)
456 uvmfault_unlockall(ufi, amap, NULL,
457 anon);
458 else
459 simple_unlock(&anon->an_lock);
460 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
461 return error;
462 }
463
464 /*
465 * we've successfully read the page, activate it.
466 */
467
468 uvm_lock_pageq();
469 uvm_pageactivate(pg);
470 uvm_unlock_pageq();
471 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
472 UVM_PAGE_OWN(pg, NULL);
473 if (!locked)
474 simple_unlock(&anon->an_lock);
475 }
476
477 /*
478 * we were not able to relock. restart fault.
479 */
480
481 if (!locked) {
482 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
483 return (ERESTART);
484 }
485
486 /*
487 * verify no one has touched the amap and moved the anon on us.
488 */
489
490 if (ufi != NULL &&
491 amap_lookup(&ufi->entry->aref,
492 ufi->orig_rvaddr - ufi->entry->start) != anon) {
493
494 uvmfault_unlockall(ufi, amap, NULL, anon);
495 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
496 return (ERESTART);
497 }
498
499 /*
500 * try it again!
501 */
502
503 uvmexp.fltanretry++;
504 continue;
505 }
506 /*NOTREACHED*/
507 }
508
509 /*
510 * F A U L T - m a i n e n t r y p o i n t
511 */
512
513 /*
514 * uvm_fault: page fault handler
515 *
516 * => called from MD code to resolve a page fault
517 * => VM data structures usually should be unlocked. however, it is
518 * possible to call here with the main map locked if the caller
519 * gets a write lock, sets it recusive, and then calls us (c.f.
520 * uvm_map_pageable). this should be avoided because it keeps
521 * the map locked off during I/O.
522 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
523 */
524
525 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
526 ~VM_PROT_WRITE : VM_PROT_ALL)
527
528 int
529 uvm_fault(orig_map, vaddr, fault_type, access_type)
530 struct vm_map *orig_map;
531 vaddr_t vaddr;
532 vm_fault_t fault_type;
533 vm_prot_t access_type;
534 {
535 struct uvm_faultinfo ufi;
536 vm_prot_t enter_prot, check_prot;
537 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
538 int npages, nback, nforw, centeridx, error, lcv, gotpages;
539 vaddr_t startva, objaddr, currva, offset, uoff;
540 paddr_t pa;
541 struct vm_amap *amap;
542 struct uvm_object *uobj;
543 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
544 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
545 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
546
547 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
548 orig_map, vaddr, fault_type, access_type);
549
550 anon = NULL;
551 pg = NULL;
552
553 uvmexp.faults++; /* XXX: locking? */
554
555 /*
556 * init the IN parameters in the ufi
557 */
558
559 ufi.orig_map = orig_map;
560 ufi.orig_rvaddr = trunc_page(vaddr);
561 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
562 wire_fault = fault_type == VM_FAULT_WIRE ||
563 fault_type == VM_FAULT_WIREMAX;
564 if (wire_fault)
565 narrow = TRUE; /* don't look for neighborhood
566 * pages on wire */
567 else
568 narrow = FALSE; /* normal fault */
569
570 /*
571 * "goto ReFault" means restart the page fault from ground zero.
572 */
573 ReFault:
574
575 /*
576 * lookup and lock the maps
577 */
578
579 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
580 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
581 return (EFAULT);
582 }
583 /* locked: maps(read) */
584
585 #ifdef DIAGNOSTIC
586 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
587 printf("Page fault on non-pageable map:\n");
588 printf("ufi.map = %p\n", ufi.map);
589 printf("ufi.orig_map = %p\n", ufi.orig_map);
590 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
591 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
592 }
593 #endif
594
595 /*
596 * check protection
597 */
598
599 check_prot = fault_type == VM_FAULT_WIREMAX ?
600 ufi.entry->max_protection : ufi.entry->protection;
601 if ((check_prot & access_type) != access_type) {
602 UVMHIST_LOG(maphist,
603 "<- protection failure (prot=0x%x, access=0x%x)",
604 ufi.entry->protection, access_type, 0, 0);
605 uvmfault_unlockmaps(&ufi, FALSE);
606 return EACCES;
607 }
608
609 /*
610 * "enter_prot" is the protection we want to enter the page in at.
611 * for certain pages (e.g. copy-on-write pages) this protection can
612 * be more strict than ufi.entry->protection. "wired" means either
613 * the entry is wired or we are fault-wiring the pg.
614 */
615
616 enter_prot = ufi.entry->protection;
617 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
618 if (wired) {
619 access_type = enter_prot; /* full access for wired */
620 cow_now = (check_prot & VM_PROT_WRITE) != 0;
621 } else {
622 cow_now = (access_type & VM_PROT_WRITE) != 0;
623 }
624
625 /*
626 * handle "needs_copy" case. if we need to copy the amap we will
627 * have to drop our readlock and relock it with a write lock. (we
628 * need a write lock to change anything in a map entry [e.g.
629 * needs_copy]).
