uvm_fault.c revision 1.66 1 /* $NetBSD: uvm_fault.c,v 1.66 2001/06/26 17:27:31 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 *
55 * a word on page faults:
56 *
57 * types of page faults we handle:
58 *
59 * CASE 1: upper layer faults CASE 2: lower layer faults
60 *
61 * CASE 1A CASE 1B CASE 2A CASE 2B
62 * read/write1 write>1 read/write +-cow_write/zero
63 * | | | |
64 * +--|--+ +--|--+ +-----+ + | + | +-----+
65 * amap | V | | ----------->new| | | | ^ |
66 * +-----+ +-----+ +-----+ + | + | +--|--+
67 * | | |
68 * +-----+ +-----+ +--|--+ | +--|--+
69 * uobj | d/c | | d/c | | V | +----| |
70 * +-----+ +-----+ +-----+ +-----+
71 *
72 * d/c = don't care
73 *
74 * case [0]: layerless fault
75 * no amap or uobj is present. this is an error.
76 *
77 * case [1]: upper layer fault [anon active]
78 * 1A: [read] or [write with anon->an_ref == 1]
79 * I/O takes place in top level anon and uobj is not touched.
80 * 1B: [write with anon->an_ref > 1]
81 * new anon is alloc'd and data is copied off ["COW"]
82 *
83 * case [2]: lower layer fault [uobj]
84 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
85 * I/O takes place directly in object.
86 * 2B: [write to copy_on_write] or [read on NULL uobj]
87 * data is "promoted" from uobj to a new anon.
88 * if uobj is null, then we zero fill.
89 *
90 * we follow the standard UVM locking protocol ordering:
91 *
92 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
93 * we hold a PG_BUSY page if we unlock for I/O
94 *
95 *
96 * the code is structured as follows:
97 *
98 * - init the "IN" params in the ufi structure
99 * ReFault:
100 * - do lookups [locks maps], check protection, handle needs_copy
101 * - check for case 0 fault (error)
102 * - establish "range" of fault
103 * - if we have an amap lock it and extract the anons
104 * - if sequential advice deactivate pages behind us
105 * - at the same time check pmap for unmapped areas and anon for pages
106 * that we could map in (and do map it if found)
107 * - check object for resident pages that we could map in
108 * - if (case 2) goto Case2
109 * - >>> handle case 1
110 * - ensure source anon is resident in RAM
111 * - if case 1B alloc new anon and copy from source
112 * - map the correct page in
113 * Case2:
114 * - >>> handle case 2
115 * - ensure source page is resident (if uobj)
116 * - if case 2B alloc new anon and copy from source (could be zero
117 * fill if uobj == NULL)
118 * - map the correct page in
119 * - done!
120 *
121 * note on paging:
122 * if we have to do I/O we place a PG_BUSY page in the correct object,
123 * unlock everything, and do the I/O. when I/O is done we must reverify
124 * the state of the world before assuming that our data structures are
125 * valid. [because mappings could change while the map is unlocked]
126 *
127 * alternative 1: unbusy the page in question and restart the page fault
128 * from the top (ReFault). this is easy but does not take advantage
129 * of the information that we already have from our previous lookup,
130 * although it is possible that the "hints" in the vm_map will help here.
131 *
132 * alternative 2: the system already keeps track of a "version" number of
133 * a map. [i.e. every time you write-lock a map (e.g. to change a
134 * mapping) you bump the version number up by one...] so, we can save
135 * the version number of the map before we release the lock and start I/O.
136 * then when I/O is done we can relock and check the version numbers
137 * to see if anything changed. this might save us some over 1 because
138 * we don't have to unbusy the page and may be less compares(?).
139 *
140 * alternative 3: put in backpointers or a way to "hold" part of a map
141 * in place while I/O is in progress. this could be complex to
142 * implement (especially with structures like amap that can be referenced
143 * by multiple map entries, and figuring out what should wait could be
144 * complex as well...).
145 *
146 * given that we are not currently multiprocessor or multithreaded we might
147 * as well choose alternative 2 now. maybe alternative 3 would be useful
148 * in the future. XXX keep in mind for future consideration//rechecking.
149 */
150
151 /*
152 * local data structures
153 */
154
155 struct uvm_advice {
156 int advice;
157 int nback;
158 int nforw;
159 };
160
161 /*
162 * page range array:
163 * note: index in array must match "advice" value
164 * XXX: borrowed numbers from freebsd. do they work well for us?
165 */
166
167 static struct uvm_advice uvmadvice[] = {
168 { MADV_NORMAL, 3, 4 },
169 { MADV_RANDOM, 0, 0 },
170 { MADV_SEQUENTIAL, 8, 7},
171 };
172
173 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */
174
175 /*
176 * private prototypes
177 */
178
179 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
180 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(anons, n)
194 struct vm_anon **anons;
195 int n;
196 {
197 int lcv;
198 struct vm_page *pg;
199
200 for (lcv = 0 ; lcv < n ; lcv++) {
201 if (anons[lcv] == NULL)
202 continue;
203 simple_lock(&anons[lcv]->an_lock);
204 pg = anons[lcv]->u.an_page;
205 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
206 uvm_lock_pageq();
207 if (pg->wire_count == 0) {
208 pmap_clear_reference(pg);
209 uvm_pagedeactivate(pg);
210 }
211 uvm_unlock_pageq();
212 }
213 simple_unlock(&anons[lcv]->an_lock);
214 }
215 }
216
217 /*
218 * normal functions
219 */
220
221 /*
222 * uvmfault_amapcopy: clear "needs_copy" in a map.
223 *
224 * => called with VM data structures unlocked (usually, see below)
225 * => we get a write lock on the maps and clear needs_copy for a VA
226 * => if we are out of RAM we sleep (waiting for more)
227 */
228
229 static void
230 uvmfault_amapcopy(ufi)
231 struct uvm_faultinfo *ufi;
232 {
233
234 /*
235 * while we haven't done the job
236 */
237
238 while (1) {
239
240 /*
241 * no mapping? give up.
242 */
243
244 if (uvmfault_lookup(ufi, TRUE) == FALSE)
245 return;
246
247 /*
248 * copy if needed.
249 */
250
251 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
252 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
253 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
254
255 /*
256 * didn't work? must be out of RAM. unlock and sleep.
257 */
258
259 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
260 uvmfault_unlockmaps(ufi, TRUE);
261 uvm_wait("fltamapcopy");
262 continue;
263 }
264
265 /*
266 * got it! unlock and return.
267 */
268
269 uvmfault_unlockmaps(ufi, TRUE);
270 return;
271 }
272 /*NOTREACHED*/
273 }
274
275 /*
276 * uvmfault_anonget: get data in an anon into a non-busy, non-released
277 * page in that anon.
278 *
279 * => maps, amap, and anon locked by caller.
280 * => if we fail (result != 0) we unlock everything.
