uvm_fault.c revision 1.63 1 /* $NetBSD: uvm_fault.c,v 1.63 2001/05/25 04:06:13 chs Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 *
55 * a word on page faults:
56 *
57 * types of page faults we handle:
58 *
59 * CASE 1: upper layer faults CASE 2: lower layer faults
60 *
61 * CASE 1A CASE 1B CASE 2A CASE 2B
62 * read/write1 write>1 read/write +-cow_write/zero
63 * | | | |
64 * +--|--+ +--|--+ +-----+ + | + | +-----+
65 * amap | V | | ----------->new| | | | ^ |
66 * +-----+ +-----+ +-----+ + | + | +--|--+
67 * | | |
68 * +-----+ +-----+ +--|--+ | +--|--+
69 * uobj | d/c | | d/c | | V | +----| |
70 * +-----+ +-----+ +-----+ +-----+
71 *
72 * d/c = don't care
73 *
74 * case [0]: layerless fault
75 * no amap or uobj is present. this is an error.
76 *
77 * case [1]: upper layer fault [anon active]
78 * 1A: [read] or [write with anon->an_ref == 1]
79 * I/O takes place in top level anon and uobj is not touched.
80 * 1B: [write with anon->an_ref > 1]
81 * new anon is alloc'd and data is copied off ["COW"]
82 *
83 * case [2]: lower layer fault [uobj]
84 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
85 * I/O takes place directly in object.
86 * 2B: [write to copy_on_write] or [read on NULL uobj]
87 * data is "promoted" from uobj to a new anon.
88 * if uobj is null, then we zero fill.
89 *
90 * we follow the standard UVM locking protocol ordering:
91 *
92 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
93 * we hold a PG_BUSY page if we unlock for I/O
94 *
95 *
96 * the code is structured as follows:
97 *
98 * - init the "IN" params in the ufi structure
99 * ReFault:
100 * - do lookups [locks maps], check protection, handle needs_copy
101 * - check for case 0 fault (error)
102 * - establish "range" of fault
103 * - if we have an amap lock it and extract the anons
104 * - if sequential advice deactivate pages behind us
105 * - at the same time check pmap for unmapped areas and anon for pages
106 * that we could map in (and do map it if found)
107 * - check object for resident pages that we could map in
108 * - if (case 2) goto Case2
109 * - >>> handle case 1
110 * - ensure source anon is resident in RAM
111 * - if case 1B alloc new anon and copy from source
112 * - map the correct page in
113 * Case2:
114 * - >>> handle case 2
115 * - ensure source page is resident (if uobj)
116 * - if case 2B alloc new anon and copy from source (could be zero
117 * fill if uobj == NULL)
118 * - map the correct page in
119 * - done!
120 *
121 * note on paging:
122 * if we have to do I/O we place a PG_BUSY page in the correct object,
123 * unlock everything, and do the I/O. when I/O is done we must reverify
124 * the state of the world before assuming that our data structures are
125 * valid. [because mappings could change while the map is unlocked]
126 *
127 * alternative 1: unbusy the page in question and restart the page fault
128 * from the top (ReFault). this is easy but does not take advantage
129 * of the information that we already have from our previous lookup,
130 * although it is possible that the "hints" in the vm_map will help here.
131 *
132 * alternative 2: the system already keeps track of a "version" number of
133 * a map. [i.e. every time you write-lock a map (e.g. to change a
134 * mapping) you bump the version number up by one...] so, we can save
135 * the version number of the map before we release the lock and start I/O.
136 * then when I/O is done we can relock and check the version numbers
137 * to see if anything changed. this might save us some over 1 because
138 * we don't have to unbusy the page and may be less compares(?).
139 *
140 * alternative 3: put in backpointers or a way to "hold" part of a map
141 * in place while I/O is in progress. this could be complex to
142 * implement (especially with structures like amap that can be referenced
143 * by multiple map entries, and figuring out what should wait could be
144 * complex as well...).
145 *
146 * given that we are not currently multiprocessor or multithreaded we might
147 * as well choose alternative 2 now. maybe alternative 3 would be useful
148 * in the future. XXX keep in mind for future consideration//rechecking.
149 */
150
151 /*
152 * local data structures
153 */
154
155 struct uvm_advice {
156 int advice;
157 int nback;
158 int nforw;
159 };
160
161 /*
162 * page range array:
163 * note: index in array must match "advice" value
164 * XXX: borrowed numbers from freebsd. do they work well for us?
165 */
166
167 static struct uvm_advice uvmadvice[] = {
168 { MADV_NORMAL, 3, 4 },
169 { MADV_RANDOM, 0, 0 },
170 { MADV_SEQUENTIAL, 8, 7},
171 };
172
173 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
174
175 /*
176 * private prototypes
177 */
178
179 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
180 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(anons, n)
194 struct vm_anon **anons;
195 int n;
196 {
197 int lcv;
198 struct vm_page *pg;
199
200 for (lcv = 0 ; lcv < n ; lcv++) {
201 if (anons[lcv] == NULL)
202 continue;
203 simple_lock(&anons[lcv]->an_lock);
204 pg = anons[lcv]->u.an_page;
205 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
206 uvm_lock_pageq();
207 if (pg->wire_count == 0) {
208 pmap_clear_reference(pg);
209 uvm_pagedeactivate(pg);
210 }
211 uvm_unlock_pageq();
212 }
213 simple_unlock(&anons[lcv]->an_lock);
214 }
215 }
216
217 /*
218 * normal functions
219 */
220
221 /*
222 * uvmfault_amapcopy: clear "needs_copy" in a map.
223 *
224 * => called with VM data structures unlocked (usually, see below)
225 * => we get a write lock on the maps and clear needs_copy for a VA
226 * => if we are out of RAM we sleep (waiting for more)
227 */
228
229 static void
230 uvmfault_amapcopy(ufi)
231 struct uvm_faultinfo *ufi;
232 {
233
234 /*
235 * while we haven't done the job
236 */
237
238 while (1) {
239
240 /*
241 * no mapping? give up.
242 */
243
244 if (uvmfault_lookup(ufi, TRUE) == FALSE)
245 return;
246
247 /*
248 * copy if needed.
249 */
250
251 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
252 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
253 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
254
255 /*
256 * didn't work? must be out of RAM. unlock and sleep.
257 */
258
259 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
260 uvmfault_unlockmaps(ufi, TRUE);
261 uvm_wait("fltamapcopy");
262 continue;
263 }
264
265 /*
266 * got it! unlock and return.
267 */
268
269 uvmfault_unlockmaps(ufi, TRUE);
270 return;
271 }
272 /*NOTREACHED*/
273 }
274
275 /*
276 * uvmfault_anonget: get data in an anon into a non-busy, non-released
277 * page in that anon.
