uvm_fault.c revision 1.58 1 /* $NetBSD: uvm_fault.c,v 1.58 2001/03/15 06:10:56 chs Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 *
55 * a word on page faults:
56 *
57 * types of page faults we handle:
58 *
59 * CASE 1: upper layer faults CASE 2: lower layer faults
60 *
61 * CASE 1A CASE 1B CASE 2A CASE 2B
62 * read/write1 write>1 read/write +-cow_write/zero
63 * | | | |
64 * +--|--+ +--|--+ +-----+ + | + | +-----+
65 * amap | V | | ----------->new| | | | ^ |
66 * +-----+ +-----+ +-----+ + | + | +--|--+
67 * | | |
68 * +-----+ +-----+ +--|--+ | +--|--+
69 * uobj | d/c | | d/c | | V | +----| |
70 * +-----+ +-----+ +-----+ +-----+
71 *
72 * d/c = don't care
73 *
74 * case [0]: layerless fault
75 * no amap or uobj is present. this is an error.
76 *
77 * case [1]: upper layer fault [anon active]
78 * 1A: [read] or [write with anon->an_ref == 1]
79 * I/O takes place in top level anon and uobj is not touched.
80 * 1B: [write with anon->an_ref > 1]
81 * new anon is alloc'd and data is copied off ["COW"]
82 *
83 * case [2]: lower layer fault [uobj]
84 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
85 * I/O takes place directly in object.
86 * 2B: [write to copy_on_write] or [read on NULL uobj]
87 * data is "promoted" from uobj to a new anon.
88 * if uobj is null, then we zero fill.
89 *
90 * we follow the standard UVM locking protocol ordering:
91 *
92 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
93 * we hold a PG_BUSY page if we unlock for I/O
94 *
95 *
96 * the code is structured as follows:
97 *
98 * - init the "IN" params in the ufi structure
99 * ReFault:
100 * - do lookups [locks maps], check protection, handle needs_copy
101 * - check for case 0 fault (error)
102 * - establish "range" of fault
103 * - if we have an amap lock it and extract the anons
104 * - if sequential advice deactivate pages behind us
105 * - at the same time check pmap for unmapped areas and anon for pages
106 * that we could map in (and do map it if found)
107 * - check object for resident pages that we could map in
108 * - if (case 2) goto Case2
109 * - >>> handle case 1
110 * - ensure source anon is resident in RAM
111 * - if case 1B alloc new anon and copy from source
112 * - map the correct page in
113 * Case2:
114 * - >>> handle case 2
115 * - ensure source page is resident (if uobj)
116 * - if case 2B alloc new anon and copy from source (could be zero
117 * fill if uobj == NULL)
118 * - map the correct page in
119 * - done!
120 *
121 * note on paging:
122 * if we have to do I/O we place a PG_BUSY page in the correct object,
123 * unlock everything, and do the I/O. when I/O is done we must reverify
124 * the state of the world before assuming that our data structures are
125 * valid. [because mappings could change while the map is unlocked]
126 *
127 * alternative 1: unbusy the page in question and restart the page fault
128 * from the top (ReFault). this is easy but does not take advantage
129 * of the information that we already have from our previous lookup,
130 * although it is possible that the "hints" in the vm_map will help here.
131 *
132 * alternative 2: the system already keeps track of a "version" number of
133 * a map. [i.e. every time you write-lock a map (e.g. to change a
134 * mapping) you bump the version number up by one...] so, we can save
135 * the version number of the map before we release the lock and start I/O.
136 * then when I/O is done we can relock and check the version numbers
137 * to see if anything changed. this might save us some over 1 because
138 * we don't have to unbusy the page and may be less compares(?).
139 *
140 * alternative 3: put in backpointers or a way to "hold" part of a map
141 * in place while I/O is in progress. this could be complex to
142 * implement (especially with structures like amap that can be referenced
143 * by multiple map entries, and figuring out what should wait could be
144 * complex as well...).
145 *
146 * given that we are not currently multiprocessor or multithreaded we might
147 * as well choose alternative 2 now. maybe alternative 3 would be useful
148 * in the future. XXX keep in mind for future consideration//rechecking.
149 */
150
151 /*
152 * local data structures
153 */
154
155 struct uvm_advice {
156 int advice;
157 int nback;
158 int nforw;
159 };
160
161 /*
162 * page range array:
163 * note: index in array must match "advice" value
164 * XXX: borrowed numbers from freebsd. do they work well for us?
165 */
166
167 static struct uvm_advice uvmadvice[] = {
168 { MADV_NORMAL, 3, 4 },
169 { MADV_RANDOM, 0, 0 },
170 { MADV_SEQUENTIAL, 8, 7},
171 };
172
173 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
174
175 /*
176 * private prototypes
177 */
178
179 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
180 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(anons, n)
194 struct vm_anon **anons;
195 int n;
196 {
197 int lcv;
198 struct vm_page *pg;
199
200 for (lcv = 0 ; lcv < n ; lcv++) {
201 if (anons[lcv] == NULL)
202 continue;
203 simple_lock(&anons[lcv]->an_lock);
204 pg = anons[lcv]->u.an_page;
205 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
206 uvm_lock_pageq();
207 if (pg->wire_count == 0) {
208 pmap_clear_reference(pg);
209 uvm_pagedeactivate(pg);
210 }
211 uvm_unlock_pageq();
212 }
213 simple_unlock(&anons[lcv]->an_lock);
214 }
215 }
216
217 /*
218 * normal functions
219 */
220
221 /*
222 * uvmfault_amapcopy: clear "needs_copy" in a map.
223 *
224 * => called with VM data structures unlocked (usually, see below)
225 * => we get a write lock on the maps and clear needs_copy for a VA
226 * => if we are out of RAM we sleep (waiting for more)
227 */
228
229 static void
230 uvmfault_amapcopy(ufi)
231 struct uvm_faultinfo *ufi;
232 {
233
234 /*
235 * while we haven't done the job
236 */
237
238 while (1) {
239
240 /*
241 * no mapping? give up.
242 */
243
244 if (uvmfault_lookup(ufi, TRUE) == FALSE)
245 return;
246
247 /*
248 * copy if needed.
249 */
250
251 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
252 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
253 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
254
255 /*
256 * didn't work? must be out of RAM. unlock and sleep.
257 */
258
259 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
260 uvmfault_unlockmaps(ufi, TRUE);
261 uvm_wait("fltamapcopy");
262 continue;
263 }
264
265 /*
266 * got it! unlock and return.
267 */
268
269 uvmfault_unlockmaps(ufi, TRUE);
270 return;
271 }
272 /*NOTREACHED*/
273 }
274
275 /*
276 * uvmfault_anonget: get data in an anon into a non-busy, non-released
277 * page in that anon.