281 * => if we are successful, we return with everything still locked.
282 * => we don't move the page on the queues [gets moved later]
283 * => if we allocate a new page [we_own], it gets put on the queues.
284 * either way, the result is that the page is on the queues at return time
285 * => for pages which are on loan from a uvm_object (and thus are not
286 * owned by the anon): if successful, we return with the owning object
287 * locked. the caller must unlock this object when it unlocks everything
288 * else.
289 */
290
291 int
292 uvmfault_anonget(ufi, amap, anon)
293 struct uvm_faultinfo *ufi;
294 struct vm_amap *amap;
295 struct vm_anon *anon;
296 {
297 boolean_t we_own; /* we own anon's page? */
298 boolean_t locked; /* did we relock? */
299 struct vm_page *pg;
300 int error;
301 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
302
303 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
304
305 error = 0;
306 uvmexp.fltanget++;
307 /* bump rusage counters */
308 if (anon->u.an_page)
309 curproc->p_addr->u_stats.p_ru.ru_minflt++;
310 else
311 curproc->p_addr->u_stats.p_ru.ru_majflt++;
312
313 /*
314 * loop until we get it, or fail.
315 */
316
317 while (1) {
318
319 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
320 pg = anon->u.an_page;
321
322 /*
323 * if there is a resident page and it is loaned, then anon
324 * may not own it. call out to uvm_anon_lockpage() to ensure
325 * the real owner of the page has been identified and locked.
326 */
327
328 if (pg && pg->loan_count)
329 pg = uvm_anon_lockloanpg(anon);
330
331 /*
332 * page there? make sure it is not busy/released.
333 */
334
335 if (pg) {
336
337 /*
338 * at this point, if the page has a uobject [meaning
339 * we have it on loan], then that uobject is locked
340 * by us! if the page is busy, we drop all the
341 * locks (including uobject) and try again.
342 */
343
344 if ((pg->flags & (PG_BUSY|PG_RELEASED)) == 0) {
345 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
346 return (0);
347 }
348 pg->flags |= PG_WANTED;
349 uvmexp.fltpgwait++;
350
351 /*
352 * the last unlock must be an atomic unlock+wait on
353 * the owner of page
354 */
355 if (pg->uobject) { /* owner is uobject ? */
356 uvmfault_unlockall(ufi, amap, NULL, anon);
357 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
358 0,0,0);
359 UVM_UNLOCK_AND_WAIT(pg,
360 &pg->uobject->vmobjlock,
361 FALSE, "anonget1",0);
362 } else {
363 /* anon owns page */
364 uvmfault_unlockall(ufi, amap, NULL, NULL);
365 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
366 0,0,0);
367 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
368 "anonget2",0);
369 }
370 /* ready to relock and try again */
371
372 } else {
373
374 /*
375 * no page, we must try and bring it in.
376 */
377 pg = uvm_pagealloc(NULL, 0, anon, 0);
378
379 if (pg == NULL) { /* out of RAM. */
380
381 uvmfault_unlockall(ufi, amap, NULL, anon);
382 uvmexp.fltnoram++;
383 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
384 0,0,0);
385 uvm_wait("flt_noram1");
386 /* ready to relock and try again */
387
388 } else {
389
390 /* we set the PG_BUSY bit */
391 we_own = TRUE;
392 uvmfault_unlockall(ufi, amap, NULL, anon);
393
394 /*
395 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
396 * page into the uvm_swap_get function with
397 * all data structures unlocked. note that
398 * it is ok to read an_swslot here because
399 * we hold PG_BUSY on the page.
400 */
401 uvmexp.pageins++;
402 error = uvm_swap_get(pg, anon->an_swslot,
403 PGO_SYNCIO);
404
405 /*
406 * we clean up after the i/o below in the
407 * "we_own" case
408 */
409 /* ready to relock and try again */
410 }
411 }
412
413 /*
414 * now relock and try again
415 */
416
417 locked = uvmfault_relock(ufi);
418 if (locked && amap != NULL) {
419 amap_lock(amap);
420 }
421 if (locked || we_own)
422 simple_lock(&anon->an_lock);
423
424 /*
425 * if we own the page (i.e. we set PG_BUSY), then we need
426 * to clean up after the I/O. there are three cases to
427 * consider:
428 * [1] page released during I/O: free anon and ReFault.
429 * [2] I/O not OK. free the page and cause the fault
430 * to fail.
431 * [3] I/O OK! activate the page and sync with the
432 * non-we_own case (i.e. drop anon lock if not locked).
433 */
434
435 if (we_own) {
436
437 if (pg->flags & PG_WANTED) {
438 /* still holding object lock */
439 wakeup(pg);
440 }
441 /* un-busy! */
442 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
443 UVM_PAGE_OWN(pg, NULL);
444
445 /*
446 * if we were RELEASED during I/O, then our anon is
447 * no longer part of an amap. we need to free the
448 * anon and try again.
449 */
450 if (pg->flags & PG_RELEASED) {
451 pmap_page_protect(pg, VM_PROT_NONE);
452 simple_unlock(&anon->an_lock);
453 uvm_anfree(anon); /* frees page for us */
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 NULL);
457 uvmexp.fltpgrele++;
458 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
459 return (ERESTART); /* refault! */
460 }
461
462 if (error) {
463 /* remove page from anon */
464 anon->u.an_page = NULL;
465
466 /*
467 * remove the swap slot from the anon
468 * and mark the anon as having no real slot.
469 * don't free the swap slot, thus preventing
470 * it from being used again.
471 */
472 uvm_swap_markbad(anon->an_swslot, 1);
473 anon->an_swslot = SWSLOT_BAD;
474
475 /*
476 * note: page was never !PG_BUSY, so it
477 * can't be mapped and thus no need to
478 * pmap_page_protect it...
479 */
480 uvm_lock_pageq();
481 uvm_pagefree(pg);
482 uvm_unlock_pageq();
483
484 if (locked)
485 uvmfault_unlockall(ufi, amap, NULL,
486 anon);
487 else
488 simple_unlock(&anon->an_lock);
489 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
490 return error;
491 }
492
493 /*
494 * must be OK, clear modify (already PG_CLEAN)
495 * and activate
496 */
497 pmap_clear_modify(pg);
498 uvm_lock_pageq();
499 uvm_pageactivate(pg);
500 uvm_unlock_pageq();
501 if (!locked)
502 simple_unlock(&anon->an_lock);
503 }
504
505 /*
506 * we were not able to relock. restart fault.
507 */
508
509 if (!locked) {
510 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
511 return (ERESTART);
512 }
513
514 /*
515 * verify no one has touched the amap and moved the anon on us.
516 */
517
518 if (ufi != NULL &&
519 amap_lookup(&ufi->entry->aref,
520 ufi->orig_rvaddr - ufi->entry->start) != anon) {
521
522 uvmfault_unlockall(ufi, amap, NULL, anon);
523 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
524 return (ERESTART);
525 }
526
527 /*
528 * try it again!