278 *
279 * => maps, amap, and anon locked by caller.
280 * => if we fail (result != 0) we unlock everything.
281 * => if we are successful, we return with everything still locked.
282 * => we don't move the page on the queues [gets moved later]
283 * => if we allocate a new page [we_own], it gets put on the queues.
284 * either way, the result is that the page is on the queues at return time
285 * => for pages which are on loan from a uvm_object (and thus are not
286 * owned by the anon): if successful, we return with the owning object
287 * locked. the caller must unlock this object when it unlocks everything
288 * else.
289 */
290
291 int
292 uvmfault_anonget(ufi, amap, anon)
293 struct uvm_faultinfo *ufi;
294 struct vm_amap *amap;
295 struct vm_anon *anon;
296 {
297 boolean_t we_own; /* we own anon's page? */
298 boolean_t locked; /* did we relock? */
299 struct vm_page *pg;
300 int error;
301 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
302
303 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
304
305 error = 0;
306 uvmexp.fltanget++;
307 /* bump rusage counters */
308 if (anon->u.an_page)
309 curproc->p_addr->u_stats.p_ru.ru_minflt++;
310 else
311 curproc->p_addr->u_stats.p_ru.ru_majflt++;
312
313 /*
314 * loop until we get it, or fail.
315 */
316
317 while (1) {
318
319 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
320 pg = anon->u.an_page;
321
322 /*
323 * if there is a resident page and it is loaned, then anon
324 * may not own it. call out to uvm_anon_lockpage() to ensure
325 * the real owner of the page has been identified and locked.
326 */
327
328 if (pg && pg->loan_count)
329 pg = uvm_anon_lockloanpg(anon);
330
331 /*
332 * page there? make sure it is not busy/released.
333 */
334
335 if (pg) {
336
337 /*
338 * at this point, if the page has a uobject [meaning
339 * we have it on loan], then that uobject is locked
340 * by us! if the page is busy, we drop all the
341 * locks (including uobject) and try again.
342 */
343
344 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
345 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
346 return (0);
347 }
348 pg->flags |= PG_WANTED;
349 uvmexp.fltpgwait++;
350
351 /*
352 * the last unlock must be an atomic unlock+wait on
353 * the owner of page
354 */
355 if (pg->uobject) { /* owner is uobject ? */
356 uvmfault_unlockall(ufi, amap, NULL, anon);
357 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
358 0,0,0);
359 UVM_UNLOCK_AND_WAIT(pg,
360 &pg->uobject->vmobjlock,
361 FALSE, "anonget1",0);
362 } else {
363 /* anon owns page */
364 uvmfault_unlockall(ufi, amap, NULL, NULL);
365 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
366 0,0,0);
367 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
368 "anonget2",0);
369 }
370 /* ready to relock and try again */
371
372 } else {
373
374 /*
375 * no page, we must try and bring it in.
376 */
377 pg = uvm_pagealloc(NULL, 0, anon, 0);
378
379 if (pg == NULL) { /* out of RAM. */
380
381 uvmfault_unlockall(ufi, amap, NULL, anon);
382 uvmexp.fltnoram++;
383 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
384 0,0,0);
385 uvm_wait("flt_noram1");
386 /* ready to relock and try again */
387
388 } else {
389
390 /* we set the PG_BUSY bit */
391 we_own = TRUE;
392 uvmfault_unlockall(ufi, amap, NULL, anon);
393
394 /*
395 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
396 * page into the uvm_swap_get function with
397 * all data structures unlocked. note that
398 * it is ok to read an_swslot here because
399 * we hold PG_BUSY on the page.
400 */
401 uvmexp.pageins++;
402 error = uvm_swap_get(pg, anon->an_swslot,
403 PGO_SYNCIO);
404
405 /*
406 * we clean up after the i/o below in the
407 * "we_own" case
408 */
409 /* ready to relock and try again */
410 }
411 }
412
413 /*
414 * now relock and try again
415 */
416
417 locked = uvmfault_relock(ufi);
418 if (locked && amap != NULL) {
419 amap_lock(amap);
420 }
421 if (locked || we_own)
422 simple_lock(&anon->an_lock);
423
424 /*
425 * if we own the page (i.e. we set PG_BUSY), then we need
426 * to clean up after the I/O. there are three cases to
427 * consider:
428 * [1] page released during I/O: free anon and ReFault.
429 * [2] I/O not OK. free the page and cause the fault
430 * to fail.
431 * [3] I/O OK! activate the page and sync with the
432 * non-we_own case (i.e. drop anon lock if not locked).
433 */
434
435 if (we_own) {
436
437 if (pg->flags & PG_WANTED) {
438 /* still holding object lock */
439 wakeup(pg);
440 }
441 /* un-busy! */
442 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
443 UVM_PAGE_OWN(pg, NULL);
444
445 /*
446 * if we were RELEASED during I/O, then our anon is
447 * no longer part of an amap. we need to free the
448 * anon and try again.
449 */
450 if (pg->flags & PG_RELEASED) {
451 pmap_page_protect(pg, VM_PROT_NONE);
452 simple_unlock(&anon->an_lock);
453 uvm_anfree(anon); /* frees page for us */
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 NULL);
457 uvmexp.fltpgrele++;
458 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
459 return (ERESTART); /* refault! */
460 }
461
462 if (error) {
463 /* remove page from anon */
464 anon->u.an_page = NULL;
465
466 /*
467 * remove the swap slot from the anon
468 * and mark the anon as having no real slot.
469 * don't free the swap slot, thus preventing
470 * it from being used again.
471 */
472 uvm_swap_markbad(anon->an_swslot, 1);
473 anon->an_swslot = SWSLOT_BAD;
474
475 /*
476 * note: page was never !PG_BUSY, so it
477 * can't be mapped and thus no need to
478 * pmap_page_protect it...
479 */
480 uvm_lock_pageq();
481 uvm_pagefree(pg);
482 uvm_unlock_pageq();
483
484 if (locked)
485 uvmfault_unlockall(ufi, amap, NULL,
486 anon);
487 else
488 simple_unlock(&anon->an_lock);
489 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
490 return error;
491 }
492
493 /*
494 * must be OK, clear modify (already PG_CLEAN)
495 * and activate
496 */
497 pmap_clear_modify(pg);
498 uvm_lock_pageq();
499 uvm_pageactivate(pg);
500 uvm_unlock_pageq();
501 if (!locked)
502 simple_unlock(&anon->an_lock);
503 }
504
505 /*
506 * we were not able to relock. restart fault.
507 */
508
509 if (!locked) {
510 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
511 return (ERESTART);
512 }
513
514 /*
515 * verify no one has touched the amap and moved the anon on us.