278 *
279 * => maps, amap, and anon locked by caller.
280 * => if we fail (result != 0) we unlock everything.
281 * => if we are successful, we return with everything still locked.
282 * => we don't move the page on the queues [gets moved later]
283 * => if we allocate a new page [we_own], it gets put on the queues.
284 * either way, the result is that the page is on the queues at return time
285 * => for pages which are on loan from a uvm_object (and thus are not
286 * owned by the anon): if successful, we return with the owning object
287 * locked. the caller must unlock this object when it unlocks everything
288 * else.
289 */
290
291 int
292 uvmfault_anonget(ufi, amap, anon)
293 struct uvm_faultinfo *ufi;
294 struct vm_amap *amap;
295 struct vm_anon *anon;
296 {
297 boolean_t we_own; /* we own anon's page? */
298 boolean_t locked; /* did we relock? */
299 struct vm_page *pg;
300 int error;
301 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
302
303 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
304
305 error = 0;
306 uvmexp.fltanget++;
307 /* bump rusage counters */
308 if (anon->u.an_page)
309 curproc->p_addr->u_stats.p_ru.ru_minflt++;
310 else
311 curproc->p_addr->u_stats.p_ru.ru_majflt++;
312
313 /*
314 * loop until we get it, or fail.
315 */
316
317 while (1) {
318
319 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
320 pg = anon->u.an_page;
321
322 /*
323 * if there is a resident page and it is loaned, then anon
324 * may not own it. call out to uvm_anon_lockpage() to ensure
325 * the real owner of the page has been identified and locked.
326 */
327
328 if (pg && pg->loan_count)
329 pg = uvm_anon_lockloanpg(anon);
330
331 /*
332 * page there? make sure it is not busy/released.
333 */
334
335 if (pg) {
336
337 /*
338 * at this point, if the page has a uobject [meaning
339 * we have it on loan], then that uobject is locked
340 * by us! if the page is busy, we drop all the
341 * locks (including uobject) and try again.
342 */
343
344 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
345 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
346 return (0);
347 }
348 pg->flags |= PG_WANTED;
349 uvmexp.fltpgwait++;
350
351 /*
352 * the last unlock must be an atomic unlock+wait on
353 * the owner of page
354 */
355 if (pg->uobject) { /* owner is uobject ? */
356 uvmfault_unlockall(ufi, amap, NULL, anon);
357 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
358 0,0,0);
359 UVM_UNLOCK_AND_WAIT(pg,
360 &pg->uobject->vmobjlock,
361 FALSE, "anonget1",0);
362 } else {
363 /* anon owns page */
364 uvmfault_unlockall(ufi, amap, NULL, NULL);
365 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
366 0,0,0);
367 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
368 "anonget2",0);
369 }
370 /* ready to relock and try again */
371
372 } else {
373
374 /*
375 * no page, we must try and bring it in.
376 */
377 pg = uvm_pagealloc(NULL, 0, anon, 0);
378
379 if (pg == NULL) { /* out of RAM. */
380
381 uvmfault_unlockall(ufi, amap, NULL, anon);
382 uvmexp.fltnoram++;
383 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
384 0,0,0);
385 uvm_wait("flt_noram1");
386 /* ready to relock and try again */
387
388 } else {
389
390 /* we set the PG_BUSY bit */
391 we_own = TRUE;
392 uvmfault_unlockall(ufi, amap, NULL, anon);
393
394 /*
395 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
396 * page into the uvm_swap_get function with
397 * all data structures unlocked. note that
398 * it is ok to read an_swslot here because
399 * we hold PG_BUSY on the page.
400 */
401 uvmexp.pageins++;
402 error = uvm_swap_get(pg, anon->an_swslot,
403 PGO_SYNCIO);
404
405 /*
406 * we clean up after the i/o below in the
407 * "we_own" case
408 */
409 /* ready to relock and try again */
410 }
411 }
412
413 /*
414 * now relock and try again
415 */
416
417 locked = uvmfault_relock(ufi);
418 if (locked && amap != NULL) {
419 amap_lock(amap);
420 }
421 if (locked || we_own)
422 simple_lock(&anon->an_lock);
423
424 /*
425 * if we own the page (i.e. we set PG_BUSY), then we need
426 * to clean up after the I/O. there are three cases to
427 * consider:
428 * [1] page released during I/O: free anon and ReFault.
429 * [2] I/O not OK. free the page and cause the fault
430 * to fail.
431 * [3] I/O OK! activate the page and sync with the
432 * non-we_own case (i.e. drop anon lock if not locked).
433 */
434
435 if (we_own) {
436
437 if (pg->flags & PG_WANTED) {
438 /* still holding object lock */
439 wakeup(pg);
440 }
441 /* un-busy! */
442 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
443 UVM_PAGE_OWN(pg, NULL);
444
445 /*
446 * if we were RELEASED during I/O, then our anon is
447 * no longer part of an amap. we need to free the
448 * anon and try again.
449 */
450 if (pg->flags & PG_RELEASED) {
451 pmap_page_protect(pg, VM_PROT_NONE);
452 simple_unlock(&anon->an_lock);
453 uvm_anfree(anon); /* frees page for us */
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 NULL);
457 uvmexp.fltpgrele++;
458 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
459 return (ERESTART); /* refault! */
460 }
461
462 if (error) {
463 /* remove page from anon */
464 anon->u.an_page = NULL;
465
466 /*
467 * remove the swap slot from the anon
468 * and mark the anon as having no real slot.
469 * don't free the swap slot, thus preventing
470 * it from being used again.
471 */
472 uvm_swap_markbad(anon->an_swslot, 1);
473 anon->an_swslot = SWSLOT_BAD;
474
475 /*
476 * note: page was never !PG_BUSY, so it
477 * can't be mapped and thus no need to
478 * pmap_page_protect it...
479 */
480 uvm_lock_pageq();
481 uvm_pagefree(pg);
482 uvm_unlock_pageq();
483
484 if (locked)
485 uvmfault_unlockall(ufi, amap, NULL,
486 anon);
487 else
488 simple_unlock(&anon->an_lock);
489 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
490 return error;
491 }
492
493 /*
494 * must be OK, clear modify (already PG_CLEAN)
495 * and activate
496 */
497 pmap_clear_modify(pg);
498 uvm_lock_pageq();
499 uvm_pageactivate(pg);
500 uvm_unlock_pageq();
501 if (!locked)
502 simple_unlock(&anon->an_lock);
503 }
504
505 /*
506 * we were not able to relock. restart fault.
507 */
508
509 if (!locked) {
510 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
511 return (ERESTART);
512 }
513
514 /*
515 * verify no one has touched the amap and moved the anon on us.