529 */
530
531 uvmexp.fltanretry++;
532 continue;
533
534 } /* while (1) */
535
536 /*NOTREACHED*/
537 }
538
539 /*
540 * F A U L T - m a i n e n t r y p o i n t
541 */
542
543 /*
544 * uvm_fault: page fault handler
545 *
546 * => called from MD code to resolve a page fault
547 * => VM data structures usually should be unlocked. however, it is
548 * possible to call here with the main map locked if the caller
549 * gets a write lock, sets it recusive, and then calls us (c.f.
550 * uvm_map_pageable). this should be avoided because it keeps
551 * the map locked off during I/O.
552 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
553 */
554
555 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
556 ~VM_PROT_WRITE : VM_PROT_ALL)
557
558 int
559 uvm_fault(orig_map, vaddr, fault_type, access_type)
560 struct vm_map *orig_map;
561 vaddr_t vaddr;
562 vm_fault_t fault_type;
563 vm_prot_t access_type;
564 {
565 struct uvm_faultinfo ufi;
566 vm_prot_t enter_prot;
567 boolean_t wired, narrow, promote, locked, shadowed;
568 int npages, nback, nforw, centeridx, error, lcv, gotpages;
569 vaddr_t startva, objaddr, currva, offset, uoff;
570 paddr_t pa;
571 struct vm_amap *amap;
572 struct uvm_object *uobj;
573 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
574 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
575 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
576
577 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
578 orig_map, vaddr, fault_type, access_type);
579
580 anon = NULL;
581 pg = NULL;
582
583 uvmexp.faults++; /* XXX: locking? */
584
585 /*
586 * init the IN parameters in the ufi
587 */
588
589 ufi.orig_map = orig_map;
590 ufi.orig_rvaddr = trunc_page(vaddr);
591 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
592 if (fault_type == VM_FAULT_WIRE)
593 narrow = TRUE; /* don't look for neighborhood
594 * pages on wire */
595 else
596 narrow = FALSE; /* normal fault */
597
598 /*
599 * before we do anything else, if this is a fault on a kernel
600 * address, check to see if the address is managed by an
601 * interrupt-safe map. If it is, we fail immediately. Intrsafe
602 * maps are never pageable, and this approach avoids an evil
603 * locking mess.
604 */
605
606 if (orig_map == kernel_map && uvmfault_check_intrsafe(&ufi)) {
607 UVMHIST_LOG(maphist, "<- VA 0x%lx in intrsafe map %p",
608 ufi.orig_rvaddr, ufi.map, 0, 0);
609 return EFAULT;
610 }
611
612 /*
613 * "goto ReFault" means restart the page fault from ground zero.
614 */
615 ReFault:
616
617 /*
618 * lookup and lock the maps
619 */
620
621 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
622 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
623 return (EFAULT);
624 }
625 /* locked: maps(read) */
626
627 #ifdef DIAGNOSTIC
628 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
629 printf("Page fault on non-pageable map:\n");
630 printf("ufi.map = %p\n", ufi.map);
631 printf("ufi.orig_map = %p\n", ufi.orig_map);
632 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
633 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
634 }
635 #endif
636
637 /*
638 * check protection
639 */
640
641 if ((ufi.entry->protection & access_type) != access_type) {
642 UVMHIST_LOG(maphist,
643 "<- protection failure (prot=0x%x, access=0x%x)",
644 ufi.entry->protection, access_type, 0, 0);
645 uvmfault_unlockmaps(&ufi, FALSE);
646 return EACCES;
647 }
648
649 /*
650 * "enter_prot" is the protection we want to enter the page in at.
651 * for certain pages (e.g. copy-on-write pages) this protection can
652 * be more strict than ufi.entry->protection. "wired" means either
653 * the entry is wired or we are fault-wiring the pg.
654 */
655
656 enter_prot = ufi.entry->protection;
657 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
658 if (wired)
659 access_type = enter_prot; /* full access for wired */
660
661 /*
662 * handle "needs_copy" case. if we need to copy the amap we will
663 * have to drop our readlock and relock it with a write lock. (we
664 * need a write lock to change anything in a map entry [e.g.
665 * needs_copy]).
666 */
667
668 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
669 if ((access_type & VM_PROT_WRITE) ||
670 (ufi.entry->object.uvm_obj == NULL)) {
671 /* need to clear */
672 UVMHIST_LOG(maphist,
673 " need to clear needs_copy and refault",0,0,0,0);
674 uvmfault_unlockmaps(&ufi, FALSE);
675 uvmfault_amapcopy(&ufi);
676 uvmexp.fltamcopy++;
677 goto ReFault;
678
679 } else {
680
681 /*
682 * ensure that we pmap_enter page R/O since
683 * needs_copy is still true
684 */
685 enter_prot &= ~VM_PROT_WRITE;
686
687 }
688 }
689
690 /*
691 * identify the players
692 */
693
694 amap = ufi.entry->aref.ar_amap; /* top layer */
695 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
696
697 /*
698 * check for a case 0 fault. if nothing backing the entry then
699 * error now.
700 */
701
702 if (amap == NULL && uobj == NULL) {
703 uvmfault_unlockmaps(&ufi, FALSE);
704 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
705 return (EFAULT);
706 }
707
708 /*
709 * establish range of interest based on advice from mapper
710 * and then clip to fit map entry. note that we only want
711 * to do this the first time through the fault. if we
712 * ReFault we will disable this by setting "narrow" to true.
713 */
714
715 if (narrow == FALSE) {
716
717 /* wide fault (!narrow) */
718 KASSERT(uvmadvice[ufi.entry->advice].advice ==
719 ufi.entry->advice);
720 nback = min(uvmadvice[ufi.entry->advice].nback,
721 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
722 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
723 nforw = min(uvmadvice[ufi.entry->advice].nforw,
724 ((ufi.entry->end - ufi.orig_rvaddr) >>
725 PAGE_SHIFT) - 1);
726 /*
727 * note: "-1" because we don't want to count the
728 * faulting page as forw
729 */
730 npages = nback + nforw + 1;
731 centeridx = nback;
732
733 narrow = TRUE; /* ensure only once per-fault */
734
735 } else {
736
737 /* narrow fault! */
738 nback = nforw = 0;
739 startva = ufi.orig_rvaddr;
740 npages = 1;
741 centeridx = 0;
742
743 }
744
745 /* locked: maps(read) */
746 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
747 narrow, nback, nforw, startva);
748 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
749 amap, uobj, 0);
750
751 /*
752 * if we've got an amap, lock it and extract current anons.
753 */
754
755 if (amap) {
756 amap_lock(amap);
757 anons = anons_store;
758 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
759 anons, npages);
760 } else {
761 anons = NULL; /* to be safe */
762 }
763
764 /* locked: maps(read), amap(if there) */
765
766 /*
767 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
768 * now and then forget about them (for the rest of the fault).