516 */
517
518 if (ufi != NULL &&
519 amap_lookup(&ufi->entry->aref,
520 ufi->orig_rvaddr - ufi->entry->start) != anon) {
521
522 uvmfault_unlockall(ufi, amap, NULL, anon);
523 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
524 return (ERESTART);
525 }
526
527 /*
528 * try it again!
529 */
530
531 uvmexp.fltanretry++;
532 continue;
533
534 } /* while (1) */
535
536 /*NOTREACHED*/
537 }
538
539 /*
540 * F A U L T - m a i n e n t r y p o i n t
541 */
542
543 /*
544 * uvm_fault: page fault handler
545 *
546 * => called from MD code to resolve a page fault
547 * => VM data structures usually should be unlocked. however, it is
548 * possible to call here with the main map locked if the caller
549 * gets a write lock, sets it recusive, and then calls us (c.f.
550 * uvm_map_pageable). this should be avoided because it keeps
551 * the map locked off during I/O.
552 */
553
554 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
555 ~VM_PROT_WRITE : VM_PROT_ALL)
556
557 int
558 uvm_fault(orig_map, vaddr, fault_type, access_type)
559 vm_map_t orig_map;
560 vaddr_t vaddr;
561 vm_fault_t fault_type;
562 vm_prot_t access_type;
563 {
564 struct uvm_faultinfo ufi;
565 vm_prot_t enter_prot;
566 boolean_t wired, narrow, promote, locked, shadowed;
567 int npages, nback, nforw, centeridx, error, lcv, gotpages;
568 vaddr_t startva, objaddr, currva, offset, uoff;
569 paddr_t pa;
570 struct vm_amap *amap;
571 struct uvm_object *uobj;
572 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
573 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
574 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
575
576 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
577 orig_map, vaddr, fault_type, access_type);
578
579 anon = NULL;
580 pg = NULL;
581
582 uvmexp.faults++; /* XXX: locking? */
583
584 /*
585 * init the IN parameters in the ufi
586 */
587
588 ufi.orig_map = orig_map;
589 ufi.orig_rvaddr = trunc_page(vaddr);
590 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
591 if (fault_type == VM_FAULT_WIRE)
592 narrow = TRUE; /* don't look for neighborhood
593 * pages on wire */
594 else
595 narrow = FALSE; /* normal fault */
596
597 /*
598 * before we do anything else, if this is a fault on a kernel
599 * address, check to see if the address is managed by an
600 * interrupt-safe map. If it is, we fail immediately. Intrsafe
601 * maps are never pageable, and this approach avoids an evil
602 * locking mess.
603 */
604
605 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
606 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
607 ufi.orig_rvaddr, ufi.map, 0, 0);
608 return EFAULT;
609 }
610
611 /*
612 * "goto ReFault" means restart the page fault from ground zero.
613 */
614 ReFault:
615
616 /*
617 * lookup and lock the maps
618 */
619
620 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
621 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
622 return (EFAULT);
623 }
624 /* locked: maps(read) */
625
626 #ifdef DIAGNOSTIC
627 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
628 printf("Page fault on non-pageable map:\n");
629 printf("ufi.map = %p\n", ufi.map);
630 printf("ufi.orig_map = %p\n", ufi.orig_map);
631 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
632 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
633 }
634 #endif
635
636 /*
637 * check protection
638 */
639
640 if ((ufi.entry->protection & access_type) != access_type) {
641 UVMHIST_LOG(maphist,
642 "<- protection failure (prot=0x%x, access=0x%x)",
643 ufi.entry->protection, access_type, 0, 0);
644 uvmfault_unlockmaps(&ufi, FALSE);
645 return EACCES;
646 }
647
648 /*
649 * "enter_prot" is the protection we want to enter the page in at.
650 * for certain pages (e.g. copy-on-write pages) this protection can
651 * be more strict than ufi.entry->protection. "wired" means either
652 * the entry is wired or we are fault-wiring the pg.
653 */
654
655 enter_prot = ufi.entry->protection;
656 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
657 if (wired)
658 access_type = enter_prot; /* full access for wired */
659
660 /*
661 * handle "needs_copy" case. if we need to copy the amap we will
662 * have to drop our readlock and relock it with a write lock. (we
663 * need a write lock to change anything in a map entry [e.g.
664 * needs_copy]).
665 */
666
667 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
668 if ((access_type & VM_PROT_WRITE) ||
669 (ufi.entry->object.uvm_obj == NULL)) {
670 /* need to clear */
671 UVMHIST_LOG(maphist,
672 " need to clear needs_copy and refault",0,0,0,0);
673 uvmfault_unlockmaps(&ufi, FALSE);
674 uvmfault_amapcopy(&ufi);
675 uvmexp.fltamcopy++;
676 goto ReFault;
677
678 } else {
679
680 /*
681 * ensure that we pmap_enter page R/O since
682 * needs_copy is still true
683 */
684 enter_prot &= ~VM_PROT_WRITE;
685
686 }
687 }
688
689 /*
690 * identify the players
691 */
692
693 amap = ufi.entry->aref.ar_amap; /* top layer */
694 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
695
696 /*
697 * check for a case 0 fault. if nothing backing the entry then
698 * error now.
699 */
700
701 if (amap == NULL && uobj == NULL) {
702 uvmfault_unlockmaps(&ufi, FALSE);
703 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
704 return (EFAULT);
705 }
706
707 /*
708 * establish range of interest based on advice from mapper
709 * and then clip to fit map entry. note that we only want
710 * to do this the first time through the fault. if we
711 * ReFault we will disable this by setting "narrow" to true.
712 */
713
714 if (narrow == FALSE) {
715
716 /* wide fault (!narrow) */
717 KASSERT(uvmadvice[ufi.entry->advice].advice ==
718 ufi.entry->advice);
719 nback = min(uvmadvice[ufi.entry->advice].nback,
720 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
721 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
722 nforw = min(uvmadvice[ufi.entry->advice].nforw,
723 ((ufi.entry->end - ufi.orig_rvaddr) >>
724 PAGE_SHIFT) - 1);
725 /*
726 * note: "-1" because we don't want to count the
727 * faulting page as forw
728 */
729 npages = nback + nforw + 1;
730 centeridx = nback;
731
732 narrow = TRUE; /* ensure only once per-fault */
733
734 } else {
735
736 /* narrow fault! */
737 nback = nforw = 0;
738 startva = ufi.orig_rvaddr;
739 npages = 1;
740 centeridx = 0;
741
742 }
743
744 /* locked: maps(read) */
745 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
746 narrow, nback, nforw, startva);
747 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
748 amap, uobj, 0);
749
750 /*
751 * if we've got an amap, lock it and extract current anons.