630 */
631
632 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
633 KASSERT(fault_type != VM_FAULT_WIREMAX);
634 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
635 /* need to clear */
636 UVMHIST_LOG(maphist,
637 " need to clear needs_copy and refault",0,0,0,0);
638 uvmfault_unlockmaps(&ufi, FALSE);
639 uvmfault_amapcopy(&ufi);
640 uvmexp.fltamcopy++;
641 goto ReFault;
642
643 } else {
644
645 /*
646 * ensure that we pmap_enter page R/O since
647 * needs_copy is still true
648 */
649
650 enter_prot &= ~VM_PROT_WRITE;
651 }
652 }
653
654 /*
655 * identify the players
656 */
657
658 amap = ufi.entry->aref.ar_amap; /* top layer */
659 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
660
661 /*
662 * check for a case 0 fault. if nothing backing the entry then
663 * error now.
664 */
665
666 if (amap == NULL && uobj == NULL) {
667 uvmfault_unlockmaps(&ufi, FALSE);
668 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
669 return (EFAULT);
670 }
671
672 /*
673 * establish range of interest based on advice from mapper
674 * and then clip to fit map entry. note that we only want
675 * to do this the first time through the fault. if we
676 * ReFault we will disable this by setting "narrow" to true.
677 */
678
679 if (narrow == FALSE) {
680
681 /* wide fault (!narrow) */
682 KASSERT(uvmadvice[ufi.entry->advice].advice ==
683 ufi.entry->advice);
684 nback = MIN(uvmadvice[ufi.entry->advice].nback,
685 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
686 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
687 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
688 ((ufi.entry->end - ufi.orig_rvaddr) >>
689 PAGE_SHIFT) - 1);
690 /*
691 * note: "-1" because we don't want to count the
692 * faulting page as forw
693 */
694 npages = nback + nforw + 1;
695 centeridx = nback;
696
697 narrow = TRUE; /* ensure only once per-fault */
698
699 } else {
700
701 /* narrow fault! */
702 nback = nforw = 0;
703 startva = ufi.orig_rvaddr;
704 npages = 1;
705 centeridx = 0;
706
707 }
708
709 /* locked: maps(read) */
710 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
711 narrow, nback, nforw, startva);
712 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
713 amap, uobj, 0);
714
715 /*
716 * if we've got an amap, lock it and extract current anons.
717 */
718
719 if (amap) {
720 amap_lock(amap);
721 anons = anons_store;
722 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
723 anons, npages);
724 } else {
725 anons = NULL; /* to be safe */
726 }
727
728 /* locked: maps(read), amap(if there) */
729
730 /*
731 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
732 * now and then forget about them (for the rest of the fault).
733 */
734
735 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
736
737 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
738 0,0,0,0);
739 /* flush back-page anons? */
740 if (amap)
741 uvmfault_anonflush(anons, nback);
742
743 /* flush object? */
744 if (uobj) {
745 objaddr =
746 (startva - ufi.entry->start) + ufi.entry->offset;
747 simple_lock(&uobj->vmobjlock);
748 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
749 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
750 }
751
752 /* now forget about the backpages */
753 if (amap)
754 anons += nback;
755 startva += (nback << PAGE_SHIFT);
756 npages -= nback;
757 nback = centeridx = 0;
758 }
759
760 /* locked: maps(read), amap(if there) */
761
762 /*
763 * map in the backpages and frontpages we found in the amap in hopes
764 * of preventing future faults. we also init the pages[] array as
765 * we go.
766 */
767
768 currva = startva;
769 shadowed = FALSE;
770 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
771
772 /*
773 * dont play with VAs that are already mapped
774 * except for center)
775 */
776 if (lcv != centeridx &&
777 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
778 pages[lcv] = PGO_DONTCARE;
779 continue;
780 }
781
782 /*
783 * unmapped or center page. check if any anon at this level.
784 */
785 if (amap == NULL || anons[lcv] == NULL) {
786 pages[lcv] = NULL;
787 continue;
788 }
789
790 /*
791 * check for present page and map if possible. re-activate it.
792 */
793
794 pages[lcv] = PGO_DONTCARE;
795 if (lcv == centeridx) { /* save center for later! */
796 shadowed = TRUE;
797 continue;
798 }
799 anon = anons[lcv];
800 simple_lock(&anon->an_lock);
801 /* ignore loaned pages */
802 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
803 (anon->u.an_page->flags & PG_BUSY) == 0) {
804 uvm_lock_pageq();
805 uvm_pageactivate(anon->u.an_page);
806 uvm_unlock_pageq();
807 UVMHIST_LOG(maphist,
808 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
809 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
810 uvmexp.fltnamap++;
811
812 /*
813 * Since this isn't the page that's actually faulting,
814 * ignore pmap_enter() failures; it's not critical
815 * that we enter these right now.