769 */
770
771 if (ufi.entry->advice == MADV_SEQUENTIAL) {
772
773 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
774 0,0,0,0);
775 /* flush back-page anons? */
776 if (amap)
777 uvmfault_anonflush(anons, nback);
778
779 /* flush object? */
780 if (uobj) {
781 objaddr =
782 (startva - ufi.entry->start) + ufi.entry->offset;
783 simple_lock(&uobj->vmobjlock);
784 (void) uobj->pgops->pgo_flush(uobj, objaddr, objaddr +
785 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
786 simple_unlock(&uobj->vmobjlock);
787 }
788
789 /* now forget about the backpages */
790 if (amap)
791 anons += nback;
792 startva += (nback << PAGE_SHIFT);
793 npages -= nback;
794 nback = centeridx = 0;
795 }
796
797 /* locked: maps(read), amap(if there) */
798
799 /*
800 * map in the backpages and frontpages we found in the amap in hopes
801 * of preventing future faults. we also init the pages[] array as
802 * we go.
803 */
804
805 currva = startva;
806 shadowed = FALSE;
807 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
808
809 /*
810 * dont play with VAs that are already mapped
811 * except for center)
812 */
813 if (lcv != centeridx &&
814 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
815 pages[lcv] = PGO_DONTCARE;
816 continue;
817 }
818
819 /*
820 * unmapped or center page. check if any anon at this level.
821 */
822 if (amap == NULL || anons[lcv] == NULL) {
823 pages[lcv] = NULL;
824 continue;
825 }
826
827 /*
828 * check for present page and map if possible. re-activate it.
829 */
830
831 pages[lcv] = PGO_DONTCARE;
832 if (lcv == centeridx) { /* save center for later! */
833 shadowed = TRUE;
834 continue;
835 }
836 anon = anons[lcv];
837 simple_lock(&anon->an_lock);
838 /* ignore loaned pages */
839 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
840 (anon->u.an_page->flags & (PG_RELEASED|PG_BUSY)) == 0) {
841 uvm_lock_pageq();
842 uvm_pageactivate(anon->u.an_page); /* reactivate */
843 uvm_unlock_pageq();
844 UVMHIST_LOG(maphist,
845 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
846 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
847 uvmexp.fltnamap++;
848
849 /*
850 * Since this isn't the page that's actually faulting,
851 * ignore pmap_enter() failures; it's not critical
852 * that we enter these right now.
853 */
854
855 (void) pmap_enter(ufi.orig_map->pmap, currva,
856 VM_PAGE_TO_PHYS(anon->u.an_page),
857 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
858 enter_prot,
859 PMAP_CANFAIL |
860 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
861 }
862 simple_unlock(&anon->an_lock);
863 pmap_update();
864 }
865
866 /* locked: maps(read), amap(if there) */
867 /* (shadowed == TRUE) if there is an anon at the faulting address */
868 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
869 (uobj && shadowed == FALSE),0,0);
870
871 /*
872 * note that if we are really short of RAM we could sleep in the above
873 * call to pmap_enter with everything locked. bad?
874 *
875 * XXX Actually, that is bad; pmap_enter() should just fail in that
876 * XXX case. --thorpej
877 */
878
879 /*
880 * if the desired page is not shadowed by the amap and we have a
881 * backing object, then we check to see if the backing object would
882 * prefer to handle the fault itself (rather than letting us do it
883 * with the usual pgo_get hook). the backing object signals this by
884 * providing a pgo_fault routine.
885 */
886
887 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
888 simple_lock(&uobj->vmobjlock);
889
890 /* locked: maps(read), amap (if there), uobj */
891 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
892 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
893
894 /* locked: nothing, pgo_fault has unlocked everything */
895
896 if (error == ERESTART)
897 goto ReFault; /* try again! */
898 /*
899 * object fault routine responsible for pmap_update().
900 */
901 return error;
902 }
903
904 /*
905 * now, if the desired page is not shadowed by the amap and we have
906 * a backing object that does not have a special fault routine, then
907 * we ask (with pgo_get) the object for resident pages that we care
908 * about and attempt to map them in. we do not let pgo_get block
909 * (PGO_LOCKED).
910 *
911 * ("get" has the option of doing a pmap_enter for us)
912 */
913
914 if (uobj && shadowed == FALSE) {
915 simple_lock(&uobj->vmobjlock);
916
917 /* locked (!shadowed): maps(read), amap (if there), uobj */
918 /*
919 * the following call to pgo_get does _not_ change locking state
920 */
921
922 uvmexp.fltlget++;
923 gotpages = npages;
924 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
925 (startva - ufi.entry->start),
926 pages, &gotpages, centeridx,
927 access_type & MASK(ufi.entry),
928 ufi.entry->advice, PGO_LOCKED);
929
930 /*
931 * check for pages to map, if we got any
932 */
933
934 uobjpage = NULL;
935
936 if (gotpages) {
937 currva = startva;
938 for (lcv = 0 ; lcv < npages ;
939 lcv++, currva += PAGE_SIZE) {
940
941 if (pages[lcv] == NULL ||
942 pages[lcv] == PGO_DONTCARE)
943 continue;
944
945 KASSERT((pages[lcv]->flags & PG_RELEASED) == 0);
946
947 /*
948 * if center page is resident and not
949 * PG_BUSY|PG_RELEASED then pgo_get
950 * made it PG_BUSY for us and gave
951 * us a handle to it. remember this
952 * page as "uobjpage." (for later use).
953 */
954
955 if (lcv == centeridx) {
956 uobjpage = pages[lcv];
957 UVMHIST_LOG(maphist, " got uobjpage "
958 "(0x%x) with locked get",
959 uobjpage, 0,0,0);
960 continue;
961 }
962
963 /*
964 * note: calling pgo_get with locked data
965 * structures returns us pages which are
966 * neither busy nor released, so we don't
967 * need to check for this. we can just
968 * directly enter the page (after moving it
969 * to the head of the active queue [useful?]).
970 */
971
972 uvm_lock_pageq();
973 uvm_pageactivate(pages[lcv]); /* reactivate */
974 uvm_unlock_pageq();
975 UVMHIST_LOG(maphist,
976 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
977 ufi.orig_map->pmap, currva, pages[lcv], 0);
978 uvmexp.fltnomap++;
979
980 /*
981 * Since this page isn't the page that's
982 * actually fauling, ignore pmap_enter()
983 * failures; it's not critical that we
984 * enter these right now.
985 */
986
987 (void) pmap_enter(ufi.orig_map->pmap, currva,
988 VM_PAGE_TO_PHYS(pages[lcv]),
989 pages[lcv]->flags & PG_RDONLY ?