752 */
753
754 if (amap) {
755 amap_lock(amap);
756 anons = anons_store;
757 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
758 anons, npages);
759 } else {
760 anons = NULL; /* to be safe */
761 }
762
763 /* locked: maps(read), amap(if there) */
764
765 /*
766 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
767 * now and then forget about them (for the rest of the fault).
768 */
769
770 if (ufi.entry->advice == MADV_SEQUENTIAL) {
771
772 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
773 0,0,0,0);
774 /* flush back-page anons? */
775 if (amap)
776 uvmfault_anonflush(anons, nback);
777
778 /* flush object? */
779 if (uobj) {
780 objaddr =
781 (startva - ufi.entry->start) + ufi.entry->offset;
782 simple_lock(&uobj->vmobjlock);
783 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
784 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
785 simple_unlock(&uobj->vmobjlock);
786 }
787
788 /* now forget about the backpages */
789 if (amap)
790 anons += nback;
791 startva += (nback << PAGE_SHIFT);
792 npages -= nback;
793 nback = centeridx = 0;
794 }
795
796 /* locked: maps(read), amap(if there) */
797
798 /*
799 * map in the backpages and frontpages we found in the amap in hopes
800 * of preventing future faults. we also init the pages[] array as
801 * we go.
802 */
803
804 currva = startva;
805 shadowed = FALSE;
806 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
807
808 /*
809 * dont play with VAs that are already mapped
810 * except for center)
811 */
812 if (lcv != centeridx &&
813 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
814 pages[lcv] = PGO_DONTCARE;
815 continue;
816 }
817
818 /*
819 * unmapped or center page. check if any anon at this level.
820 */
821 if (amap == NULL || anons[lcv] == NULL) {
822 pages[lcv] = NULL;
823 continue;
824 }
825
826 /*
827 * check for present page and map if possible. re-activate it.
828 */
829
830 pages[lcv] = PGO_DONTCARE;
831 if (lcv == centeridx) { /* save center for later! */
832 shadowed = TRUE;
833 continue;
834 }
835 anon = anons[lcv];
836 simple_lock(&anon->an_lock);
837 /* ignore loaned pages */
838 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
839 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
840 uvm_lock_pageq();
841 uvm_pageactivate(anon->u.an_page); /* reactivate */
842 uvm_unlock_pageq();
843 UVMHIST_LOG(maphist,
844 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
845 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
846 uvmexp.fltnamap++;
847
848 /*
849 * Since this isn't the page that's actually faulting,
850 * ignore pmap_enter() failures; it's not critical
851 * that we enter these right now.
852 */
853
854 (void) pmap_enter(ufi.orig_map->pmap, currva,
855 VM_PAGE_TO_PHYS(anon->u.an_page),
856 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
857 enter_prot,
858 PMAP_CANFAIL |
859 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
860 }
861 simple_unlock(&anon->an_lock);
862 pmap_update();
863 }
864
865 /* locked: maps(read), amap(if there) */
866 /* (shadowed == TRUE) if there is an anon at the faulting address */
867 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
868 (uobj && shadowed == FALSE),0,0);
869
870 /*
871 * note that if we are really short of RAM we could sleep in the above
872 * call to pmap_enter with everything locked. bad?
873 *
874 * XXX Actually, that is bad; pmap_enter() should just fail in that
875 * XXX case. --thorpej
876 */
877
878 /*
879 * if the desired page is not shadowed by the amap and we have a
880 * backing object, then we check to see if the backing object would
881 * prefer to handle the fault itself (rather than letting us do it
882 * with the usual pgo_get hook). the backing object signals this by
883 * providing a pgo_fault routine.
884 */
885
886 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
887 simple_lock(&uobj->vmobjlock);
888
889 /* locked: maps(read), amap (if there), uobj */
890 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
891 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
892
893 /* locked: nothing, pgo_fault has unlocked everything */
894
895 if (error == ERESTART)
896 goto ReFault; /* try again! */
897 /*
898 * object fault routine responsible for pmap_update().
899 */
900 return error;
901 }
902
903 /*
904 * now, if the desired page is not shadowed by the amap and we have
905 * a backing object that does not have a special fault routine, then
906 * we ask (with pgo_get) the object for resident pages that we care
907 * about and attempt to map them in. we do not let pgo_get block
908 * (PGO_LOCKED).
909 *
910 * ("get" has the option of doing a pmap_enter for us)
911 */
912
913 if (uobj && shadowed == FALSE) {
914 simple_lock(&uobj->vmobjlock);
915
916 /* locked (!shadowed): maps(read), amap (if there), uobj */
917 /*
918 * the following call to pgo_get does _not_ change locking state
919 */
920
921 uvmexp.fltlget++;
922 gotpages = npages;
923 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
924 (startva - ufi.entry->start),
925 pages, &gotpages, centeridx,
926 access_type & MASK(ufi.entry),
927 ufi.entry->advice, PGO_LOCKED);
928
929 /*
930 * check for pages to map, if we got any
931 */
932
933 uobjpage = NULL;
934
935 if (gotpages) {
936 currva = startva;
937 for (lcv = 0 ; lcv < npages ;
938 lcv++, currva += PAGE_SIZE) {
939
940 if (pages[lcv] == NULL ||
941 pages[lcv] == PGO_DONTCARE)
942 continue;
943
944 KASSERT((pages[lcv]->flags & PG_RELEASED) == 0);
945
946 /*
947 * if center page is resident and not
948 * PG_BUSY|PG_RELEASED then pgo_get
949 * made it PG_BUSY for us and gave
950 * us a handle to it. remember this
951 * page as "uobjpage." (for later use).
952 */
953
954 if (lcv == centeridx) {
955 uobjpage = pages[lcv];
956 UVMHIST_LOG(maphist, " got uobjpage "
957 "(0x%x) with locked get",
958 uobjpage, 0,0,0);
959 continue;
960 }
961
962 /*
963 * note: calling pgo_get with locked data
964 * structures returns us pages which are
965 * neither busy nor released, so we don't
966 * need to check for this. we can just
967 * directly enter the page (after moving it
968 * to the head of the active queue [useful?]).
969 */
970
971 uvm_lock_pageq();
972 uvm_pageactivate(pages[lcv]); /* reactivate */
973 uvm_unlock_pageq();
974 UVMHIST_LOG(maphist,
975 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
976 ufi.orig_map->pmap, currva, pages[lcv], 0);
977 uvmexp.fltnomap++;
978
979 /*
980 * Since this page isn't the page that's
981 * actually fauling, ignore pmap_enter()
982 * failures; it's not critical that we
983 * enter these right now.
984 */
985
986 (void) pmap_enter(ufi.orig_map->pmap, currva,
987 VM_PAGE_TO_PHYS(pages[lcv]),
988 pages[lcv]->flags & PG_RDONLY ?
