uvm_fault.c revision 1.67.2.2 1 /* $NetBSD: uvm_fault.c,v 1.67.2.2 2002/01/10 20:05:33 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.67.2.2 2002/01/10 20:05:33 thorpej Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
183 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_addr->u_stats.p_ru.ru_minflt++;
308 else
309 curproc->p_addr->u_stats.p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431 /* remove page from anon */
432 anon->u.an_page = NULL;
433
434 /*
435 * remove the swap slot from the anon
436 * and mark the anon as having no real slot.
437 * don't free the swap slot, thus preventing
438 * it from being used again.
439 */
440
441 uvm_swap_markbad(anon->an_swslot, 1);
442 anon->an_swslot = SWSLOT_BAD;
443
444 /*
445 * note: page was never !PG_BUSY, so it
446 * can't be mapped and thus no need to
447 * pmap_page_protect it...
448 */
449
450 uvm_lock_pageq();
451 uvm_pagefree(pg);
452 uvm_unlock_pageq();
453
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 anon);
457 else
458 simple_unlock(&anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 /*
464 * we've successfully read the page, activate it.
465 */
466
467 uvm_lock_pageq();
468 uvm_pageactivate(pg);
469 uvm_unlock_pageq();
470 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
471 UVM_PAGE_OWN(pg, NULL);
472 if (!locked)
473 simple_unlock(&anon->an_lock);
474 }
475
476 /*
477 * we were not able to relock. restart fault.
478 */
479
480 if (!locked) {
481 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
482 return (ERESTART);
483 }
484
485 /*
486 * verify no one has touched the amap and moved the anon on us.
487 */
488
489 if (ufi != NULL &&
490 amap_lookup(&ufi->entry->aref,
491 ufi->orig_rvaddr - ufi->entry->start) != anon) {
492
493 uvmfault_unlockall(ufi, amap, NULL, anon);
494 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
495 return (ERESTART);
496 }
497
498 /*
499 * try it again!
500 */
501
502 uvmexp.fltanretry++;
503 continue;
504 }
505 /*NOTREACHED*/
506 }
507
508 /*
509 * F A U L T - m a i n e n t r y p o i n t
510 */
511
512 /*
513 * uvm_fault: page fault handler
514 *
515 * => called from MD code to resolve a page fault
516 * => VM data structures usually should be unlocked. however, it is
517 * possible to call here with the main map locked if the caller
518 * gets a write lock, sets it recusive, and then calls us (c.f.
519 * uvm_map_pageable). this should be avoided because it keeps
520 * the map locked off during I/O.
521 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
522 */
523
524 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
525 ~VM_PROT_WRITE : VM_PROT_ALL)
526
527 int
528 uvm_fault(orig_map, vaddr, fault_type, access_type)
529 struct vm_map *orig_map;
530 vaddr_t vaddr;
531 vm_fault_t fault_type;
532 vm_prot_t access_type;
533 {
534 struct uvm_faultinfo ufi;
535 vm_prot_t enter_prot, check_prot;
536 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
537 int npages, nback, nforw, centeridx, error, lcv, gotpages;
538 vaddr_t startva, objaddr, currva, offset, uoff;
539 paddr_t pa;
540 struct vm_amap *amap;
541 struct uvm_object *uobj;
542 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
543 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
544 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
545
546 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
547 orig_map, vaddr, fault_type, access_type);
548
549 anon = NULL;
550 pg = NULL;
551
552 uvmexp.faults++; /* XXX: locking? */
553
554 /*
555 * init the IN parameters in the ufi
556 */
557
558 ufi.orig_map = orig_map;
559 ufi.orig_rvaddr = trunc_page(vaddr);
560 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
561 wire_fault = fault_type == VM_FAULT_WIRE ||
562 fault_type == VM_FAULT_WIREMAX;
563 if (wire_fault)
564 narrow = TRUE; /* don't look for neighborhood
565 * pages on wire */
566 else
567 narrow = FALSE; /* normal fault */
568
569 /*
570 * "goto ReFault" means restart the page fault from ground zero.