990 VM_PROT_READ : enter_prot & MASK(ufi.entry),
991 PMAP_CANFAIL |
992 (wired ? PMAP_WIRED : 0));
993
994 /*
995 * NOTE: page can't be PG_WANTED or PG_RELEASED
996 * because we've held the lock the whole time
997 * we've had the handle.
998 */
999
1000 pages[lcv]->flags &= ~(PG_BUSY); /* un-busy! */
1001 UVM_PAGE_OWN(pages[lcv], NULL);
1002 } /* for "lcv" loop */
1003 pmap_update();
1004 } /* "gotpages" != 0 */
1005 /* note: object still _locked_ */
1006 } else {
1007 uobjpage = NULL;
1008 }
1009
1010 /* locked (shadowed): maps(read), amap */
1011 /* locked (!shadowed): maps(read), amap(if there),
1012 uobj(if !null), uobjpage(if !null) */
1013
1014 /*
1015 * note that at this point we are done with any front or back pages.
1016 * we are now going to focus on the center page (i.e. the one we've
1017 * faulted on). if we have faulted on the top (anon) layer
1018 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1019 * not touched it yet). if we have faulted on the bottom (uobj)
1020 * layer [i.e. case 2] and the page was both present and available,
1021 * then we've got a pointer to it as "uobjpage" and we've already
1022 * made it BUSY.
1023 */
1024
1025 /*
1026 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1027 */
1028
1029 /*
1030 * redirect case 2: if we are not shadowed, go to case 2.
1031 */
1032
1033 if (shadowed == FALSE)
1034 goto Case2;
1035
1036 /* locked: maps(read), amap */
1037
1038 /*
1039 * handle case 1: fault on an anon in our amap
1040 */
1041
1042 anon = anons[centeridx];
1043 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1044 simple_lock(&anon->an_lock);
1045
1046 /* locked: maps(read), amap, anon */
1047
1048 /*
1049 * no matter if we have case 1A or case 1B we are going to need to
1050 * have the anon's memory resident. ensure that now.
1051 */
1052
1053 /*
1054 * let uvmfault_anonget do the dirty work.
1055 * if it fails (!OK) it will unlock everything for us.
1056 * if it succeeds, locks are still valid and locked.
1057 * also, if it is OK, then the anon's page is on the queues.
1058 * if the page is on loan from a uvm_object, then anonget will
1059 * lock that object for us if it does not fail.
1060 */
1061
1062 error = uvmfault_anonget(&ufi, amap, anon);
1063 switch (error) {
1064 case 0:
1065 break;
1066
1067 case ERESTART:
1068 goto ReFault;
1069
1070 case EAGAIN:
1071 tsleep(&lbolt, PVM, "fltagain1", 0);
1072 goto ReFault;
1073
1074 default:
1075 return error;
1076 }
1077
1078 /*
1079 * uobj is non null if the page is on loan from an object (i.e. uobj)
1080 */
1081
1082 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1083
1084 /* locked: maps(read), amap, anon, uobj(if one) */
1085
1086 /*
1087 * special handling for loaned pages
1088 */
1089
1090 if (anon->u.an_page->loan_count) {
1091
1092 if ((access_type & VM_PROT_WRITE) == 0) {
1093
1094 /*
1095 * for read faults on loaned pages we just cap the
1096 * protection at read-only.
1097 */
1098
1099 enter_prot = enter_prot & ~VM_PROT_WRITE;
1100
1101 } else {
1102 /*
1103 * note that we can't allow writes into a loaned page!
1104 *
1105 * if we have a write fault on a loaned page in an
1106 * anon then we need to look at the anon's ref count.
1107 * if it is greater than one then we are going to do
1108 * a normal copy-on-write fault into a new anon (this
1109 * is not a problem). however, if the reference count
1110 * is one (a case where we would normally allow a
1111 * write directly to the page) then we need to kill
1112 * the loan before we continue.
1113 */
1114
1115 /* >1 case is already ok */
1116 if (anon->an_ref == 1) {
1117
1118 /* get new un-owned replacement page */
1119 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1120 if (pg == NULL) {
1121 uvmfault_unlockall(&ufi, amap, uobj,
1122 anon);
1123 uvm_wait("flt_noram2");
1124 goto ReFault;
1125 }
1126
1127 /*
1128 * copy data, kill loan, and drop uobj lock
1129 * (if any)
1130 */
1131 /* copy old -> new */
1132 uvm_pagecopy(anon->u.an_page, pg);
1133
1134 /* force reload */
1135 pmap_page_protect(anon->u.an_page,
1136 VM_PROT_NONE);
1137 uvm_lock_pageq(); /* KILL loan */
1138 if (uobj)
1139 /* if we were loaning */
1140 anon->u.an_page->loan_count--;
1141 anon->u.an_page->uanon = NULL;
1142 /* in case we owned */
1143 anon->u.an_page->pqflags &= ~PQ_ANON;
1144 uvm_unlock_pageq();
1145 if (uobj) {
1146 simple_unlock(&uobj->vmobjlock);
1147 uobj = NULL;
1148 }
1149
1150 /* install new page in anon */
1151 anon->u.an_page = pg;
1152 pg->uanon = anon;
1153 pg->pqflags |= PQ_ANON;
1154 pg->flags &= ~(PG_BUSY|PG_FAKE);
1155 UVM_PAGE_OWN(pg, NULL);
1156
1157 /* done! */
1158 } /* ref == 1 */
1159 } /* write fault */
1160 } /* loan count */
1161
1162 /*
1163 * if we are case 1B then we will need to allocate a new blank
1164 * anon to transfer the data into. note that we have a lock
1165 * on anon, so no one can busy or release the page until we are done.
1166 * also note that the ref count can't drop to zero here because
1167 * it is > 1 and we are only dropping one ref.
1168 *
1169 * in the (hopefully very rare) case that we are out of RAM we
1170 * will unlock, wait for more RAM, and refault.
1171 *
1172 * if we are out of anon VM we kill the process (XXX: could wait?).
1173 */
1174
1175 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1176
1177 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1178 uvmexp.flt_acow++;
1179 oanon = anon; /* oanon = old, locked anon */
1180 anon = uvm_analloc();
1181 if (anon) {
1182 /* new anon is locked! */
1183 pg = uvm_pagealloc(NULL, 0, anon, 0);
1184 }
1185
1186 /* check for out of RAM */
1187 if (anon == NULL || pg == NULL) {
1188 if (anon) {
1189 anon->an_ref--;
1190 simple_unlock(&anon->an_lock);
1191 uvm_anfree(anon);
1192 }
1193 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1194 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1195 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1196 UVMHIST_LOG(maphist,
1197 "<- failed. out of VM",0,0,0,0);
1198 uvmexp.fltnoanon++;
1199 return ENOMEM;
1200 }
1201
1202 uvmexp.fltnoram++;
1203 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1204 goto ReFault;
1205 }
1206
1207 /* got all resources, replace anon with nanon */
1208
1209 uvm_pagecopy(oanon->u.an_page, pg); /* pg now !PG_CLEAN */
1210 pg->flags &= ~(PG_BUSY|PG_FAKE); /* un-busy! new page */
1211 UVM_PAGE_OWN(pg, NULL);
1212 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1213 anon, 1);
1214
1215 /* deref: can not drop to zero here by defn! */
1216 oanon->an_ref--;
1217
1218 /*
1219 * note: oanon is still locked, as is the new anon. we
1220 * need to check for this later when we unlock oanon; if
1221 * oanon != anon, we'll have to unlock anon, too.