516 */
517
518 if (ufi != NULL &&
519 amap_lookup(&ufi->entry->aref,
520 ufi->orig_rvaddr - ufi->entry->start) != anon) {
521
522 uvmfault_unlockall(ufi, amap, NULL, anon);
523 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
524 return (ERESTART);
525 }
526
527 /*
528 * try it again!
529 */
530
531 uvmexp.fltanretry++;
532 continue;
533
534 } /* while (1) */
535
536 /*NOTREACHED*/
537 }
538
539 /*
540 * F A U L T - m a i n e n t r y p o i n t
541 */
542
543 /*
544 * uvm_fault: page fault handler
545 *
546 * => called from MD code to resolve a page fault
547 * => VM data structures usually should be unlocked. however, it is
548 * possible to call here with the main map locked if the caller
549 * gets a write lock, sets it recusive, and then calls us (c.f.
550 * uvm_map_pageable). this should be avoided because it keeps
551 * the map locked off during I/O.
552 */
553
554 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
555 ~VM_PROT_WRITE : VM_PROT_ALL)
556
557 int
558 uvm_fault(orig_map, vaddr, fault_type, access_type)
559 vm_map_t orig_map;
560 vaddr_t vaddr;
561 vm_fault_t fault_type;
562 vm_prot_t access_type;
563 {
564 struct uvm_faultinfo ufi;
565 vm_prot_t enter_prot;
566 boolean_t wired, narrow, promote, locked, shadowed;
567 int npages, nback, nforw, centeridx, error, lcv, gotpages;
568 vaddr_t startva, objaddr, currva, offset, uoff;
569 paddr_t pa;
570 struct vm_amap *amap;
571 struct uvm_object *uobj;
572 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
573 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
574 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
575
576 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
577 orig_map, vaddr, fault_type, access_type);
578
579 anon = NULL;
580 pg = NULL;
581
582 uvmexp.faults++; /* XXX: locking? */
583
584 /*
585 * init the IN parameters in the ufi
586 */
587
588 ufi.orig_map = orig_map;
589 ufi.orig_rvaddr = trunc_page(vaddr);
590 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
591 if (fault_type == VM_FAULT_WIRE)
592 narrow = TRUE; /* don't look for neighborhood
593 * pages on wire */
594 else
595 narrow = FALSE; /* normal fault */
596
597 /*
598 * before we do anything else, if this is a fault on a kernel
599 * address, check to see if the address is managed by an
600 * interrupt-safe map. If it is, we fail immediately. Intrsafe
601 * maps are never pageable, and this approach avoids an evil
602 * locking mess.
603 */
604
605 KASSERT(orig_map != kernel_map || !uvmfault_check_intrsafe(&ufi));
606
607 /*
608 * "goto ReFault" means restart the page fault from ground zero.
609 */
610 ReFault:
611
612 /*
613 * lookup and lock the maps
614 */
615
616 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
617 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
618 return (EFAULT);
619 }
620 /* locked: maps(read) */
621
622 KASSERT(ufi.map->flags & VM_MAP_PAGEABLE);
623
624 /*
625 * check protection
626 */
627
628 if ((ufi.entry->protection & access_type) != access_type) {
629 UVMHIST_LOG(maphist,
630 "<- protection failure (prot=0x%x, access=0x%x)",
631 ufi.entry->protection, access_type, 0, 0);
632 uvmfault_unlockmaps(&ufi, FALSE);
633 return EACCES;
634 }
635
636 /*
637 * "enter_prot" is the protection we want to enter the page in at.
638 * for certain pages (e.g. copy-on-write pages) this protection can
639 * be more strict than ufi.entry->protection. "wired" means either
640 * the entry is wired or we are fault-wiring the pg.
641 */
642
643 enter_prot = ufi.entry->protection;
644 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
645 if (wired)
646 access_type = enter_prot; /* full access for wired */
647
648 /*
649 * handle "needs_copy" case. if we need to copy the amap we will
650 * have to drop our readlock and relock it with a write lock. (we
651 * need a write lock to change anything in a map entry [e.g.
652 * needs_copy]).
653 */
654
655 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
656 if ((access_type & VM_PROT_WRITE) ||
657 (ufi.entry->object.uvm_obj == NULL)) {
658 /* need to clear */
659 UVMHIST_LOG(maphist,
660 " need to clear needs_copy and refault",0,0,0,0);
661 uvmfault_unlockmaps(&ufi, FALSE);
662 uvmfault_amapcopy(&ufi);
663 uvmexp.fltamcopy++;
664 goto ReFault;
665
666 } else {
667
668 /*
669 * ensure that we pmap_enter page R/O since
670 * needs_copy is still true
671 */
672 enter_prot &= ~VM_PROT_WRITE;
673
674 }
675 }
676
677 /*
678 * identify the players
679 */
680
681 amap = ufi.entry->aref.ar_amap; /* top layer */
682 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
683
684 /*
685 * check for a case 0 fault. if nothing backing the entry then
686 * error now.
687 */
688
689 if (amap == NULL && uobj == NULL) {
690 uvmfault_unlockmaps(&ufi, FALSE);
691 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
692 return (EFAULT);
693 }
694
695 /*
696 * establish range of interest based on advice from mapper
697 * and then clip to fit map entry. note that we only want
698 * to do this the first time through the fault. if we
699 * ReFault we will disable this by setting "narrow" to true.
700 */
701
702 if (narrow == FALSE) {
703
704 /* wide fault (!narrow) */
705 KASSERT(uvmadvice[ufi.entry->advice].advice ==
706 ufi.entry->advice);
707 nback = min(uvmadvice[ufi.entry->advice].nback,
708 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
709 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
710 nforw = min(uvmadvice[ufi.entry->advice].nforw,
711 ((ufi.entry->end - ufi.orig_rvaddr) >>
712 PAGE_SHIFT) - 1);
713 /*
714 * note: "-1" because we don't want to count the
715 * faulting page as forw
716 */
717 npages = nback + nforw + 1;
718 centeridx = nback;
719
720 narrow = TRUE; /* ensure only once per-fault */
721
722 } else {
723
724 /* narrow fault! */
725 nback = nforw = 0;
726 startva = ufi.orig_rvaddr;
727 npages = 1;
728 centeridx = 0;
729
730 }
731
732 /* locked: maps(read) */
733 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
734 narrow, nback, nforw, startva);
735 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
736 amap, uobj, 0);
737
738 /*
739 * if we've got an amap, lock it and extract current anons.
740 */
741
742 if (amap) {
743 amap_lock(amap);
744 anons = anons_store;
745 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
746 anons, npages);
747 } else {
748 anons = NULL; /* to be safe */
749 }
750
751 /* locked: maps(read), amap(if there) */
752
753 /*
754 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
755 * now and then forget about them (for the rest of the fault).