816 */
817
818 (void) pmap_enter(ufi.orig_map->pmap, currva,
819 VM_PAGE_TO_PHYS(anon->u.an_page),
820 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
821 enter_prot,
822 PMAP_CANFAIL |
823 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
824 }
825 simple_unlock(&anon->an_lock);
826 pmap_update(ufi.orig_map->pmap);
827 }
828
829 /* locked: maps(read), amap(if there) */
830 /* (shadowed == TRUE) if there is an anon at the faulting address */
831 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
832 (uobj && shadowed == FALSE),0,0);
833
834 /*
835 * note that if we are really short of RAM we could sleep in the above
836 * call to pmap_enter with everything locked. bad?
837 *
838 * XXX Actually, that is bad; pmap_enter() should just fail in that
839 * XXX case. --thorpej
840 */
841
842 /*
843 * if the desired page is not shadowed by the amap and we have a
844 * backing object, then we check to see if the backing object would
845 * prefer to handle the fault itself (rather than letting us do it
846 * with the usual pgo_get hook). the backing object signals this by
847 * providing a pgo_fault routine.
848 */
849
850 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
851 simple_lock(&uobj->vmobjlock);
852
853 /* locked: maps(read), amap (if there), uobj */
854 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
855 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
856
857 /* locked: nothing, pgo_fault has unlocked everything */
858
859 if (error == ERESTART)
860 goto ReFault; /* try again! */
861 /*
862 * object fault routine responsible for pmap_update().
863 */
864 return error;
865 }
866
867 /*
868 * now, if the desired page is not shadowed by the amap and we have
869 * a backing object that does not have a special fault routine, then
870 * we ask (with pgo_get) the object for resident pages that we care
871 * about and attempt to map them in. we do not let pgo_get block
872 * (PGO_LOCKED).
873 */
874
875 if (uobj && shadowed == FALSE) {
876 simple_lock(&uobj->vmobjlock);
877
878 /* locked (!shadowed): maps(read), amap (if there), uobj */
879 /*
880 * the following call to pgo_get does _not_ change locking state
881 */
882
883 uvmexp.fltlget++;
884 gotpages = npages;
885 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
886 (startva - ufi.entry->start),
887 pages, &gotpages, centeridx,
888 access_type & MASK(ufi.entry),
889 ufi.entry->advice, PGO_LOCKED);
890
891 /*
892 * check for pages to map, if we got any
893 */
894
895 uobjpage = NULL;
896
897 if (gotpages) {
898 currva = startva;
899 for (lcv = 0; lcv < npages;
900 lcv++, currva += PAGE_SIZE) {
901 if (pages[lcv] == NULL ||
902 pages[lcv] == PGO_DONTCARE) {
903 continue;
904 }
905
906 /*
907 * if center page is resident and not
908 * PG_BUSY|PG_RELEASED then pgo_get
909 * made it PG_BUSY for us and gave
910 * us a handle to it. remember this
911 * page as "uobjpage." (for later use).
912 */
913
914 if (lcv == centeridx) {
915 uobjpage = pages[lcv];
916 UVMHIST_LOG(maphist, " got uobjpage "
917 "(0x%x) with locked get",
918 uobjpage, 0,0,0);
919 continue;
920 }
921
922 /*
923 * calling pgo_get with PGO_LOCKED returns us
924 * pages which are neither busy nor released,
925 * so we don't need to check for this.
926 * we can just directly enter the pages.
927 */
928
929 uvm_lock_pageq();
930 uvm_pageactivate(pages[lcv]);
931 uvm_unlock_pageq();
932 UVMHIST_LOG(maphist,
933 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
934 ufi.orig_map->pmap, currva, pages[lcv], 0);
935 uvmexp.fltnomap++;
936
937 /*
938 * Since this page isn't the page that's
939 * actually fauling, ignore pmap_enter()
940 * failures; it's not critical that we
941 * enter these right now.
942 */
943
944 (void) pmap_enter(ufi.orig_map->pmap, currva,
945 VM_PAGE_TO_PHYS(pages[lcv]),
946 pages[lcv]->flags & PG_RDONLY ?
947 VM_PROT_READ : enter_prot & MASK(ufi.entry),
948 PMAP_CANFAIL |
949 (wired ? PMAP_WIRED : 0));
950
951 /*
952 * NOTE: page can't be PG_WANTED or PG_RELEASED
953 * because we've held the lock the whole time
954 * we've had the handle.
955 */
956
957 pages[lcv]->flags &= ~(PG_BUSY);
958 UVM_PAGE_OWN(pages[lcv], NULL);
959 }
960 pmap_update(ufi.orig_map->pmap);
961 }
962 } else {
963 uobjpage = NULL;
964 }
965
966 /* locked (shadowed): maps(read), amap */
967 /* locked (!shadowed): maps(read), amap(if there),
968 uobj(if !null), uobjpage(if !null) */
969
970 /*
971 * note that at this point we are done with any front or back pages.
972 * we are now going to focus on the center page (i.e. the one we've
973 * faulted on). if we have faulted on the top (anon) layer
974 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
975 * not touched it yet). if we have faulted on the bottom (uobj)
976 * layer [i.e. case 2] and the page was both present and available,
977 * then we've got a pointer to it as "uobjpage" and we've already
978 * made it BUSY.