1222 */
1223
1224 } else {
1225
1226 uvmexp.flt_anon++;
1227 oanon = anon; /* old, locked anon is same as anon */
1228 pg = anon->u.an_page;
1229 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1230 enter_prot = enter_prot & ~VM_PROT_WRITE;
1231
1232 }
1233
1234 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1235
1236 /*
1237 * now map the page in ...
1238 * XXX: old fault unlocks object before pmap_enter. this seems
1239 * suspect since some other thread could blast the page out from
1240 * under us between the unlock and the pmap_enter.
1241 */
1242
1243 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1244 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1245 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1246 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1247 != 0) {
1248 /*
1249 * No need to undo what we did; we can simply think of
1250 * this as the pmap throwing away the mapping information.
1251 *
1252 * We do, however, have to go through the ReFault path,
1253 * as the map may change while we're asleep.
1254 */
1255 if (anon != oanon)
1256 simple_unlock(&anon->an_lock);
1257 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1258 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1259 if (uvmexp.swpgonly == uvmexp.swpages) {
1260 UVMHIST_LOG(maphist,
1261 "<- failed. out of VM",0,0,0,0);
1262 /* XXX instrumentation */
1263 return ENOMEM;
1264 }
1265 /* XXX instrumentation */
1266 uvm_wait("flt_pmfail1");
1267 goto ReFault;
1268 }
1269
1270 /*
1271 * ... update the page queues.
1272 */
1273
1274 uvm_lock_pageq();
1275
1276 if (fault_type == VM_FAULT_WIRE) {
1277 uvm_pagewire(pg);
1278
1279 /*
1280 * since the now-wired page cannot be paged out,
1281 * release its swap resources for others to use.
1282 * since an anon with no swap cannot be PG_CLEAN,
1283 * clear its clean flag now.
1284 */
1285
1286 pg->flags &= ~(PG_CLEAN);
1287 uvm_anon_dropswap(anon);
1288 } else {
1289 /* activate it */
1290 uvm_pageactivate(pg);
1291 }
1292
1293 uvm_unlock_pageq();
1294
1295 /*
1296 * done case 1! finish up by unlocking everything and returning success
1297 */
1298
1299 if (anon != oanon)
1300 simple_unlock(&anon->an_lock);
1301 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1302 pmap_update();
1303 return 0;
1304
1305
1306 Case2:
1307 /*
1308 * handle case 2: faulting on backing object or zero fill
1309 */
1310
1311 /*
1312 * locked:
1313 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1314 */
1315
1316 /*
1317 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1318 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1319 * have a backing object, check and see if we are going to promote
1320 * the data up to an anon during the fault.
1321 */
1322
1323 if (uobj == NULL) {
1324 uobjpage = PGO_DONTCARE;
1325 promote = TRUE; /* always need anon here */
1326 } else {
1327 KASSERT(uobjpage != PGO_DONTCARE);
1328 promote = (access_type & VM_PROT_WRITE) &&
1329 UVM_ET_ISCOPYONWRITE(ufi.entry);
1330 }
1331 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1332 promote, (uobj == NULL), 0,0);
1333
1334 /*
1335 * if uobjpage is not null then we do not need to do I/O to get the
1336 * uobjpage.
1337 *
1338 * if uobjpage is null, then we need to unlock and ask the pager to
1339 * get the data for us. once we have the data, we need to reverify
1340 * the state the world. we are currently not holding any resources.
1341 */
1342
1343 if (uobjpage) {
1344 /* update rusage counters */
1345 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1346 } else {
1347 /* update rusage counters */
1348 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1349
1350 /* locked: maps(read), amap(if there), uobj */
1351 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1352 /* locked: uobj */
1353
1354 uvmexp.fltget++;
1355 gotpages = 1;
1356 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1357 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1358 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1359 PGO_SYNCIO);
1360
1361 /* locked: uobjpage(if no error) */
1362
1363 /*
1364 * recover from I/O
1365 */
1366
1367 if (error) {
1368 if (error == EAGAIN) {
1369 UVMHIST_LOG(maphist,
1370 " pgo_get says TRY AGAIN!",0,0,0,0);
1371 tsleep(&lbolt, PVM, "fltagain2", 0);
1372 goto ReFault;
1373 }
1374
1375 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1376 error, 0,0,0);
1377 return error;
1378 }
1379
1380 /* locked: uobjpage */
1381
1382 /*
1383 * re-verify the state of the world by first trying to relock
1384 * the maps. always relock the object.
1385 */
1386
1387 locked = uvmfault_relock(&ufi);
1388 if (locked && amap)
1389 amap_lock(amap);
1390 simple_lock(&uobj->vmobjlock);
1391
1392 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1393 /* locked(!locked): uobj, uobjpage */
1394
1395 /*
1396 * verify that the page has not be released and re-verify
1397 * that amap slot is still free. if there is a problem,
1398 * we unlock and clean up.
1399 */
1400
1401 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1402 (locked && amap &&
1403 amap_lookup(&ufi.entry->aref,
1404 ufi.orig_rvaddr - ufi.entry->start))) {
1405 if (locked)
1406 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1407 locked = FALSE;
1408 }
1409
1410 /*
1411 * didn't get the lock? release the page and retry.
1412 */
1413
1414 if (locked == FALSE) {
1415
1416 UVMHIST_LOG(maphist,
1417 " wasn't able to relock after fault: retry",
1418 0,0,0,0);
1419 if (uobjpage->flags & PG_WANTED)
1420 /* still holding object lock */
1421 wakeup(uobjpage);
1422
1423 if (uobjpage->flags & PG_RELEASED) {
1424 uvmexp.fltpgrele++;
1425 KASSERT(uobj->pgops->pgo_releasepg != NULL);
1426
1427 /* frees page */
1428 if (uobj->pgops->pgo_releasepg(uobjpage,NULL))
1429 /* unlock if still alive */
1430 simple_unlock(&uobj->vmobjlock);
1431 goto ReFault;
1432 }
1433
1434 uvm_lock_pageq();
1435 /* make sure it is in queues */
1436 uvm_pageactivate(uobjpage);
1437
1438 uvm_unlock_pageq();
1439 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1440 UVM_PAGE_OWN(uobjpage, NULL);
1441 simple_unlock(&uobj->vmobjlock);
1442 goto ReFault;
1443
1444 }
1445
1446 /*
1447 * we have the data in uobjpage which is PG_BUSY and
1448 * !PG_RELEASED. we are holding object lock (so the page
1449 * can't be released on us).