989 VM_PROT_READ : enter_prot & MASK(ufi.entry),
990 PMAP_CANFAIL |
991 (wired ? PMAP_WIRED : 0));
992
993 /*
994 * NOTE: page can't be PG_WANTED or PG_RELEASED
995 * because we've held the lock the whole time
996 * we've had the handle.
997 */
998
999 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
1000 UVM_PAGE_OWN(pages[lcv], NULL);
1001 } /* for "lcv" loop */
1002 pmap_update();
1003 } /* "gotpages" != 0 */
1004 /* note: object still _locked_ */
1005 } else {
1006 uobjpage = NULL;
1007 }
1008
1009 /* locked (shadowed): maps(read), amap */
1010 /* locked (!shadowed): maps(read), amap(if there),
1011 uobj(if !null), uobjpage(if !null) */
1012
1013 /*
1014 * note that at this point we are done with any front or back pages.
1015 * we are now going to focus on the center page (i.e. the one we've
1016 * faulted on). if we have faulted on the top (anon) layer
1017 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1018 * not touched it yet). if we have faulted on the bottom (uobj)
1019 * layer [i.e. case 2] and the page was both present and available,
1020 * then we've got a pointer to it as "uobjpage" and we've already
1021 * made it BUSY.
1022 */
1023
1024 /*
1025 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1026 */
1027
1028 /*
1029 * redirect case 2: if we are not shadowed, go to case 2.
1030 */
1031
1032 if (shadowed == FALSE)
1033 goto Case2;
1034
1035 /* locked: maps(read), amap */
1036
1037 /*
1038 * handle case 1: fault on an anon in our amap
1039 */
1040
1041 anon = anons[centeridx];
1042 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1043 simple_lock(&anon->an_lock);
1044
1045 /* locked: maps(read), amap, anon */
1046
1047 /*
1048 * no matter if we have case 1A or case 1B we are going to need to
1049 * have the anon's memory resident. ensure that now.
1050 */
1051
1052 /*
1053 * let uvmfault_anonget do the dirty work.
1054 * if it fails (!OK) it will unlock everything for us.
1055 * if it succeeds, locks are still valid and locked.
1056 * also, if it is OK, then the anon's page is on the queues.
1057 * if the page is on loan from a uvm_object, then anonget will
1058 * lock that object for us if it does not fail.
1059 */
1060
1061 error = uvmfault_anonget(&ufi, amap, anon);
1062 switch (error) {
1063 case 0:
1064 break;
1065
1066 case ERESTART:
1067 goto ReFault;
1068
1069 case EAGAIN:
1070 tsleep(&lbolt, PVM, "fltagain1", 0);
1071 goto ReFault;
1072
1073 default:
1074 return error;
1075 }
1076
1077 /*
1078 * uobj is non null if the page is on loan from an object (i.e. uobj)
1079 */
1080
1081 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1082
1083 /* locked: maps(read), amap, anon, uobj(if one) */
1084
1085 /*
1086 * special handling for loaned pages
1087 */
1088
1089 if (anon->u.an_page->loan_count) {
1090
1091 if ((access_type & VM_PROT_WRITE) == 0) {
1092
1093 /*
1094 * for read faults on loaned pages we just cap the
1095 * protection at read-only.
1096 */
1097
1098 enter_prot = enter_prot & ~VM_PROT_WRITE;
1099
1100 } else {
1101 /*
1102 * note that we can't allow writes into a loaned page!
1103 *
1104 * if we have a write fault on a loaned page in an
1105 * anon then we need to look at the anon's ref count.
1106 * if it is greater than one then we are going to do
1107 * a normal copy-on-write fault into a new anon (this
1108 * is not a problem). however, if the reference count
1109 * is one (a case where we would normally allow a
1110 * write directly to the page) then we need to kill
1111 * the loan before we continue.
1112 */
1113
1114 /* >1 case is already ok */
1115 if (anon->an_ref == 1) {
1116
1117 /* get new un-owned replacement page */
1118 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1119 if (pg == NULL) {
1120 uvmfault_unlockall(&ufi, amap, uobj,
1121 anon);
1122 uvm_wait("flt_noram2");
1123 goto ReFault;
1124 }
1125
1126 /*
1127 * copy data, kill loan, and drop uobj lock
1128 * (if any)
1129 */
1130 /* copy old -> new */
1131 uvm_pagecopy(anon->u.an_page, pg);
1132
1133 /* force reload */
1134 pmap_page_protect(anon->u.an_page,
1135 VM_PROT_NONE);
1136 uvm_lock_pageq(); /* KILL loan */
1137 if (uobj)
1138 /* if we were loaning */
1139 anon->u.an_page->loan_count--;
1140 anon->u.an_page->uanon = NULL;
1141 /* in case we owned */
1142 anon->u.an_page->pqflags &= ~PQ_ANON;
1143 uvm_unlock_pageq();
1144 if (uobj) {
1145 simple_unlock(&uobj->vmobjlock);
1146 uobj = NULL;
1147 }
1148
1149 /* install new page in anon */
1150 anon->u.an_page = pg;
1151 pg->uanon = anon;
1152 pg->pqflags |= PQ_ANON;
1153 pg->flags &= ~(PG_BUSY|PG_FAKE);
1154 UVM_PAGE_OWN(pg, NULL);
1155
1156 /* done! */
1157 } /* ref == 1 */
1158 } /* write fault */
1159 } /* loan count */
1160
1161 /*
1162 * if we are case 1B then we will need to allocate a new blank
1163 * anon to transfer the data into. note that we have a lock
1164 * on anon, so no one can busy or release the page until we are done.
1165 * also note that the ref count can't drop to zero here because
1166 * it is > 1 and we are only dropping one ref.
1167 *
1168 * in the (hopefully very rare) case that we are out of RAM we
1169 * will unlock, wait for more RAM, and refault.
1170 *
1171 * if we are out of anon VM we kill the process (XXX: could wait?).
1172 */
1173
1174 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1175
1176 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1177 uvmexp.flt_acow++;
1178 oanon = anon; /* oanon = old, locked anon */
1179 anon = uvm_analloc();
1180 if (anon) {
1181 /* new anon is locked! */
1182 pg = uvm_pagealloc(NULL, 0, anon, 0);
1183 }
1184
1185 /* check for out of RAM */
1186 if (anon == NULL || pg == NULL) {
1187 if (anon) {
1188 anon->an_ref--;
1189 simple_unlock(&anon->an_lock);
1190 uvm_anfree(anon);
1191 }
1192 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1193 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1194 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1195 UVMHIST_LOG(maphist,
1196 "<- failed. out of VM",0,0,0,0);
1197 uvmexp.fltnoanon++;
1198 return ENOMEM;
1199 }
1200
1201 uvmexp.fltnoram++;
1202 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1203 goto ReFault;
1204 }
1205
1206 /* got all resources, replace anon with nanon */
1207
1208 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1209 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1210 UVM_PAGE_OWN(pg, NULL);
1211 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1212 anon, 1);
1213
1214 /* deref: can not drop to zero here by defn! */
1215 oanon->an_ref--;
1216
1217 /*
1218 * note: oanon is still locked, as is the new anon. we
1219 * need to check for this later when we unlock oanon; if
1220 * oanon != anon, we'll have to unlock anon, too.