979 */
980
981 /*
982 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
983 */
984
985 /*
986 * redirect case 2: if we are not shadowed, go to case 2.
987 */
988
989 if (shadowed == FALSE)
990 goto Case2;
991
992 /* locked: maps(read), amap */
993
994 /*
995 * handle case 1: fault on an anon in our amap
996 */
997
998 anon = anons[centeridx];
999 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1000 simple_lock(&anon->an_lock);
1001
1002 /* locked: maps(read), amap, anon */
1003
1004 /*
1005 * no matter if we have case 1A or case 1B we are going to need to
1006 * have the anon's memory resident. ensure that now.
1007 */
1008
1009 /*
1010 * let uvmfault_anonget do the dirty work.
1011 * if it fails (!OK) it will unlock everything for us.
1012 * if it succeeds, locks are still valid and locked.
1013 * also, if it is OK, then the anon's page is on the queues.
1014 * if the page is on loan from a uvm_object, then anonget will
1015 * lock that object for us if it does not fail.
1016 */
1017
1018 error = uvmfault_anonget(&ufi, amap, anon);
1019 switch (error) {
1020 case 0:
1021 break;
1022
1023 case ERESTART:
1024 goto ReFault;
1025
1026 case EAGAIN:
1027 tsleep(&lbolt, PVM, "fltagain1", 0);
1028 goto ReFault;
1029
1030 default:
1031 return error;
1032 }
1033
1034 /*
1035 * uobj is non null if the page is on loan from an object (i.e. uobj)
1036 */
1037
1038 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1039
1040 /* locked: maps(read), amap, anon, uobj(if one) */
1041
1042 /*
1043 * special handling for loaned pages
1044 */
1045
1046 if (anon->u.an_page->loan_count) {
1047
1048 if (!cow_now) {
1049
1050 /*
1051 * for read faults on loaned pages we just cap the
1052 * protection at read-only.
1053 */
1054
1055 enter_prot = enter_prot & ~VM_PROT_WRITE;
1056
1057 } else {
1058 /*
1059 * note that we can't allow writes into a loaned page!
1060 *
1061 * if we have a write fault on a loaned page in an
1062 * anon then we need to look at the anon's ref count.
1063 * if it is greater than one then we are going to do
1064 * a normal copy-on-write fault into a new anon (this
1065 * is not a problem). however, if the reference count
1066 * is one (a case where we would normally allow a
1067 * write directly to the page) then we need to kill
1068 * the loan before we continue.
1069 */
1070
1071 /* >1 case is already ok */
1072 if (anon->an_ref == 1) {
1073
1074 /* get new un-owned replacement page */
1075 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1076 if (pg == NULL) {
1077 uvmfault_unlockall(&ufi, amap, uobj,
1078 anon);
1079 uvm_wait("flt_noram2");
1080 goto ReFault;
1081 }
1082
1083 /*
1084 * copy data, kill loan, and drop uobj lock
1085 * (if any)
1086 */
1087 /* copy old -> new */
1088 uvm_pagecopy(anon->u.an_page, pg);
1089
1090 /* force reload */
1091 pmap_page_protect(anon->u.an_page,
1092 VM_PROT_NONE);
1093 uvm_lock_pageq(); /* KILL loan */
1094 if (uobj)
1095 /* if we were loaning */
1096 anon->u.an_page->loan_count--;
1097 anon->u.an_page->uanon = NULL;
1098 /* in case we owned */
1099 anon->u.an_page->pqflags &= ~PQ_ANON;
1100 uvm_unlock_pageq();
1101 if (uobj) {
1102 simple_unlock(&uobj->vmobjlock);
1103 uobj = NULL;
1104 }
1105
1106 /* install new page in anon */
1107 anon->u.an_page = pg;
1108 pg->uanon = anon;
1109 pg->pqflags |= PQ_ANON;
1110 pg->flags &= ~(PG_BUSY|PG_FAKE);
1111 UVM_PAGE_OWN(pg, NULL);
1112
1113 /* done! */
1114 } /* ref == 1 */
1115 } /* write fault */
1116 } /* loan count */
1117
1118 /*
1119 * if we are case 1B then we will need to allocate a new blank
1120 * anon to transfer the data into. note that we have a lock
1121 * on anon, so no one can busy or release the page until we are done.
1122 * also note that the ref count can't drop to zero here because
1123 * it is > 1 and we are only dropping one ref.
1124 *
1125 * in the (hopefully very rare) case that we are out of RAM we
1126 * will unlock, wait for more RAM, and refault.
1127 *
1128 * if we are out of anon VM we kill the process (XXX: could wait?).