1450 */
1451
1452 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1453 }
1454
1455 /*
1456 * locked:
1457 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1458 */
1459
1460 /*
1461 * notes:
1462 * - at this point uobjpage can not be NULL
1463 * - at this point uobjpage can not be PG_RELEASED (since we checked
1464 * for it above)
1465 * - at this point uobjpage could be PG_WANTED (handle later)
1466 */
1467
1468 if (promote == FALSE) {
1469
1470 /*
1471 * we are not promoting. if the mapping is COW ensure that we
1472 * don't give more access than we should (e.g. when doing a read
1473 * fault on a COPYONWRITE mapping we want to map the COW page in
1474 * R/O even though the entry protection could be R/W).
1475 *
1476 * set "pg" to the page we want to map in (uobjpage, usually)
1477 */
1478
1479 /* no anon in this case. */
1480 anon = NULL;
1481
1482 uvmexp.flt_obj++;
1483 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1484 enter_prot &= ~VM_PROT_WRITE;
1485 pg = uobjpage; /* map in the actual object */
1486
1487 /* assert(uobjpage != PGO_DONTCARE) */
1488
1489 /*
1490 * we are faulting directly on the page. be careful
1491 * about writing to loaned pages...
1492 */
1493 if (uobjpage->loan_count) {
1494
1495 if ((access_type & VM_PROT_WRITE) == 0) {
1496 /* read fault: cap the protection at readonly */
1497 /* cap! */
1498 enter_prot = enter_prot & ~VM_PROT_WRITE;
1499 } else {
1500 /* write fault: must break the loan here */
1501
1502 /* alloc new un-owned page */
1503 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1504
1505 if (pg == NULL) {
1506 /*
1507 * drop ownership of page, it can't
1508 * be released
1509 */
1510 if (uobjpage->flags & PG_WANTED)
1511 wakeup(uobjpage);
1512 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1513 UVM_PAGE_OWN(uobjpage, NULL);
1514
1515 uvm_lock_pageq();
1516 /* activate: we will need it later */
1517 uvm_pageactivate(uobjpage);
1518
1519 uvm_unlock_pageq();
1520 uvmfault_unlockall(&ufi, amap, uobj,
1521 NULL);
1522 UVMHIST_LOG(maphist,
1523 " out of RAM breaking loan, waiting",
1524 0,0,0,0);
1525 uvmexp.fltnoram++;
1526 uvm_wait("flt_noram4");
1527 goto ReFault;
1528 }
1529
1530 /*
1531 * copy the data from the old page to the new
1532 * one and clear the fake/clean flags on the
1533 * new page (keep it busy). force a reload
1534 * of the old page by clearing it from all
1535 * pmaps. then lock the page queues to
1536 * rename the pages.
1537 */
1538 uvm_pagecopy(uobjpage, pg); /* old -> new */
1539 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1540 pmap_page_protect(uobjpage, VM_PROT_NONE);
1541 if (uobjpage->flags & PG_WANTED)
1542 wakeup(uobjpage);
1543 /* uobj still locked */
1544 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1545 UVM_PAGE_OWN(uobjpage, NULL);
1546
1547 uvm_lock_pageq();
1548 offset = uobjpage->offset;
1549 /* remove old page */
1550 uvm_pagerealloc(uobjpage, NULL, 0);
1551
1552 /*
1553 * at this point we have absolutely no
1554 * control over uobjpage
1555 */
1556 /* install new page */
1557 uvm_pagerealloc(pg, uobj, offset);
1558 uvm_unlock_pageq();
1559
1560 /*
1561 * done! loan is broken and "pg" is
1562 * PG_BUSY. it can now replace uobjpage.
1563 */
1564
1565 uobjpage = pg;
1566
1567 } /* write fault case */
1568 } /* if loan_count */
1569
1570 } else {
1571
1572 /*
1573 * if we are going to promote the data to an anon we
1574 * allocate a blank anon here and plug it into our amap.
1575 */
1576 #if DIAGNOSTIC
1577 if (amap == NULL)
1578 panic("uvm_fault: want to promote data, but no anon");
1579 #endif
1580
1581 anon = uvm_analloc();
1582 if (anon) {
1583 /*
1584 * The new anon is locked.
1585 *
1586 * In `Fill in data...' below, if
1587 * uobjpage == PGO_DONTCARE, we want
1588 * a zero'd, dirty page, so have
1589 * uvm_pagealloc() do that for us.
1590 */
1591 pg = uvm_pagealloc(NULL, 0, anon,
1592 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1593 }
1594
1595 /*
1596 * out of memory resources?
1597 */
1598 if (anon == NULL || pg == NULL) {
1599
1600 if (anon != NULL) {
1601 anon->an_ref--;
1602 simple_unlock(&anon->an_lock);
1603 uvm_anfree(anon);
1604 }
1605
1606 /*
1607 * arg! must unbusy our page and fail or sleep.
1608 */
1609 if (uobjpage != PGO_DONTCARE) {
1610 if (uobjpage->flags & PG_WANTED)
1611 /* still holding object lock */
1612 wakeup(uobjpage);
1613
1614 uvm_lock_pageq();
1615 uvm_pageactivate(uobjpage);
1616 uvm_unlock_pageq();
1617 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1618 UVM_PAGE_OWN(uobjpage, NULL);
1619 }
1620
1621 /* unlock and fail ... */
1622 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1623 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1624 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1625 UVMHIST_LOG(maphist, " promote: out of VM",
1626 0,0,0,0);
1627 uvmexp.fltnoanon++;
1628 return ENOMEM;
1629 }
1630
1631 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1632 0,0,0,0);
1633 uvmexp.fltnoram++;
1634 uvm_wait("flt_noram5");
1635 goto ReFault;
1636 }
1637
1638 /*
1639 * fill in the data
1640 */
1641
1642 if (uobjpage != PGO_DONTCARE) {
1643 uvmexp.flt_prcopy++;
1644 /* copy page [pg now dirty] */
1645 uvm_pagecopy(uobjpage, pg);
1646
1647 /*
1648 * promote to shared amap? make sure all sharing
1649 * procs see it
1650 */
1651 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1652 pmap_page_protect(uobjpage, VM_PROT_NONE);
1653 /*
1654 * XXX: PAGE MIGHT BE WIRED!
1655 */
1656 }
1657
1658 /*
1659 * dispose of uobjpage. it can't be PG_RELEASED
1660 * since we still hold the object lock.
1661 * drop handle to uobj as well.