571 */
572 ReFault:
573
574 /*
575 * lookup and lock the maps
576 */
577
578 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
579 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
580 return (EFAULT);
581 }
582 /* locked: maps(read) */
583
584 #ifdef DIAGNOSTIC
585 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
586 printf("Page fault on non-pageable map:\n");
587 printf("ufi.map = %p\n", ufi.map);
588 printf("ufi.orig_map = %p\n", ufi.orig_map);
589 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
590 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
591 }
592 #endif
593
594 /*
595 * check protection
596 */
597
598 check_prot = fault_type == VM_FAULT_WIREMAX ?
599 ufi.entry->max_protection : ufi.entry->protection;
600 if ((check_prot & access_type) != access_type) {
601 UVMHIST_LOG(maphist,
602 "<- protection failure (prot=0x%x, access=0x%x)",
603 ufi.entry->protection, access_type, 0, 0);
604 uvmfault_unlockmaps(&ufi, FALSE);
605 return EACCES;
606 }
607
608 /*
609 * "enter_prot" is the protection we want to enter the page in at.
610 * for certain pages (e.g. copy-on-write pages) this protection can
611 * be more strict than ufi.entry->protection. "wired" means either
612 * the entry is wired or we are fault-wiring the pg.
613 */
614
615 enter_prot = ufi.entry->protection;
616 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
617 if (wired) {
618 access_type = enter_prot; /* full access for wired */
619 cow_now = (check_prot & VM_PROT_WRITE) != 0;
620 } else {
621 cow_now = (access_type & VM_PROT_WRITE) != 0;
622 }
623
624 /*
625 * handle "needs_copy" case. if we need to copy the amap we will
626 * have to drop our readlock and relock it with a write lock. (we
627 * need a write lock to change anything in a map entry [e.g.
628 * needs_copy]).
629 */
630
631 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
632 KASSERT(fault_type != VM_FAULT_WIREMAX);
633 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
634 /* need to clear */
635 UVMHIST_LOG(maphist,
636 " need to clear needs_copy and refault",0,0,0,0);
637 uvmfault_unlockmaps(&ufi, FALSE);
638 uvmfault_amapcopy(&ufi);
639 uvmexp.fltamcopy++;
640 goto ReFault;
641
642 } else {
643
644 /*
645 * ensure that we pmap_enter page R/O since
646 * needs_copy is still true
647 */
648
649 enter_prot &= ~VM_PROT_WRITE;
650 }
651 }
652
653 /*
654 * identify the players
655 */
656
657 amap = ufi.entry->aref.ar_amap; /* top layer */
658 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
659
660 /*
661 * check for a case 0 fault. if nothing backing the entry then
662 * error now.
663 */
664
665 if (amap == NULL && uobj == NULL) {
666 uvmfault_unlockmaps(&ufi, FALSE);
667 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
668 return (EFAULT);
669 }
670
671 /*
672 * establish range of interest based on advice from mapper
673 * and then clip to fit map entry. note that we only want
674 * to do this the first time through the fault. if we
675 * ReFault we will disable this by setting "narrow" to true.
676 */
677
678 if (narrow == FALSE) {
679
680 /* wide fault (!narrow) */
681 KASSERT(uvmadvice[ufi.entry->advice].advice ==
682 ufi.entry->advice);
683 nback = MIN(uvmadvice[ufi.entry->advice].nback,
684 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
685 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
686 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
687 ((ufi.entry->end - ufi.orig_rvaddr) >>
688 PAGE_SHIFT) - 1);
689 /*
690 * note: "-1" because we don't want to count the
691 * faulting page as forw
692 */
693 npages = nback + nforw + 1;
694 centeridx = nback;
695
696 narrow = TRUE; /* ensure only once per-fault */
697
698 } else {
699
700 /* narrow fault! */
701 nback = nforw = 0;
702 startva = ufi.orig_rvaddr;
703 npages = 1;
704 centeridx = 0;
705
706 }
707
708 /* locked: maps(read) */
709 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
710 narrow, nback, nforw, startva);
711 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
712 amap, uobj, 0);
713
714 /*
715 * if we've got an amap, lock it and extract current anons.