1129 */
1130
1131 if (cow_now && anon->an_ref > 1) {
1132
1133 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1134 uvmexp.flt_acow++;
1135 oanon = anon; /* oanon = old, locked anon */
1136 anon = uvm_analloc();
1137 if (anon) {
1138 /* new anon is locked! */
1139 pg = uvm_pagealloc(NULL, 0, anon, 0);
1140 }
1141
1142 /* check for out of RAM */
1143 if (anon == NULL || pg == NULL) {
1144 if (anon) {
1145 anon->an_ref--;
1146 simple_unlock(&anon->an_lock);
1147 uvm_anfree(anon);
1148 }
1149 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1150 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1151 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1152 UVMHIST_LOG(maphist,
1153 "<- failed. out of VM",0,0,0,0);
1154 uvmexp.fltnoanon++;
1155 return ENOMEM;
1156 }
1157
1158 uvmexp.fltnoram++;
1159 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1160 goto ReFault;
1161 }
1162
1163 /* got all resources, replace anon with nanon */
1164 uvm_pagecopy(oanon->u.an_page, pg);
1165 uvm_pageactivate(pg);
1166 pg->flags &= ~(PG_BUSY|PG_FAKE);
1167 UVM_PAGE_OWN(pg, NULL);
1168 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1169 anon, 1);
1170
1171 /* deref: can not drop to zero here by defn! */
1172 oanon->an_ref--;
1173
1174 /*
1175 * note: oanon is still locked, as is the new anon. we
1176 * need to check for this later when we unlock oanon; if
1177 * oanon != anon, we'll have to unlock anon, too.
1178 */
1179
1180 } else {
1181
1182 uvmexp.flt_anon++;
1183 oanon = anon; /* old, locked anon is same as anon */
1184 pg = anon->u.an_page;
1185 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1186 enter_prot = enter_prot & ~VM_PROT_WRITE;
1187
1188 }
1189
1190 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1191
1192 /*
1193 * now map the page in.
1194 */
1195
1196 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1197 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1198 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1199 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1200 != 0) {
1201
1202 /*
1203 * No need to undo what we did; we can simply think of
1204 * this as the pmap throwing away the mapping information.
1205 *
1206 * We do, however, have to go through the ReFault path,
1207 * as the map may change while we're asleep.
1208 */
1209
1210 if (anon != oanon)
1211 simple_unlock(&anon->an_lock);
1212 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1213 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1214 if (uvmexp.swpgonly == uvmexp.swpages) {
1215 UVMHIST_LOG(maphist,
1216 "<- failed. out of VM",0,0,0,0);
1217 /* XXX instrumentation */
1218 return ENOMEM;
1219 }
1220 /* XXX instrumentation */
1221 uvm_wait("flt_pmfail1");
1222 goto ReFault;
1223 }
1224
1225 /*
1226 * ... update the page queues.
1227 */
1228
1229 uvm_lock_pageq();
1230 if (wire_fault) {
1231 uvm_pagewire(pg);
1232
1233 /*
1234 * since the now-wired page cannot be paged out,
1235 * release its swap resources for others to use.
1236 * since an anon with no swap cannot be PG_CLEAN,
1237 * clear its clean flag now.
1238 */
1239
1240 pg->flags &= ~(PG_CLEAN);
1241 uvm_anon_dropswap(anon);
1242 } else {
1243 uvm_pageactivate(pg);
1244 }
1245 uvm_unlock_pageq();
1246
1247 /*
1248 * done case 1! finish up by unlocking everything and returning success
1249 */
1250
1251 if (anon != oanon)
1252 simple_unlock(&anon->an_lock);
1253 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1254 pmap_update(ufi.orig_map->pmap);
1255 return 0;
1256
1257 Case2:
1258 /*
1259 * handle case 2: faulting on backing object or zero fill
1260 */
1261
1262 /*
1263 * locked:
1264 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1265 */
1266
1267 /*
1268 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1269 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1270 * have a backing object, check and see if we are going to promote
1271 * the data up to an anon during the fault.
1272 */
1273
1274 if (uobj == NULL) {
1275 uobjpage = PGO_DONTCARE;
1276 promote = TRUE; /* always need anon here */
1277 } else {
1278 KASSERT(uobjpage != PGO_DONTCARE);
1279 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1280 }
1281 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1282 promote, (uobj == NULL), 0,0);
1283
1284 /*
1285 * if uobjpage is not null then we do not need to do I/O to get the
1286 * uobjpage.
1287 *
1288 * if uobjpage is null, then we need to unlock and ask the pager to
1289 * get the data for us. once we have the data, we need to reverify
1290 * the state the world. we are currently not holding any resources.
1291 */
1292
1293 if (uobjpage) {
1294 /* update rusage counters */
1295 curproc->l_proc->p_stats->p_ru.ru_minflt++;
1296 } else {
1297 /* update rusage counters */
1298 curproc->l_proc->p_stats->p_ru.ru_majflt++;
1299
1300 /* locked: maps(read), amap(if there), uobj */
1301 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1302 /* locked: uobj */
1303
1304 uvmexp.fltget++;
1305 gotpages = 1;
1306 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1307 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1308 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1309 PGO_SYNCIO);
1310 /* locked: uobjpage(if no error) */
1311
1312 /*
1313 * recover from I/O
1314 */
1315
1316 if (error) {
1317 if (error == EAGAIN) {
1318 UVMHIST_LOG(maphist,
1319 " pgo_get says TRY AGAIN!",0,0,0,0);
1320 tsleep(&lbolt, PVM, "fltagain2", 0);
1321 goto ReFault;
1322 }
1323
1324 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1325 error, 0,0,0);
1326 return error;
1327 }
1328
1329 /* locked: uobjpage */
1330
1331 uvm_lock_pageq();
1332 uvm_pageactivate(uobjpage);
1333 uvm_unlock_pageq();
1334
1335 /*
1336 * re-verify the state of the world by first trying to relock
1337 * the maps. always relock the object.