756 */
757
758 if (ufi.entry->advice == MADV_SEQUENTIAL) {
759
760 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
761 0,0,0,0);
762 /* flush back-page anons? */
763 if (amap)
764 uvmfault_anonflush(anons, nback);
765
766 /* flush object? */
767 if (uobj) {
768 objaddr =
769 (startva - ufi.entry->start) + ufi.entry->offset;
770 simple_lock(&uobj->vmobjlock);
771 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
772 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
773 simple_unlock(&uobj->vmobjlock);
774 }
775
776 /* now forget about the backpages */
777 if (amap)
778 anons += nback;
779 startva += (nback << PAGE_SHIFT);
780 npages -= nback;
781 nback = centeridx = 0;
782 }
783
784 /* locked: maps(read), amap(if there) */
785
786 /*
787 * map in the backpages and frontpages we found in the amap in hopes
788 * of preventing future faults. we also init the pages[] array as
789 * we go.
790 */
791
792 currva = startva;
793 shadowed = FALSE;
794 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
795
796 /*
797 * dont play with VAs that are already mapped
798 * except for center)
799 */
800 if (lcv != centeridx &&
801 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
802 pages[lcv] = PGO_DONTCARE;
803 continue;
804 }
805
806 /*
807 * unmapped or center page. check if any anon at this level.
808 */
809 if (amap == NULL || anons[lcv] == NULL) {
810 pages[lcv] = NULL;
811 continue;
812 }
813
814 /*
815 * check for present page and map if possible. re-activate it.
816 */
817
818 pages[lcv] = PGO_DONTCARE;
819 if (lcv == centeridx) { /* save center for later! */
820 shadowed = TRUE;
821 continue;
822 }
823 anon = anons[lcv];
824 simple_lock(&anon->an_lock);
825 /* ignore loaned pages */
826 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
827 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
828 uvm_lock_pageq();
829 uvm_pageactivate(anon->u.an_page); /* reactivate */
830 uvm_unlock_pageq();
831 UVMHIST_LOG(maphist,
832 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
833 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
834 uvmexp.fltnamap++;
835
836 /*
837 * Since this isn't the page that's actually faulting,
838 * ignore pmap_enter() failures; it's not critical
839 * that we enter these right now.
840 */
841
842 (void) pmap_enter(ufi.orig_map->pmap, currva,
843 VM_PAGE_TO_PHYS(anon->u.an_page),
844 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
845 enter_prot,
846 PMAP_CANFAIL |
847 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
848 }
849 simple_unlock(&anon->an_lock);
850 }
851
852 /* locked: maps(read), amap(if there) */
853 /* (shadowed == TRUE) if there is an anon at the faulting address */
854 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
855 (uobj && shadowed == FALSE),0,0);
856
857 /*
858 * note that if we are really short of RAM we could sleep in the above
859 * call to pmap_enter with everything locked. bad?
860 *
861 * XXX Actually, that is bad; pmap_enter() should just fail in that
862 * XXX case. --thorpej
863 */
864
865 /*
866 * if the desired page is not shadowed by the amap and we have a
867 * backing object, then we check to see if the backing object would
868 * prefer to handle the fault itself (rather than letting us do it
869 * with the usual pgo_get hook). the backing object signals this by
870 * providing a pgo_fault routine.
871 */
872
873 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
874 simple_lock(&uobj->vmobjlock);
875
876 /* locked: maps(read), amap (if there), uobj */
877 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
878 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
879
880 /* locked: nothing, pgo_fault has unlocked everything */
881
882 if (error == 0)
883 return (0);
884 else if (error == ERESTART)
885 goto ReFault; /* try again! */
886 else
887 return EACCES;
888 }
889
890 /*
891 * now, if the desired page is not shadowed by the amap and we have
892 * a backing object that does not have a special fault routine, then
893 * we ask (with pgo_get) the object for resident pages that we care
894 * about and attempt to map them in. we do not let pgo_get block
895 * (PGO_LOCKED).
896 *
897 * ("get" has the option of doing a pmap_enter for us)
898 */
899
900 if (uobj && shadowed == FALSE) {
901 simple_lock(&uobj->vmobjlock);
902
903 /* locked (!shadowed): maps(read), amap (if there), uobj */
904 /*
905 * the following call to pgo_get does _not_ change locking state
906 */
907
908 uvmexp.fltlget++;
909 gotpages = npages;
910 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
911 (startva - ufi.entry->start),
912 pages, &gotpages, centeridx,
913 access_type & MASK(ufi.entry),
914 ufi.entry->advice, PGO_LOCKED);
915
916 /*
917 * check for pages to map, if we got any
918 */
919
920 uobjpage = NULL;
921
922 if (gotpages) {
923 currva = startva;
924 for (lcv = 0 ; lcv < npages ;
925 lcv++, currva += PAGE_SIZE) {
926
927 if (pages[lcv] == NULL ||
928 pages[lcv] == PGO_DONTCARE)
929 continue;
930
931 KASSERT((pages[lcv]->flags & PG_RELEASED) == 0);
932
933 /*
934 * if center page is resident and not
935 * PG_BUSY|PG_RELEASED then pgo_get
936 * made it PG_BUSY for us and gave
937 * us a handle to it. remember this
938 * page as "uobjpage." (for later use).
939 */
940
941 if (lcv == centeridx) {
942 uobjpage = pages[lcv];
943 UVMHIST_LOG(maphist, " got uobjpage "
944 "(0x%x) with locked get",
945 uobjpage, 0,0,0);
946 continue;
947 }
948
949 /*
950 * note: calling pgo_get with locked data
951 * structures returns us pages which are
952 * neither busy nor released, so we don't
953 * need to check for this. we can just
954 * directly enter the page (after moving it
955 * to the head of the active queue [useful?]).
956 */
957
958 uvm_lock_pageq();
959 uvm_pageactivate(pages[lcv]); /* reactivate */
960 uvm_unlock_pageq();
961 UVMHIST_LOG(maphist,
962 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
963 ufi.orig_map->pmap, currva, pages[lcv], 0);
964 uvmexp.fltnomap++;
965
966 /*
967 * Since this page isn't the page that's
968 * actually fauling, ignore pmap_enter()
969 * failures; it's not critical that we
970 * enter these right now.
971 */
972
973 (void) pmap_enter(ufi.orig_map->pmap, currva,
974 VM_PAGE_TO_PHYS(pages[lcv]),
975 pages[lcv]->flags & PG_RDONLY ?