716 */
717
718 if (amap) {
719 amap_lock(amap);
720 anons = anons_store;
721 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
722 anons, npages);
723 } else {
724 anons = NULL; /* to be safe */
725 }
726
727 /* locked: maps(read), amap(if there) */
728
729 /*
730 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
731 * now and then forget about them (for the rest of the fault).
732 */
733
734 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
735
736 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
737 0,0,0,0);
738 /* flush back-page anons? */
739 if (amap)
740 uvmfault_anonflush(anons, nback);
741
742 /* flush object? */
743 if (uobj) {
744 objaddr =
745 (startva - ufi.entry->start) + ufi.entry->offset;
746 simple_lock(&uobj->vmobjlock);
747 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
748 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
749 }
750
751 /* now forget about the backpages */
752 if (amap)
753 anons += nback;
754 startva += (nback << PAGE_SHIFT);
755 npages -= nback;
756 nback = centeridx = 0;
757 }
758
759 /* locked: maps(read), amap(if there) */
760
761 /*
762 * map in the backpages and frontpages we found in the amap in hopes
763 * of preventing future faults. we also init the pages[] array as
764 * we go.
765 */
766
767 currva = startva;
768 shadowed = FALSE;
769 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
770
771 /*
772 * dont play with VAs that are already mapped
773 * except for center)
774 */
775 if (lcv != centeridx &&
776 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
777 pages[lcv] = PGO_DONTCARE;
778 continue;
779 }
780
781 /*
782 * unmapped or center page. check if any anon at this level.
783 */
784 if (amap == NULL || anons[lcv] == NULL) {
785 pages[lcv] = NULL;
786 continue;
787 }
788
789 /*
790 * check for present page and map if possible. re-activate it.
791 */
792
793 pages[lcv] = PGO_DONTCARE;
794 if (lcv == centeridx) { /* save center for later! */
795 shadowed = TRUE;
796 continue;
797 }
798 anon = anons[lcv];
799 simple_lock(&anon->an_lock);
800 /* ignore loaned pages */
801 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
802 (anon->u.an_page->flags & PG_BUSY) == 0) {
803 uvm_lock_pageq();
804 uvm_pageactivate(anon->u.an_page);
805 uvm_unlock_pageq();
806 UVMHIST_LOG(maphist,
807 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
808 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
809 uvmexp.fltnamap++;
810
811 /*
812 * Since this isn't the page that's actually faulting,
813 * ignore pmap_enter() failures; it's not critical
814 * that we enter these right now.
815 */
816
817 (void) pmap_enter(ufi.orig_map->pmap, currva,
818 VM_PAGE_TO_PHYS(anon->u.an_page),
819 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
820 enter_prot,
821 PMAP_CANFAIL |
822 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
823 }
824 simple_unlock(&anon->an_lock);
825 pmap_update(ufi.orig_map->pmap);
826 }
827
828 /* locked: maps(read), amap(if there) */
829 /* (shadowed == TRUE) if there is an anon at the faulting address */
830 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
831 (uobj && shadowed == FALSE),0,0);
832
833 /*
834 * note that if we are really short of RAM we could sleep in the above
835 * call to pmap_enter with everything locked. bad?
836 *
837 * XXX Actually, that is bad; pmap_enter() should just fail in that
838 * XXX case. --thorpej
839 */
840
841 /*
842 * if the desired page is not shadowed by the amap and we have a
843 * backing object, then we check to see if the backing object would
844 * prefer to handle the fault itself (rather than letting us do it
845 * with the usual pgo_get hook). the backing object signals this by
846 * providing a pgo_fault routine.