1221 */
1222
1223 } else {
1224
1225 uvmexp.flt_anon++;
1226 oanon = anon; /* old, locked anon is same as anon */
1227 pg = anon->u.an_page;
1228 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1229 enter_prot = enter_prot & ~VM_PROT_WRITE;
1230
1231 }
1232
1233 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1234
1235 /*
1236 * now map the page in ...
1237 * XXX: old fault unlocks object before pmap_enter. this seems
1238 * suspect since some other thread could blast the page out from
1239 * under us between the unlock and the pmap_enter.
1240 */
1241
1242 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1243 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1244 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1245 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1246 != 0) {
1247 /*
1248 * No need to undo what we did; we can simply think of
1249 * this as the pmap throwing away the mapping information.
1250 *
1251 * We do, however, have to go through the ReFault path,
1252 * as the map may change while we're asleep.
1253 */
1254 if (anon != oanon)
1255 simple_unlock(&anon->an_lock);
1256 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1257 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1258 if (uvmexp.swpgonly == uvmexp.swpages) {
1259 UVMHIST_LOG(maphist,
1260 "<- failed. out of VM",0,0,0,0);
1261 /* XXX instrumentation */
1262 return ENOMEM;
1263 }
1264 /* XXX instrumentation */
1265 uvm_wait("flt_pmfail1");
1266 goto ReFault;
1267 }
1268
1269 /*
1270 * ... update the page queues.
1271 */
1272
1273 uvm_lock_pageq();
1274
1275 if (fault_type == VM_FAULT_WIRE) {
1276 uvm_pagewire(pg);
1277
1278 /*
1279 * since the now-wired page cannot be paged out,
1280 * release its swap resources for others to use.
1281 * since an anon with no swap cannot be PG_CLEAN,
1282 * clear its clean flag now.
1283 */
1284
1285 pg->flags &= ~(PG_CLEAN);
1286 uvm_anon_dropswap(anon);
1287 } else {
1288 /* activate it */
1289 uvm_pageactivate(pg);
1290 }
1291
1292 uvm_unlock_pageq();
1293
1294 /*
1295 * done case 1! finish up by unlocking everything and returning success
1296 */
1297
1298 if (anon != oanon)
1299 simple_unlock(&anon->an_lock);
1300 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1301 pmap_update();
1302 return 0;
1303
1304
1305 Case2:
1306 /*
1307 * handle case 2: faulting on backing object or zero fill
1308 */
1309
1310 /*
1311 * locked:
1312 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1313 */
1314
1315 /*
1316 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1317 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1318 * have a backing object, check and see if we are going to promote
1319 * the data up to an anon during the fault.
1320 */
1321
1322 if (uobj == NULL) {
1323 uobjpage = PGO_DONTCARE;
1324 promote = TRUE; /* always need anon here */
1325 } else {
1326 KASSERT(uobjpage != PGO_DONTCARE);
1327 promote = (access_type & VM_PROT_WRITE) &&
1328 UVM_ET_ISCOPYONWRITE(ufi.entry);
1329 }
1330 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1331 promote, (uobj == NULL), 0,0);
1332
1333 /*
1334 * if uobjpage is not null then we do not need to do I/O to get the
1335 * uobjpage.
1336 *
1337 * if uobjpage is null, then we need to unlock and ask the pager to
1338 * get the data for us. once we have the data, we need to reverify
1339 * the state the world. we are currently not holding any resources.
1340 */
1341
1342 if (uobjpage) {
1343 /* update rusage counters */
1344 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1345 } else {
1346 /* update rusage counters */
1347 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1348
1349 /* locked: maps(read), amap(if there), uobj */
1350 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1351 /* locked: uobj */
1352
1353 uvmexp.fltget++;
1354 gotpages = 1;
1355 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1356 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1357 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1358 PGO_SYNCIO);
1359
1360 /* locked: uobjpage(if no error) */
1361
1362 /*
1363 * recover from I/O
1364 */
1365
1366 if (error) {
1367 if (error == EAGAIN) {
1368 UVMHIST_LOG(maphist,
1369 " pgo_get says TRY AGAIN!",0,0,0,0);
1370 tsleep(&lbolt, PVM, "fltagain2", 0);
1371 goto ReFault;
1372 }
1373
1374 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1375 error, 0,0,0);
1376 return error;
1377 }
1378
1379 /* locked: uobjpage */
1380
1381 /*
1382 * re-verify the state of the world by first trying to relock
1383 * the maps. always relock the object.
1384 */
1385
1386 locked = uvmfault_relock(&ufi);
1387 if (locked && amap)
1388 amap_lock(amap);
1389 simple_lock(&uobj->vmobjlock);
1390
1391 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1392 /* locked(!locked): uobj, uobjpage */
1393
1394 /*
1395 * verify that the page has not be released and re-verify
1396 * that amap slot is still free. if there is a problem,
1397 * we unlock and clean up.
1398 */
1399
1400 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1401 (locked && amap &&
1402 amap_lookup(&ufi.entry->aref,
1403 ufi.orig_rvaddr - ufi.entry->start))) {
1404 if (locked)
1405 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1406 locked = FALSE;
1407 }
1408
1409 /*
1410 * didn't get the lock? release the page and retry.
1411 */
1412
1413 if (locked == FALSE) {
1414
1415 UVMHIST_LOG(maphist,
1416 " wasn't able to relock after fault: retry",
1417 0,0,0,0);
1418 if (uobjpage->flags & PG_WANTED)
1419 /* still holding object lock */
1420 wakeup(uobjpage);
1421
1422 if (uobjpage->flags & PG_RELEASED) {
1423 uvmexp.fltpgrele++;
1424 KASSERT(uobj->pgops->pgo_releasepg != NULL);
1425
1426 /* frees page */
1427 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1428 /* unlock if still alive */
1429 simple_unlock(&uobj->vmobjlock);
1430 goto ReFault;
1431 }
1432
1433 uvm_lock_pageq();
1434 /* make sure it is in queues */
1435 uvm_pageactivate(uobjpage);
1436
1437 uvm_unlock_pageq();
1438 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1439 UVM_PAGE_OWN(uobjpage, NULL);
1440 simple_unlock(&uobj->vmobjlock);
1441 goto ReFault;
1442
1443 }
1444
1445 /*
1446 * we have the data in uobjpage which is PG_BUSY and
1447 * !PG_RELEASED. we are holding object lock (so the page
1448 * can't be released on us).