976 VM_PROT_READ : enter_prot & MASK(ufi.entry),
977 PMAP_CANFAIL |
978 (wired ? PMAP_WIRED : 0));
979
980 /*
981 * NOTE: page can't be PG_WANTED or PG_RELEASED
982 * because we've held the lock the whole time
983 * we've had the handle.
984 */
985
986 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
987 UVM_PAGE_OWN(pages[lcv], NULL);
988 } /* for "lcv" loop */
989 } /* "gotpages" != 0 */
990 /* note: object still _locked_ */
991 } else {
992 uobjpage = NULL;
993 }
994
995 /* locked (shadowed): maps(read), amap */
996 /* locked (!shadowed): maps(read), amap(if there),
997 uobj(if !null), uobjpage(if !null) */
998
999 /*
1000 * note that at this point we are done with any front or back pages.
1001 * we are now going to focus on the center page (i.e. the one we've
1002 * faulted on). if we have faulted on the top (anon) layer
1003 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1004 * not touched it yet). if we have faulted on the bottom (uobj)
1005 * layer [i.e. case 2] and the page was both present and available,
1006 * then we've got a pointer to it as "uobjpage" and we've already
1007 * made it BUSY.
1008 */
1009
1010 /*
1011 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1012 */
1013
1014 /*
1015 * redirect case 2: if we are not shadowed, go to case 2.
1016 */
1017
1018 if (shadowed == FALSE)
1019 goto Case2;
1020
1021 /* locked: maps(read), amap */
1022
1023 /*
1024 * handle case 1: fault on an anon in our amap
1025 */
1026
1027 anon = anons[centeridx];
1028 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1029 simple_lock(&anon->an_lock);
1030
1031 /* locked: maps(read), amap, anon */
1032
1033 /*
1034 * no matter if we have case 1A or case 1B we are going to need to
1035 * have the anon's memory resident. ensure that now.
1036 */
1037
1038 /*
1039 * let uvmfault_anonget do the dirty work.
1040 * if it fails (!OK) it will unlock everything for us.
1041 * if it succeeds, locks are still valid and locked.
1042 * also, if it is OK, then the anon's page is on the queues.
1043 * if the page is on loan from a uvm_object, then anonget will
1044 * lock that object for us if it does not fail.
1045 */
1046
1047 error = uvmfault_anonget(&ufi, amap, anon);
1048 switch (error) {
1049 case 0:
1050 break;
1051
1052 case ERESTART:
1053 goto ReFault;
1054
1055 case EAGAIN:
1056 tsleep(&lbolt, PVM, "fltagain1", 0);
1057 goto ReFault;
1058
1059 default:
1060 return error;
1061 }
1062
1063 /*
1064 * uobj is non null if the page is on loan from an object (i.e. uobj)
1065 */
1066
1067 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1068
1069 /* locked: maps(read), amap, anon, uobj(if one) */
1070
1071 /*
1072 * special handling for loaned pages
1073 */
1074
1075 if (anon->u.an_page->loan_count) {
1076
1077 if ((access_type & VM_PROT_WRITE) == 0) {
1078
1079 /*
1080 * for read faults on loaned pages we just cap the
1081 * protection at read-only.
1082 */
1083
1084 enter_prot = enter_prot & ~VM_PROT_WRITE;
1085
1086 } else {
1087 /*
1088 * note that we can't allow writes into a loaned page!
1089 *
1090 * if we have a write fault on a loaned page in an
1091 * anon then we need to look at the anon's ref count.
1092 * if it is greater than one then we are going to do
1093 * a normal copy-on-write fault into a new anon (this
1094 * is not a problem). however, if the reference count
1095 * is one (a case where we would normally allow a
1096 * write directly to the page) then we need to kill
1097 * the loan before we continue.
1098 */
1099
1100 /* >1 case is already ok */
1101 if (anon->an_ref == 1) {
1102
1103 /* get new un-owned replacement page */
1104 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1105 if (pg == NULL) {
1106 uvmfault_unlockall(&ufi, amap, uobj,
1107 anon);
1108 uvm_wait("flt_noram2");
1109 goto ReFault;
1110 }
1111
1112 /*
1113 * copy data, kill loan, and drop uobj lock
1114 * (if any)
1115 */
1116 /* copy old -> new */
1117 uvm_pagecopy(anon->u.an_page, pg);
1118
1119 /* force reload */
1120 pmap_page_protect(anon->u.an_page,
1121 VM_PROT_NONE);
1122 uvm_lock_pageq(); /* KILL loan */
1123 if (uobj)
1124 /* if we were loaning */
1125 anon->u.an_page->loan_count--;
1126 anon->u.an_page->uanon = NULL;
1127 /* in case we owned */
1128 anon->u.an_page->pqflags &= ~PQ_ANON;
1129 uvm_unlock_pageq();
1130 if (uobj) {
1131 simple_unlock(&uobj->vmobjlock);
1132 uobj = NULL;
1133 }
1134
1135 /* install new page in anon */
1136 anon->u.an_page = pg;
1137 pg->uanon = anon;
1138 pg->pqflags |= PQ_ANON;
1139 pg->flags &= ~(PG_BUSY|PG_FAKE);
1140 UVM_PAGE_OWN(pg, NULL);
1141
1142 /* done! */
1143 } /* ref == 1 */
1144 } /* write fault */
1145 } /* loan count */
1146
1147 /*
1148 * if we are case 1B then we will need to allocate a new blank
1149 * anon to transfer the data into. note that we have a lock
1150 * on anon, so no one can busy or release the page until we are done.
1151 * also note that the ref count can't drop to zero here because
1152 * it is > 1 and we are only dropping one ref.
1153 *
1154 * in the (hopefully very rare) case that we are out of RAM we
1155 * will unlock, wait for more RAM, and refault.
1156 *
1157 * if we are out of anon VM we kill the process (XXX: could wait?).
1158 */
1159
1160 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1161
1162 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1163 uvmexp.flt_acow++;
1164 oanon = anon; /* oanon = old, locked anon */
1165 anon = uvm_analloc();
1166 if (anon) {
1167 /* new anon is locked! */
1168 pg = uvm_pagealloc(NULL, 0, anon, 0);
1169 }
1170
1171 /* check for out of RAM */
1172 if (anon == NULL || pg == NULL) {
1173 if (anon) {
1174 anon->an_ref--;
1175 simple_unlock(&anon->an_lock);
1176 uvm_anfree(anon);
1177 }
1178 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1179 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1180 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1181 UVMHIST_LOG(maphist,
1182 "<- failed. out of VM",0,0,0,0);
1183 uvmexp.fltnoanon++;
1184 return ENOMEM;
1185 }
1186
1187 uvmexp.fltnoram++;
1188 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1189 goto ReFault;
1190 }
1191
1192 /* got all resources, replace anon with nanon */
1193
1194 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1195 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1196 UVM_PAGE_OWN(pg, NULL);
1197 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1198 anon, 1);
1199
1200 /* deref: can not drop to zero here by defn! */
1201 oanon->an_ref--;
1202
1203 /*
1204 * note: oanon is still locked, as is the new anon. we
1205 * need to check for this later when we unlock oanon; if
1206 * oanon != anon, we'll have to unlock anon, too.