1338 */
1339
1340 locked = uvmfault_relock(&ufi);
1341 if (locked && amap)
1342 amap_lock(amap);
1343 simple_lock(&uobj->vmobjlock);
1344
1345 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1346 /* locked(!locked): uobj, uobjpage */
1347
1348 /*
1349 * verify that the page has not be released and re-verify
1350 * that amap slot is still free. if there is a problem,
1351 * we unlock and clean up.
1352 */
1353
1354 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1355 (locked && amap &&
1356 amap_lookup(&ufi.entry->aref,
1357 ufi.orig_rvaddr - ufi.entry->start))) {
1358 if (locked)
1359 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1360 locked = FALSE;
1361 }
1362
1363 /*
1364 * didn't get the lock? release the page and retry.
1365 */
1366
1367 if (locked == FALSE) {
1368 UVMHIST_LOG(maphist,
1369 " wasn't able to relock after fault: retry",
1370 0,0,0,0);
1371 if (uobjpage->flags & PG_WANTED)
1372 wakeup(uobjpage);
1373 if (uobjpage->flags & PG_RELEASED) {
1374 uvmexp.fltpgrele++;
1375 uvm_pagefree(uobjpage);
1376 goto ReFault;
1377 }
1378 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1379 UVM_PAGE_OWN(uobjpage, NULL);
1380 simple_unlock(&uobj->vmobjlock);
1381 goto ReFault;
1382 }
1383
1384 /*
1385 * we have the data in uobjpage which is busy and
1386 * not released. we are holding object lock (so the page
1387 * can't be released on us).
1388 */
1389
1390 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1391 }
1392
1393 /*
1394 * locked:
1395 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1396 */
1397
1398 /*
1399 * notes:
1400 * - at this point uobjpage can not be NULL
1401 * - at this point uobjpage can not be PG_RELEASED (since we checked
1402 * for it above)
1403 * - at this point uobjpage could be PG_WANTED (handle later)
1404 */
1405
1406 if (promote == FALSE) {
1407
1408 /*
1409 * we are not promoting. if the mapping is COW ensure that we
1410 * don't give more access than we should (e.g. when doing a read
1411 * fault on a COPYONWRITE mapping we want to map the COW page in
1412 * R/O even though the entry protection could be R/W).
1413 *
1414 * set "pg" to the page we want to map in (uobjpage, usually)
1415 */
1416
1417 /* no anon in this case. */
1418 anon = NULL;
1419
1420 uvmexp.flt_obj++;
1421 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1422 enter_prot &= ~VM_PROT_WRITE;
1423 pg = uobjpage; /* map in the actual object */
1424
1425 /* assert(uobjpage != PGO_DONTCARE) */
1426
1427 /*
1428 * we are faulting directly on the page. be careful
1429 * about writing to loaned pages...
1430 */
1431
1432 if (uobjpage->loan_count) {
1433 if (!cow_now) {
1434 /* read fault: cap the protection at readonly */
1435 /* cap! */
1436 enter_prot = enter_prot & ~VM_PROT_WRITE;
1437 } else {
1438 /* write fault: must break the loan here */
1439
1440 /* alloc new un-owned page */
1441 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1442
1443 if (pg == NULL) {
1444
1445 /*
1446 * drop ownership of page, it can't
1447 * be released
1448 */
1449
1450 if (uobjpage->flags & PG_WANTED)
1451 wakeup(uobjpage);
1452 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1453 UVM_PAGE_OWN(uobjpage, NULL);
1454
1455 uvmfault_unlockall(&ufi, amap, uobj,
1456 NULL);
1457 UVMHIST_LOG(maphist,
1458 " out of RAM breaking loan, waiting",
1459 0,0,0,0);
1460 uvmexp.fltnoram++;
1461 uvm_wait("flt_noram4");
1462 goto ReFault;
1463 }
1464
1465 /*
1466 * copy the data from the old page to the new
1467 * one and clear the fake/clean flags on the
1468 * new page (keep it busy). force a reload
1469 * of the old page by clearing it from all
1470 * pmaps. then lock the page queues to
1471 * rename the pages.