1449 */
1450
1451 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1452 }
1453
1454 /*
1455 * locked:
1456 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1457 */
1458
1459 /*
1460 * notes:
1461 * - at this point uobjpage can not be NULL
1462 * - at this point uobjpage can not be PG_RELEASED (since we checked
1463 * for it above)
1464 * - at this point uobjpage could be PG_WANTED (handle later)
1465 */
1466
1467 if (promote == FALSE) {
1468
1469 /*
1470 * we are not promoting. if the mapping is COW ensure that we
1471 * don't give more access than we should (e.g. when doing a read
1472 * fault on a COPYONWRITE mapping we want to map the COW page in
1473 * R/O even though the entry protection could be R/W).
1474 *
1475 * set "pg" to the page we want to map in (uobjpage, usually)
1476 */
1477
1478 /* no anon in this case. */
1479 anon = NULL;
1480
1481 uvmexp.flt_obj++;
1482 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1483 enter_prot &= ~VM_PROT_WRITE;
1484 pg = uobjpage; /* map in the actual object */
1485
1486 /* assert(uobjpage != PGO_DONTCARE) */
1487
1488 /*
1489 * we are faulting directly on the page. be careful
1490 * about writing to loaned pages...
1491 */
1492 if (uobjpage->loan_count) {
1493
1494 if ((access_type & VM_PROT_WRITE) == 0) {
1495 /* read fault: cap the protection at readonly */
1496 /* cap! */
1497 enter_prot = enter_prot & ~VM_PROT_WRITE;
1498 } else {
1499 /* write fault: must break the loan here */
1500
1501 /* alloc new un-owned page */
1502 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1503
1504 if (pg == NULL) {
1505 /*
1506 * drop ownership of page, it can't
1507 * be released
1508 */
1509 if (uobjpage->flags & PG_WANTED)
1510 wakeup(uobjpage);
1511 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1512 UVM_PAGE_OWN(uobjpage, NULL);
1513
1514 uvm_lock_pageq();
1515 /* activate: we will need it later */
1516 uvm_pageactivate(uobjpage);
1517
1518 uvm_unlock_pageq();
1519 uvmfault_unlockall(&ufi, amap, uobj,
1520 NULL);
1521 UVMHIST_LOG(maphist,
1522 " out of RAM breaking loan, waiting",
1523 0,0,0,0);
1524 uvmexp.fltnoram++;
1525 uvm_wait("flt_noram4");
1526 goto ReFault;
1527 }
1528
1529 /*
1530 * copy the data from the old page to the new
1531 * one and clear the fake/clean flags on the
1532 * new page (keep it busy). force a reload
1533 * of the old page by clearing it from all
1534 * pmaps. then lock the page queues to
1535 * rename the pages.
1536 */
1537 uvm_pagecopy(uobjpage, pg); /* old -> new */
1538 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1539 pmap_page_protect(uobjpage, VM_PROT_NONE);
1540 if (uobjpage->flags & PG_WANTED)
1541 wakeup(uobjpage);
1542 /* uobj still locked */
1543 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1544 UVM_PAGE_OWN(uobjpage, NULL);
1545
1546 uvm_lock_pageq();
1547 offset = uobjpage->offset;
1548 /* remove old page */
1549 uvm_pagerealloc(uobjpage, NULL, 0);
1550
1551 /*
1552 * at this point we have absolutely no
1553 * control over uobjpage
1554 */
1555 /* install new page */
1556 uvm_pagerealloc(pg, uobj, offset);
1557 uvm_unlock_pageq();
1558
1559 /*
1560 * done! loan is broken and "pg" is
1561 * PG_BUSY. it can now replace uobjpage.
1562 */
1563
1564 uobjpage = pg;
1565
1566 } /* write fault case */
1567 } /* if loan_count */
1568
1569 } else {
1570
1571 /*
1572 * if we are going to promote the data to an anon we
1573 * allocate a blank anon here and plug it into our amap.
1574 */
1575 #if DIAGNOSTIC
1576 if (amap == NULL)
1577 panic("uvm_fault: want to promote data, but no anon");
1578 #endif
1579
1580 anon = uvm_analloc();
1581 if (anon) {
1582 /*
1583 * The new anon is locked.
1584 *
1585 * In `Fill in data...' below, if
1586 * uobjpage == PGO_DONTCARE, we want
1587 * a zero'd, dirty page, so have
1588 * uvm_pagealloc() do that for us.
1589 */
1590 pg = uvm_pagealloc(NULL, 0, anon,
1591 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1592 }
1593
1594 /*
1595 * out of memory resources?
1596 */
1597 if (anon == NULL || pg == NULL) {
1598
1599 if (anon != NULL) {
1600 anon->an_ref--;
1601 simple_unlock(&anon->an_lock);
1602 uvm_anfree(anon);
1603 }
1604
1605 /*
1606 * arg! must unbusy our page and fail or sleep.
1607 */
1608 if (uobjpage != PGO_DONTCARE) {
1609 if (uobjpage->flags & PG_WANTED)
1610 /* still holding object lock */
1611 wakeup(uobjpage);
1612
1613 uvm_lock_pageq();
1614 uvm_pageactivate(uobjpage);
1615 uvm_unlock_pageq();
1616 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1617 UVM_PAGE_OWN(uobjpage, NULL);
1618 }
1619
1620 /* unlock and fail ... */
1621 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1622 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1623 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1624 UVMHIST_LOG(maphist, " promote: out of VM",
1625 0,0,0,0);
1626 uvmexp.fltnoanon++;
1627 return ENOMEM;
1628 }
1629
1630 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1631 0,0,0,0);
1632 uvmexp.fltnoram++;
1633 uvm_wait("flt_noram5");
1634 goto ReFault;
1635 }
1636
1637 /*
1638 * fill in the data
1639 */
1640
1641 if (uobjpage != PGO_DONTCARE) {
1642 uvmexp.flt_prcopy++;
1643 /* copy page [pg now dirty] */
1644 uvm_pagecopy(uobjpage, pg);
1645
1646 /*
1647 * promote to shared amap? make sure all sharing
1648 * procs see it
1649 */
1650 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1651 pmap_page_protect(uobjpage, VM_PROT_NONE);
1652 /*
1653 * XXX: PAGE MIGHT BE WIRED!
1654 */
1655 }
1656
1657 /*
1658 * dispose of uobjpage. it can't be PG_RELEASED
1659 * since we still hold the object lock.
1660 * drop handle to uobj as well.