1207 */
1208
1209 } else {
1210
1211 uvmexp.flt_anon++;
1212 oanon = anon; /* old, locked anon is same as anon */
1213 pg = anon->u.an_page;
1214 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1215 enter_prot = enter_prot & ~VM_PROT_WRITE;
1216
1217 }
1218
1219 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1220
1221 /*
1222 * now map the page in ...
1223 * XXX: old fault unlocks object before pmap_enter. this seems
1224 * suspect since some other thread could blast the page out from
1225 * under us between the unlock and the pmap_enter.
1226 */
1227
1228 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1229 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1230 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1231 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1232 != 0) {
1233 /*
1234 * No need to undo what we did; we can simply think of
1235 * this as the pmap throwing away the mapping information.
1236 *
1237 * We do, however, have to go through the ReFault path,
1238 * as the map may change while we're asleep.
1239 */
1240 if (anon != oanon)
1241 simple_unlock(&anon->an_lock);
1242 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1243 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1244 if (uvmexp.swpgonly == uvmexp.swpages) {
1245 UVMHIST_LOG(maphist,
1246 "<- failed. out of VM",0,0,0,0);
1247 /* XXX instrumentation */
1248 return ENOMEM;
1249 }
1250 /* XXX instrumentation */
1251 uvm_wait("flt_pmfail1");
1252 goto ReFault;
1253 }
1254
1255 /*
1256 * ... update the page queues.
1257 */
1258
1259 uvm_lock_pageq();
1260
1261 if (fault_type == VM_FAULT_WIRE) {
1262 uvm_pagewire(pg);
1263
1264 /*
1265 * since the now-wired page cannot be paged out,
1266 * release its swap resources for others to use.
1267 * since an anon with no swap cannot be PG_CLEAN,
1268 * clear its clean flag now.
1269 */
1270
1271 pg->flags &= ~(PG_CLEAN);
1272 uvm_anon_dropswap(anon);
1273 } else {
1274 /* activate it */
1275 uvm_pageactivate(pg);
1276 }
1277
1278 uvm_unlock_pageq();
1279
1280 /*
1281 * done case 1! finish up by unlocking everything and returning success
1282 */
1283
1284 if (anon != oanon)
1285 simple_unlock(&anon->an_lock);
1286 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1287 return 0;
1288
1289
1290 Case2:
1291 /*
1292 * handle case 2: faulting on backing object or zero fill
1293 */
1294
1295 /*
1296 * locked:
1297 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1298 */
1299
1300 /*
1301 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1302 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1303 * have a backing object, check and see if we are going to promote
1304 * the data up to an anon during the fault.
1305 */
1306
1307 if (uobj == NULL) {
1308 uobjpage = PGO_DONTCARE;
1309 promote = TRUE; /* always need anon here */
1310 } else {
1311 KASSERT(uobjpage != PGO_DONTCARE);
1312 promote = (access_type & VM_PROT_WRITE) &&
1313 UVM_ET_ISCOPYONWRITE(ufi.entry);
1314 }
1315 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1316 promote, (uobj == NULL), 0,0);
1317
1318 /*
1319 * if uobjpage is not null then we do not need to do I/O to get the
1320 * uobjpage.
1321 *
1322 * if uobjpage is null, then we need to unlock and ask the pager to
1323 * get the data for us. once we have the data, we need to reverify
1324 * the state the world. we are currently not holding any resources.
1325 */
1326
1327 if (uobjpage) {
1328 /* update rusage counters */
1329 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1330 } else {
1331 /* update rusage counters */
1332 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1333
1334 /* locked: maps(read), amap(if there), uobj */
1335 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1336 /* locked: uobj */
1337
1338 uvmexp.fltget++;
1339 gotpages = 1;
1340 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1341 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1342 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1343 PGO_SYNCIO);
1344
1345 /* locked: uobjpage(if no error) */
1346
1347 /*
1348 * recover from I/O
1349 */
1350
1351 if (error) {
1352 if (error == EAGAIN) {
1353 UVMHIST_LOG(maphist,
1354 " pgo_get says TRY AGAIN!",0,0,0,0);
1355 tsleep(&lbolt, PVM, "fltagain2", 0);
1356 goto ReFault;
1357 }
1358
1359 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1360 error, 0,0,0);
1361 return error;
1362 }
1363
1364 /* locked: uobjpage */
1365
1366 /*
1367 * re-verify the state of the world by first trying to relock
1368 * the maps. always relock the object.
1369 */
1370
1371 locked = uvmfault_relock(&ufi);
1372 if (locked && amap)
1373 amap_lock(amap);
1374 simple_lock(&uobj->vmobjlock);
1375
1376 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1377 /* locked(!locked): uobj, uobjpage */
1378
1379 /*
1380 * verify that the page has not be released and re-verify
1381 * that amap slot is still free. if there is a problem,
1382 * we unlock and clean up.
1383 */
1384
1385 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1386 (locked && amap &&
1387 amap_lookup(&ufi.entry->aref,
1388 ufi.orig_rvaddr - ufi.entry->start))) {
1389 if (locked)
1390 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1391 locked = FALSE;
1392 }
1393
1394 /*
1395 * didn't get the lock? release the page and retry.
1396 */
1397
1398 if (locked == FALSE) {
1399
1400 UVMHIST_LOG(maphist,
1401 " wasn't able to relock after fault: retry",
1402 0,0,0,0);
1403 if (uobjpage->flags & PG_WANTED)
1404 /* still holding object lock */
1405 wakeup(uobjpage);
1406
1407 if (uobjpage->flags & PG_RELEASED) {
1408 uvmexp.fltpgrele++;
1409 KASSERT(uobj->pgops->pgo_releasepg != NULL);
1410
1411 /* frees page */
1412 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1413 /* unlock if still alive */
1414 simple_unlock(&uobj->vmobjlock);
1415 goto ReFault;
1416 }
1417
1418 uvm_lock_pageq();
1419 /* make sure it is in queues */
1420 uvm_pageactivate(uobjpage);
1421
1422 uvm_unlock_pageq();
1423 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1424 UVM_PAGE_OWN(uobjpage, NULL);
1425 simple_unlock(&uobj->vmobjlock);
1426 goto ReFault;
1427
1428 }
1429
1430 /*
1431 * we have the data in uobjpage which is PG_BUSY and
1432 * !PG_RELEASED. we are holding object lock (so the page
1433 * can't be released on us).