1472 */
1473
1474 uvm_pagecopy(uobjpage, pg); /* old -> new */
1475 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1476 pmap_page_protect(uobjpage, VM_PROT_NONE);
1477 if (uobjpage->flags & PG_WANTED)
1478 wakeup(uobjpage);
1479 /* uobj still locked */
1480 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1481 UVM_PAGE_OWN(uobjpage, NULL);
1482
1483 uvm_lock_pageq();
1484 offset = uobjpage->offset;
1485 uvm_pagerealloc(uobjpage, NULL, 0);
1486
1487 /*
1488 * at this point we have absolutely no
1489 * control over uobjpage
1490 */
1491
1492 /* install new page */
1493 uvm_pageactivate(pg);
1494 uvm_pagerealloc(pg, uobj, offset);
1495 uvm_unlock_pageq();
1496
1497 /*
1498 * done! loan is broken and "pg" is
1499 * PG_BUSY. it can now replace uobjpage.
1500 */
1501
1502 uobjpage = pg;
1503 }
1504 }
1505 } else {
1506
1507 /*
1508 * if we are going to promote the data to an anon we
1509 * allocate a blank anon here and plug it into our amap.
1510 */
1511 #if DIAGNOSTIC
1512 if (amap == NULL)
1513 panic("uvm_fault: want to promote data, but no anon");
1514 #endif
1515
1516 anon = uvm_analloc();
1517 if (anon) {
1518
1519 /*
1520 * The new anon is locked.
1521 *
1522 * In `Fill in data...' below, if
1523 * uobjpage == PGO_DONTCARE, we want
1524 * a zero'd, dirty page, so have
1525 * uvm_pagealloc() do that for us.
1526 */
1527
1528 pg = uvm_pagealloc(NULL, 0, anon,
1529 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1530 }
1531
1532 /*
1533 * out of memory resources?
1534 */
1535
1536 if (anon == NULL || pg == NULL) {
1537 if (anon != NULL) {
1538 anon->an_ref--;
1539 simple_unlock(&anon->an_lock);
1540 uvm_anfree(anon);
1541 }
1542
1543 /*
1544 * arg! must unbusy our page and fail or sleep.
1545 */
1546
1547 if (uobjpage != PGO_DONTCARE) {
1548 if (uobjpage->flags & PG_WANTED)
1549 /* still holding object lock */
1550 wakeup(uobjpage);
1551
1552 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1553 UVM_PAGE_OWN(uobjpage, NULL);
1554 }
1555
1556 /* unlock and fail ... */
1557 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1558 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1559 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1560 UVMHIST_LOG(maphist, " promote: out of VM",
1561 0,0,0,0);
1562 uvmexp.fltnoanon++;
1563 return ENOMEM;
1564 }
1565
1566 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1567 0,0,0,0);
1568 uvmexp.fltnoram++;
1569 uvm_wait("flt_noram5");
1570 goto ReFault;
1571 }
1572
1573 /*
1574 * fill in the data
1575 */
1576
1577 if (uobjpage != PGO_DONTCARE) {
1578 uvmexp.flt_prcopy++;
1579 /* copy page [pg now dirty] */
1580 uvm_pagecopy(uobjpage, pg);
1581
1582 /*
1583 * promote to shared amap? make sure all sharing
1584 * procs see it
1585 */
1586
1587 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1588 pmap_page_protect(uobjpage, VM_PROT_NONE);
1589 /*
1590 * XXX: PAGE MIGHT BE WIRED!
1591 */
1592 }
1593
1594 /*
1595 * dispose of uobjpage. it can't be PG_RELEASED
1596 * since we still hold the object lock.
1597 * drop handle to uobj as well.
1598 */
1599
1600 if (uobjpage->flags & PG_WANTED)
1601 /* still have the obj lock */
1602 wakeup(uobjpage);
1603 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1604 UVM_PAGE_OWN(uobjpage, NULL);
1605 simple_unlock(&uobj->vmobjlock);
1606 uobj = NULL;
1607
1608 UVMHIST_LOG(maphist,
1609 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1610 uobjpage, anon, pg, 0);
1611
1612 } else {
1613 uvmexp.flt_przero++;
1614
1615 /*
1616 * Page is zero'd and marked dirty by uvm_pagealloc()
1617 * above.
1618 */
1619
1620 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1621 anon, pg, 0, 0);
1622 }
1623 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1624 anon, 0);
1625 }
1626
1627 /*
1628 * locked:
1629 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1630 * anon(if !null), pg(if anon)
1631 *
1632 * note: pg is either the uobjpage or the new page in the new anon
1633 */
1634
1635 /*
1636 * all resources are present. we can now map it in and free our
1637 * resources.
1638 */
1639
1640 UVMHIST_LOG(maphist,
1641 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1642 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1643 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1644 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1645 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1646 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1647
1648 /*
1649 * No need to undo what we did; we can simply think of
1650 * this as the pmap throwing away the mapping information.
1651 *
1652 * We do, however, have to go through the ReFault path,
1653 * as the map may change while we're asleep.
1654 */
1655
1656 if (pg->flags & PG_WANTED)
1657 wakeup(pg);
1658
1659 /*
1660 * note that pg can't be PG_RELEASED since we did not drop
1661 * the object lock since the last time we checked.