1662 */
1663
1664 if (uobjpage->flags & PG_WANTED)
1665 /* still have the obj lock */
1666 wakeup(uobjpage);
1667 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1668 UVM_PAGE_OWN(uobjpage, NULL);
1669 uvm_lock_pageq();
1670 uvm_pageactivate(uobjpage);
1671 uvm_unlock_pageq();
1672 simple_unlock(&uobj->vmobjlock);
1673 uobj = NULL;
1674
1675 UVMHIST_LOG(maphist,
1676 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1677 uobjpage, anon, pg, 0);
1678
1679 } else {
1680 uvmexp.flt_przero++;
1681 /*
1682 * Page is zero'd and marked dirty by uvm_pagealloc()
1683 * above.
1684 */
1685 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1686 anon, pg, 0, 0);
1687 }
1688
1689 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1690 anon, 0);
1691 }
1692
1693 /*
1694 * locked:
1695 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1696 * anon(if !null), pg(if anon)
1697 *
1698 * note: pg is either the uobjpage or the new page in the new anon
1699 */
1700
1701 /*
1702 * all resources are present. we can now map it in and free our
1703 * resources.
1704 */
1705
1706 UVMHIST_LOG(maphist,
1707 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1708 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1709 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1710 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1711 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1712 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1713
1714 /*
1715 * No need to undo what we did; we can simply think of
1716 * this as the pmap throwing away the mapping information.
1717 *
1718 * We do, however, have to go through the ReFault path,
1719 * as the map may change while we're asleep.
1720 */
1721
1722 if (pg->flags & PG_WANTED)
1723 wakeup(pg); /* lock still held */
1724
1725 /*
1726 * note that pg can't be PG_RELEASED since we did not drop
1727 * the object lock since the last time we checked.
1728 */
1729
1730 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1731 UVM_PAGE_OWN(pg, NULL);
1732 uvmfault_unlockall(&ufi, amap, uobj, anon);
1733 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1734 if (uvmexp.swpgonly == uvmexp.swpages) {
1735 UVMHIST_LOG(maphist,
1736 "<- failed. out of VM",0,0,0,0);
1737 /* XXX instrumentation */
1738 return ENOMEM;
1739 }
1740 /* XXX instrumentation */
1741 uvm_wait("flt_pmfail2");
1742 goto ReFault;
1743 }
1744
1745 uvm_lock_pageq();
1746
1747 if (fault_type == VM_FAULT_WIRE) {
1748 uvm_pagewire(pg);
1749 if (pg->pqflags & PQ_AOBJ) {
1750
1751 /*
1752 * since the now-wired page cannot be paged out,
1753 * release its swap resources for others to use.
1754 * since an aobj page with no swap cannot be PG_CLEAN,
1755 * clear its clean flag now.
1756 */
1757
1758 pg->flags &= ~(PG_CLEAN);
1759 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1760 }
1761 } else {
1762 /* activate it */
1763 uvm_pageactivate(pg);
1764 }
1765 uvm_unlock_pageq();
1766
1767 if (pg->flags & PG_WANTED)
1768 wakeup(pg); /* lock still held */
1769
1770 /*
1771 * note that pg can't be PG_RELEASED since we did not drop the object
1772 * lock since the last time we checked.
1773 */
1774
1775 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1776 UVM_PAGE_OWN(pg, NULL);
1777 uvmfault_unlockall(&ufi, amap, uobj, anon);
1778
1779 pmap_update();
1780
1781 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1782 return 0;
1783 }
1784
1785
1786 /*
1787 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1788 *
1789 * => map may be read-locked by caller, but MUST NOT be write-locked.
1790 * => if map is read-locked, any operations which may cause map to
1791 * be write-locked in uvm_fault() must be taken care of by
1792 * the caller. See uvm_map_pageable().
1793 */
1794
1795 int
1796 uvm_fault_wire(map, start, end, access_type)
1797 struct vm_map *map;
1798 vaddr_t start, end;
1799 vm_prot_t access_type;
1800 {
1801 vaddr_t va;
1802 int error;
1803
1804 /*
1805 * now fault it in a page at a time. if the fault fails then we have
1806 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1807 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1808 */
1809
1810 /*
1811 * XXX work around overflowing a vaddr_t. this prevents us from
1812 * wiring the last page in the address space, though.
1813 */
1814 if (start > end) {
1815 return EFAULT;
1816 }
1817
1818 for (va = start ; va < end ; va += PAGE_SIZE) {
1819 error = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1820 if (error) {
1821 if (va != start) {
1822 uvm_fault_unwire(map, start, va);
1823 }
1824 return error;
1825 }
1826 }
1827 return 0;
1828 }
1829
1830 /*
1831 * uvm_fault_unwire(): unwire range of virtual space.
1832 */
1833
1834 void
1835 uvm_fault_unwire(map, start, end)
1836 struct vm_map *map;
1837 vaddr_t start, end;
1838 {
1839
1840 vm_map_lock_read(map);
1841 uvm_fault_unwire_locked(map, start, end);
1842 vm_map_unlock_read(map);
1843 }
1844
1845 /*
1846 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1847 *
1848 * => map must be at least read-locked.
1849 */
1850
1851 void
1852 uvm_fault_unwire_locked(map, start, end)
1853 struct vm_map *map;
1854 vaddr_t start, end;
1855 {
1856 struct vm_map_entry *entry;
1857 pmap_t pmap = vm_map_pmap(map);
1858 vaddr_t va;
1859 paddr_t pa;
1860 struct vm_page *pg;
1861
1862 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1863
1864 /*
1865 * we assume that the area we are unwiring has actually been wired
1866 * in the first place. this means that we should be able to extract
1867 * the PAs from the pmap. we also lock out the page daemon so that
1868 * we can call uvm_pageunwire.
1869 */
1870
1871 uvm_lock_pageq();
1872
1873 /*
1874 * find the beginning map entry for the region.
1875 */
1876 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1877 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1878 panic("uvm_fault_unwire_locked: address not in map");
1879
1880 for (va = start; va < end ; va += PAGE_SIZE) {
1881 if (pmap_extract(pmap, va, &pa) == FALSE)
1882 panic("uvm_fault_unwire_locked: unwiring "
1883 "non-wired memory");
1884
1885 /*
1886 * make sure the current entry is for the address we're
1887 * dealing with. if not, grab the next entry.
1888 */
1889
1890 KASSERT(va >= entry->start);
1891 if (va >= entry->end) {
1892 KASSERT(entry->next != &map->header &&
1893 entry->next->start <= entry->end);
1894 entry = entry->next;
1895 }
1896
1897 /*
1898 * if the entry is no longer wired, tell the pmap.
1899 */
1900 if (VM_MAPENT_ISWIRED(entry) == 0)
1901 pmap_unwire(pmap, va);
1902
1903 pg = PHYS_TO_VM_PAGE(pa);
1904 if (pg)
1905 uvm_pageunwire(pg);
1906 }
1907
1908 uvm_unlock_pageq();
1909 }
1910