1434 */
1435
1436 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1437 }
1438
1439 /*
1440 * locked:
1441 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1442 */
1443
1444 /*
1445 * notes:
1446 * - at this point uobjpage can not be NULL
1447 * - at this point uobjpage can not be PG_RELEASED (since we checked
1448 * for it above)
1449 * - at this point uobjpage could be PG_WANTED (handle later)
1450 */
1451
1452 if (promote == FALSE) {
1453
1454 /*
1455 * we are not promoting. if the mapping is COW ensure that we
1456 * don't give more access than we should (e.g. when doing a read
1457 * fault on a COPYONWRITE mapping we want to map the COW page in
1458 * R/O even though the entry protection could be R/W).
1459 *
1460 * set "pg" to the page we want to map in (uobjpage, usually)
1461 */
1462
1463 /* no anon in this case. */
1464 anon = NULL;
1465
1466 uvmexp.flt_obj++;
1467 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1468 enter_prot &= ~VM_PROT_WRITE;
1469 pg = uobjpage; /* map in the actual object */
1470
1471 /* assert(uobjpage != PGO_DONTCARE) */
1472
1473 /*
1474 * we are faulting directly on the page. be careful
1475 * about writing to loaned pages...
1476 */
1477 if (uobjpage->loan_count) {
1478
1479 if ((access_type & VM_PROT_WRITE) == 0) {
1480 /* read fault: cap the protection at readonly */
1481 /* cap! */
1482 enter_prot = enter_prot & ~VM_PROT_WRITE;
1483 } else {
1484 /* write fault: must break the loan here */
1485
1486 /* alloc new un-owned page */
1487 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1488
1489 if (pg == NULL) {
1490 /*
1491 * drop ownership of page, it can't
1492 * be released
1493 */
1494 if (uobjpage->flags & PG_WANTED)
1495 wakeup(uobjpage);
1496 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1497 UVM_PAGE_OWN(uobjpage, NULL);
1498
1499 uvm_lock_pageq();
1500 /* activate: we will need it later */
1501 uvm_pageactivate(uobjpage);
1502
1503 uvm_unlock_pageq();
1504 uvmfault_unlockall(&ufi, amap, uobj,
1505 NULL);
1506 UVMHIST_LOG(maphist,
1507 " out of RAM breaking loan, waiting",
1508 0,0,0,0);
1509 uvmexp.fltnoram++;
1510 uvm_wait("flt_noram4");
1511 goto ReFault;
1512 }
1513
1514 /*
1515 * copy the data from the old page to the new
1516 * one and clear the fake/clean flags on the
1517 * new page (keep it busy). force a reload
1518 * of the old page by clearing it from all
1519 * pmaps. then lock the page queues to
1520 * rename the pages.
1521 */
1522 uvm_pagecopy(uobjpage, pg); /* old -> new */
1523 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1524 pmap_page_protect(uobjpage, VM_PROT_NONE);
1525 if (uobjpage->flags & PG_WANTED)
1526 wakeup(uobjpage);
1527 /* uobj still locked */
1528 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1529 UVM_PAGE_OWN(uobjpage, NULL);
1530
1531 uvm_lock_pageq();
1532 offset = uobjpage->offset;
1533 /* remove old page */
1534 uvm_pagerealloc(uobjpage, NULL, 0);
1535
1536 /*
1537 * at this point we have absolutely no
1538 * control over uobjpage
1539 */
1540 /* install new page */
1541 uvm_pagerealloc(pg, uobj, offset);
1542 uvm_unlock_pageq();
1543
1544 /*
1545 * done! loan is broken and "pg" is
1546 * PG_BUSY. it can now replace uobjpage.
1547 */
1548
1549 uobjpage = pg;
1550
1551 } /* write fault case */
1552 } /* if loan_count */
1553
1554 } else {
1555
1556 /*
1557 * if we are going to promote the data to an anon we
1558 * allocate a blank anon here and plug it into our amap.
1559 */
1560 #if DIAGNOSTIC
1561 if (amap == NULL)
1562 panic("uvm_fault: want to promote data, but no anon");
1563 #endif
1564
1565 anon = uvm_analloc();
1566 if (anon) {
1567 /*
1568 * The new anon is locked.
1569 *
1570 * In `Fill in data...' below, if
1571 * uobjpage == PGO_DONTCARE, we want
1572 * a zero'd, dirty page, so have
1573 * uvm_pagealloc() do that for us.
1574 */
1575 pg = uvm_pagealloc(NULL, 0, anon,
1576 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1577 }
1578
1579 /*
1580 * out of memory resources?
1581 */
1582 if (anon == NULL || pg == NULL) {
1583
1584 if (anon != NULL) {
1585 anon->an_ref--;
1586 simple_unlock(&anon->an_lock);
1587 uvm_anfree(anon);
1588 }
1589
1590 /*
1591 * arg! must unbusy our page and fail or sleep.
1592 */
1593 if (uobjpage != PGO_DONTCARE) {
1594 if (uobjpage->flags & PG_WANTED)
1595 /* still holding object lock */
1596 wakeup(uobjpage);
1597
1598 uvm_lock_pageq();
1599 uvm_pageactivate(uobjpage);
1600 uvm_unlock_pageq();
1601 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1602 UVM_PAGE_OWN(uobjpage, NULL);
1603 }
1604
1605 /* unlock and fail ... */
1606 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1607 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1608 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1609 UVMHIST_LOG(maphist, " promote: out of VM",
1610 0,0,0,0);
1611 uvmexp.fltnoanon++;
1612 return ENOMEM;
1613 }
1614
1615 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1616 0,0,0,0);
1617 uvmexp.fltnoram++;
1618 uvm_wait("flt_noram5");
1619 goto ReFault;
1620 }
1621
1622 /*
1623 * fill in the data
1624 */
1625
1626 if (uobjpage != PGO_DONTCARE) {
1627 uvmexp.flt_prcopy++;
1628 /* copy page [pg now dirty] */
1629 uvm_pagecopy(uobjpage, pg);
1630
1631 /*
1632 * promote to shared amap? make sure all sharing
1633 * procs see it
1634 */
1635 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1636 pmap_page_protect(uobjpage, VM_PROT_NONE);
1637 }
1638
1639 /*
1640 * dispose of uobjpage. it can't be PG_RELEASED
1641 * since we still hold the object lock.
1642 * drop handle to uobj as well.