1662 */
1663
1664 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1665 UVM_PAGE_OWN(pg, NULL);
1666 uvmfault_unlockall(&ufi, amap, uobj, anon);
1667 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1668 if (uvmexp.swpgonly == uvmexp.swpages) {
1669 UVMHIST_LOG(maphist,
1670 "<- failed. out of VM",0,0,0,0);
1671 /* XXX instrumentation */
1672 return ENOMEM;
1673 }
1674 /* XXX instrumentation */
1675 uvm_wait("flt_pmfail2");
1676 goto ReFault;
1677 }
1678
1679 uvm_lock_pageq();
1680 if (wire_fault) {
1681 uvm_pagewire(pg);
1682 if (pg->pqflags & PQ_AOBJ) {
1683
1684 /*
1685 * since the now-wired page cannot be paged out,
1686 * release its swap resources for others to use.
1687 * since an aobj page with no swap cannot be PG_CLEAN,
1688 * clear its clean flag now.
1689 */
1690
1691 pg->flags &= ~(PG_CLEAN);
1692 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1693 }
1694 } else {
1695 uvm_pageactivate(pg);
1696 }
1697 uvm_unlock_pageq();
1698 if (pg->flags & PG_WANTED)
1699 wakeup(pg);
1700
1701 /*
1702 * note that pg can't be PG_RELEASED since we did not drop the object
1703 * lock since the last time we checked.
1704 */
1705
1706 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1707 UVM_PAGE_OWN(pg, NULL);
1708 uvmfault_unlockall(&ufi, amap, uobj, anon);
1709 pmap_update(ufi.orig_map->pmap);
1710 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1711 return 0;
1712 }
1713
1714 /*
1715 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1716 *
1717 * => map may be read-locked by caller, but MUST NOT be write-locked.
1718 * => if map is read-locked, any operations which may cause map to
1719 * be write-locked in uvm_fault() must be taken care of by
1720 * the caller. See uvm_map_pageable().
1721 */
1722
1723 int
1724 uvm_fault_wire(map, start, end, fault_type, access_type)
1725 struct vm_map *map;
1726 vaddr_t start, end;
1727 vm_fault_t fault_type;
1728 vm_prot_t access_type;
1729 {
1730 vaddr_t va;
1731 int error;
1732
1733 /*
1734 * now fault it in a page at a time. if the fault fails then we have
1735 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1736 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1737 */
1738
1739 /*
1740 * XXX work around overflowing a vaddr_t. this prevents us from
1741 * wiring the last page in the address space, though.
1742 */
1743 if (start > end) {
1744 return EFAULT;
1745 }
1746
1747 for (va = start ; va < end ; va += PAGE_SIZE) {
1748 error = uvm_fault(map, va, fault_type, access_type);
1749 if (error) {
1750 if (va != start) {
1751 uvm_fault_unwire(map, start, va);
1752 }
1753 return error;
1754 }
1755 }
1756 return 0;
1757 }
1758
1759 /*
1760 * uvm_fault_unwire(): unwire range of virtual space.
1761 */
1762
1763 void
1764 uvm_fault_unwire(map, start, end)
1765 struct vm_map *map;
1766 vaddr_t start, end;
1767 {
1768 vm_map_lock_read(map);
1769 uvm_fault_unwire_locked(map, start, end);
1770 vm_map_unlock_read(map);
1771 }
1772
1773 /*
1774 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1775 *
1776 * => map must be at least read-locked.
1777 */
1778
1779 void
1780 uvm_fault_unwire_locked(map, start, end)
1781 struct vm_map *map;
1782 vaddr_t start, end;
1783 {
1784 struct vm_map_entry *entry;
1785 pmap_t pmap = vm_map_pmap(map);
1786 vaddr_t va;
1787 paddr_t pa;
1788 struct vm_page *pg;
1789
1790 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1791
1792 /*
1793 * we assume that the area we are unwiring has actually been wired
1794 * in the first place. this means that we should be able to extract
1795 * the PAs from the pmap. we also lock out the page daemon so that
1796 * we can call uvm_pageunwire.
1797 */
1798
1799 uvm_lock_pageq();
1800
1801 /*
1802 * find the beginning map entry for the region.
1803 */
1804
1805 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1806 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1807 panic("uvm_fault_unwire_locked: address not in map");
1808
1809 for (va = start; va < end; va += PAGE_SIZE) {
1810 if (pmap_extract(pmap, va, &pa) == FALSE)
1811 continue;
1812
1813 /*
1814 * find the map entry for the current address.
1815 */
1816
1817 KASSERT(va >= entry->start);
1818 while (va >= entry->end) {
1819 KASSERT(entry->next != &map->header &&
1820 entry->next->start <= entry->end);
1821 entry = entry->next;
1822 }
1823
1824 /*
1825 * if the entry is no longer wired, tell the pmap.
1826 */
1827
1828 if (VM_MAPENT_ISWIRED(entry) == 0)
1829 pmap_unwire(pmap, va);
1830
1831 pg = PHYS_TO_VM_PAGE(pa);
1832 if (pg)
1833 uvm_pageunwire(pg);
1834 }
1835
1836 uvm_unlock_pageq();
1837 }
1838