1661 */
1662
1663 if (uobjpage->flags & PG_WANTED)
1664 /* still have the obj lock */
1665 wakeup(uobjpage);
1666 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1667 UVM_PAGE_OWN(uobjpage, NULL);
1668 uvm_lock_pageq();
1669 uvm_pageactivate(uobjpage);
1670 uvm_unlock_pageq();
1671 simple_unlock(&uobj->vmobjlock);
1672 uobj = NULL;
1673
1674 UVMHIST_LOG(maphist,
1675 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1676 uobjpage, anon, pg, 0);
1677
1678 } else {
1679 uvmexp.flt_przero++;
1680 /*
1681 * Page is zero'd and marked dirty by uvm_pagealloc()
1682 * above.
1683 */
1684 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1685 anon, pg, 0, 0);
1686 }
1687
1688 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1689 anon, 0);
1690 }
1691
1692 /*
1693 * locked:
1694 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1695 * anon(if !null), pg(if anon)
1696 *
1697 * note: pg is either the uobjpage or the new page in the new anon
1698 */
1699
1700 /*
1701 * all resources are present. we can now map it in and free our
1702 * resources.
1703 */
1704
1705 UVMHIST_LOG(maphist,
1706 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1707 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1708 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1709 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1710 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1711 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1712
1713 /*
1714 * No need to undo what we did; we can simply think of
1715 * this as the pmap throwing away the mapping information.
1716 *
1717 * We do, however, have to go through the ReFault path,
1718 * as the map may change while we're asleep.
1719 */
1720
1721 if (pg->flags & PG_WANTED)
1722 wakeup(pg); /* lock still held */
1723
1724 /*
1725 * note that pg can't be PG_RELEASED since we did not drop
1726 * the object lock since the last time we checked.
1727 */
1728
1729 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1730 UVM_PAGE_OWN(pg, NULL);
1731 uvmfault_unlockall(&ufi, amap, uobj, anon);
1732 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1733 if (uvmexp.swpgonly == uvmexp.swpages) {
1734 UVMHIST_LOG(maphist,
1735 "<- failed. out of VM",0,0,0,0);
1736 /* XXX instrumentation */
1737 return ENOMEM;
1738 }
1739 /* XXX instrumentation */
1740 uvm_wait("flt_pmfail2");
1741 goto ReFault;
1742 }
1743
1744 uvm_lock_pageq();
1745
1746 if (fault_type == VM_FAULT_WIRE) {
1747 uvm_pagewire(pg);
1748 if (pg->pqflags & PQ_AOBJ) {
1749
1750 /*
1751 * since the now-wired page cannot be paged out,
1752 * release its swap resources for others to use.
1753 * since an aobj page with no swap cannot be PG_CLEAN,
1754 * clear its clean flag now.
1755 */
1756
1757 pg->flags &= ~(PG_CLEAN);
1758 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1759 }
1760 } else {
1761 /* activate it */
1762 uvm_pageactivate(pg);
1763 }
1764 uvm_unlock_pageq();
1765
1766 if (pg->flags & PG_WANTED)
1767 wakeup(pg); /* lock still held */
1768
1769 /*
1770 * note that pg can't be PG_RELEASED since we did not drop the object
1771 * lock since the last time we checked.
1772 */
1773
1774 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1775 UVM_PAGE_OWN(pg, NULL);
1776 uvmfault_unlockall(&ufi, amap, uobj, anon);
1777
1778 pmap_update();
1779
1780 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1781 return 0;
1782 }
1783
1784
1785 /*
1786 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1787 *
1788 * => map may be read-locked by caller, but MUST NOT be write-locked.
1789 * => if map is read-locked, any operations which may cause map to
1790 * be write-locked in uvm_fault() must be taken care of by
1791 * the caller. See uvm_map_pageable().
1792 */
1793
1794 int
1795 uvm_fault_wire(map, start, end, access_type)
1796 vm_map_t map;
1797 vaddr_t start, end;
1798 vm_prot_t access_type;
1799 {
1800 vaddr_t va;
1801 pmap_t pmap;
1802 int error;
1803
1804 pmap = vm_map_pmap(map);
1805
1806 /*
1807 * now fault it in a page at a time. if the fault fails then we have
1808 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1809 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1810 */
1811
1812 for (va = start ; va < end ; va += PAGE_SIZE) {
1813 error = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1814 if (error) {
1815 if (va != start) {
1816 uvm_fault_unwire(map, start, va);
1817 }
1818 return error;
1819 }
1820 }
1821
1822 return 0;
1823 }
1824
1825 /*
1826 * uvm_fault_unwire(): unwire range of virtual space.
1827 */
1828
1829 void
1830 uvm_fault_unwire(map, start, end)
1831 vm_map_t map;
1832 vaddr_t start, end;
1833 {
1834
1835 vm_map_lock_read(map);
1836 uvm_fault_unwire_locked(map, start, end);
1837 vm_map_unlock_read(map);
1838 }
1839
1840 /*
1841 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1842 *
1843 * => map must be at least read-locked.
1844 */
1845
1846 void
1847 uvm_fault_unwire_locked(map, start, end)
1848 vm_map_t map;
1849 vaddr_t start, end;
1850 {
1851 vm_map_entry_t entry;
1852 pmap_t pmap = vm_map_pmap(map);
1853 vaddr_t va;
1854 paddr_t pa;
1855 struct vm_page *pg;
1856
1857 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1858
1859 /*
1860 * we assume that the area we are unwiring has actually been wired
1861 * in the first place. this means that we should be able to extract
1862 * the PAs from the pmap. we also lock out the page daemon so that
1863 * we can call uvm_pageunwire.
1864 */
1865
1866 uvm_lock_pageq();
1867
1868 /*
1869 * find the beginning map entry for the region.
1870 */
1871 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1872 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1873 panic("uvm_fault_unwire_locked: address not in map");
1874
1875 for (va = start; va < end ; va += PAGE_SIZE) {
1876 if (pmap_extract(pmap, va, &pa) == FALSE)
1877 panic("uvm_fault_unwire_locked: unwiring "
1878 "non-wired memory");
1879
1880 /*
1881 * make sure the current entry is for the address we're
1882 * dealing with. if not, grab the next entry.
1883 */
1884
1885 KASSERT(va >= entry->start);
1886 if (va >= entry->end) {
1887 KASSERT(entry->next != &map->header &&
1888 entry->next->start <= entry->end);
1889 entry = entry->next;
1890 }
1891
1892 /*
1893 * if the entry is no longer wired, tell the pmap.
1894 */
1895 if (VM_MAPENT_ISWIRED(entry) == 0)
1896 pmap_unwire(pmap, va);
1897
1898 pg = PHYS_TO_VM_PAGE(pa);
1899 if (pg)
1900 uvm_pageunwire(pg);
1901 }
1902
1903 uvm_unlock_pageq();
1904 }
1905