1643 */
1644
1645 if (uobjpage->flags & PG_WANTED)
1646 /* still have the obj lock */
1647 wakeup(uobjpage);
1648 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1649 UVM_PAGE_OWN(uobjpage, NULL);
1650 uvm_lock_pageq();
1651 uvm_pageactivate(uobjpage);
1652 uvm_unlock_pageq();
1653 simple_unlock(&uobj->vmobjlock);
1654 uobj = NULL;
1655
1656 UVMHIST_LOG(maphist,
1657 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1658 uobjpage, anon, pg, 0);
1659
1660 } else {
1661 uvmexp.flt_przero++;
1662 /*
1663 * Page is zero'd and marked dirty by uvm_pagealloc()
1664 * above.
1665 */
1666 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1667 anon, pg, 0, 0);
1668 }
1669
1670 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1671 anon, 0);
1672 }
1673
1674 /*
1675 * locked:
1676 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1677 * anon(if !null), pg(if anon)
1678 *
1679 * note: pg is either the uobjpage or the new page in the new anon
1680 */
1681
1682 /*
1683 * all resources are present. we can now map it in and free our
1684 * resources.
1685 */
1686
1687 UVMHIST_LOG(maphist,
1688 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1689 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1690 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1691 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1692 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1693 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1694
1695 /*
1696 * No need to undo what we did; we can simply think of
1697 * this as the pmap throwing away the mapping information.
1698 *
1699 * We do, however, have to go through the ReFault path,
1700 * as the map may change while we're asleep.
1701 */
1702
1703 if (pg->flags & PG_WANTED)
1704 wakeup(pg); /* lock still held */
1705
1706 /*
1707 * note that pg can't be PG_RELEASED since we did not drop
1708 * the object lock since the last time we checked.
1709 */
1710
1711 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1712 UVM_PAGE_OWN(pg, NULL);
1713 uvmfault_unlockall(&ufi, amap, uobj, anon);
1714 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1715 if (uvmexp.swpgonly == uvmexp.swpages) {
1716 UVMHIST_LOG(maphist,
1717 "<- failed. out of VM",0,0,0,0);
1718 /* XXX instrumentation */
1719 return ENOMEM;
1720 }
1721 /* XXX instrumentation */
1722 uvm_wait("flt_pmfail2");
1723 goto ReFault;
1724 }
1725
1726 uvm_lock_pageq();
1727
1728 if (fault_type == VM_FAULT_WIRE) {
1729 uvm_pagewire(pg);
1730 if (pg->pqflags & PQ_AOBJ) {
1731
1732 /*
1733 * since the now-wired page cannot be paged out,
1734 * release its swap resources for others to use.
1735 * since an aobj page with no swap cannot be PG_CLEAN,
1736 * clear its clean flag now.
1737 */
1738
1739 pg->flags &= ~(PG_CLEAN);
1740 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1741 }
1742 } else {
1743 /* activate it */
1744 uvm_pageactivate(pg);
1745 }
1746 uvm_unlock_pageq();
1747
1748 if (pg->flags & PG_WANTED)
1749 wakeup(pg); /* lock still held */
1750
1751 /*
1752 * note that pg can't be PG_RELEASED since we did not drop the object
1753 * lock since the last time we checked.
1754 */
1755
1756 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1757 UVM_PAGE_OWN(pg, NULL);
1758 uvmfault_unlockall(&ufi, amap, uobj, anon);
1759
1760 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1761 return 0;
1762 }
1763
1764
1765 /*
1766 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1767 *
1768 * => map may be read-locked by caller, but MUST NOT be write-locked.
1769 * => if map is read-locked, any operations which may cause map to
1770 * be write-locked in uvm_fault() must be taken care of by
1771 * the caller. See uvm_map_pageable().
1772 */
1773
1774 int
1775 uvm_fault_wire(map, start, end, access_type)
1776 vm_map_t map;
1777 vaddr_t start, end;
1778 vm_prot_t access_type;
1779 {
1780 vaddr_t va;
1781 pmap_t pmap;
1782 int error;
1783
1784 pmap = vm_map_pmap(map);
1785
1786 /*
1787 * now fault it in a page at a time. if the fault fails then we have
1788 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1789 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1790 */
1791
1792 for (va = start ; va < end ; va += PAGE_SIZE) {
1793 error = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1794 if (error) {
1795 if (va != start) {
1796 uvm_fault_unwire(map, start, va);
1797 }
1798 return error;
1799 }
1800 }
1801
1802 return 0;
1803 }
1804
1805 /*
1806 * uvm_fault_unwire(): unwire range of virtual space.
1807 */
1808
1809 void
1810 uvm_fault_unwire(map, start, end)
1811 vm_map_t map;
1812 vaddr_t start, end;
1813 {
1814
1815 vm_map_lock_read(map);
1816 uvm_fault_unwire_locked(map, start, end);
1817 vm_map_unlock_read(map);
1818 }
1819
1820 /*
1821 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1822 *
1823 * => map must be at least read-locked.
1824 */
1825
1826 void
1827 uvm_fault_unwire_locked(map, start, end)
1828 vm_map_t map;
1829 vaddr_t start, end;
1830 {
1831 vm_map_entry_t entry;
1832 pmap_t pmap = vm_map_pmap(map);
1833 vaddr_t va;
1834 paddr_t pa;
1835 struct vm_page *pg;
1836
1837 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1838
1839 /*
1840 * we assume that the area we are unwiring has actually been wired
1841 * in the first place. this means that we should be able to extract
1842 * the PAs from the pmap. we also lock out the page daemon so that
1843 * we can call uvm_pageunwire.
1844 */
1845
1846 uvm_lock_pageq();
1847
1848 /*
1849 * find the beginning map entry for the region.
1850 */
1851 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1852 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1853 panic("uvm_fault_unwire_locked: address not in map");
1854
1855 for (va = start; va < end ; va += PAGE_SIZE) {
1856 if (pmap_extract(pmap, va, &pa) == FALSE)
1857 panic("uvm_fault_unwire_locked: unwiring "
1858 "non-wired memory");
1859
1860 /*
1861 * make sure the current entry is for the address we're
1862 * dealing with. if not, grab the next entry.
1863 */
1864
1865 KASSERT(va >= entry->start);
1866 if (va >= entry->end) {
1867 KASSERT(entry->next != &map->header &&
1868 entry->next->start <= entry->end);
1869 entry = entry->next;
1870 }
1871
1872 /*
1873 * if the entry is no longer wired, tell the pmap.
1874 */
1875 if (VM_MAPENT_ISWIRED(entry) == 0)
1876 pmap_unwire(pmap, va);
1877
1878 pg = PHYS_TO_VM_PAGE(pa);
1879 if (pg)
1880 uvm_pageunwire(pg);
1881 }
1882
1883 uvm_unlock_pageq();
1884 }
1885