847 */
848
849 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
850 simple_lock(&uobj->vmobjlock);
851
852 /* locked: maps(read), amap (if there), uobj */
853 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
854 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
855
856 /* locked: nothing, pgo_fault has unlocked everything */
857
858 if (error == ERESTART)
859 goto ReFault; /* try again! */
860 /*
861 * object fault routine responsible for pmap_update().
862 */
863 return error;
864 }
865
866 /*
867 * now, if the desired page is not shadowed by the amap and we have
868 * a backing object that does not have a special fault routine, then
869 * we ask (with pgo_get) the object for resident pages that we care
870 * about and attempt to map them in. we do not let pgo_get block
871 * (PGO_LOCKED).
872 */
873
874 if (uobj && shadowed == FALSE) {
875 simple_lock(&uobj->vmobjlock);
876
877 /* locked (!shadowed): maps(read), amap (if there), uobj */
878 /*
879 * the following call to pgo_get does _not_ change locking state
880 */
881
882 uvmexp.fltlget++;
883 gotpages = npages;
884 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
885 (startva - ufi.entry->start),
886 pages, &gotpages, centeridx,
887 access_type & MASK(ufi.entry),
888 ufi.entry->advice, PGO_LOCKED);
889
890 /*
891 * check for pages to map, if we got any
892 */
893
894 uobjpage = NULL;
895
896 if (gotpages) {
897 currva = startva;
898 for (lcv = 0; lcv < npages;
899 lcv++, currva += PAGE_SIZE) {
900 if (pages[lcv] == NULL ||
901 pages[lcv] == PGO_DONTCARE) {
902 continue;
903 }
904
905 /*
906 * if center page is resident and not
907 * PG_BUSY|PG_RELEASED then pgo_get
908 * made it PG_BUSY for us and gave
909 * us a handle to it. remember this
910 * page as "uobjpage." (for later use).
911 */
912
913 if (lcv == centeridx) {
914 uobjpage = pages[lcv];
915 UVMHIST_LOG(maphist, " got uobjpage "
916 "(0x%x) with locked get",
917 uobjpage, 0,0,0);
918 continue;
919 }
920
921 /*
922 * calling pgo_get with PGO_LOCKED returns us
923 * pages which are neither busy nor released,
924 * so we don't need to check for this.
925 * we can just directly enter the pages.
926 */
927
928 uvm_lock_pageq();
929 uvm_pageactivate(pages[lcv]);
930 uvm_unlock_pageq();
931 UVMHIST_LOG(maphist,
932 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
933 ufi.orig_map->pmap, currva, pages[lcv], 0);
934 uvmexp.fltnomap++;
935
936 /*
937 * Since this page isn't the page that's
938 * actually fauling, ignore pmap_enter()
939 * failures; it's not critical that we
940 * enter these right now.
941 */
942
943 (void) pmap_enter(ufi.orig_map->pmap, currva,
944 VM_PAGE_TO_PHYS(pages[lcv]),
945 pages[lcv]->flags & PG_RDONLY ?
946 VM_PROT_READ : enter_prot & MASK(ufi.entry),
947 PMAP_CANFAIL |
948 (wired ? PMAP_WIRED : 0));
949
950 /*
951 * NOTE: page can't be PG_WANTED or PG_RELEASED
952 * because we've held the lock the whole time
953 * we've had the handle.
954 */
955
956 pages[lcv]->flags &= ~(PG_BUSY);
957 UVM_PAGE_OWN(pages[lcv], NULL);
958 }
959 pmap_update(ufi.orig_map->pmap);
960 }
961 } else {
962 uobjpage = NULL;
963 }
964
965 /* locked (shadowed): maps(read), amap */
966 /* locked (!shadowed): maps(read), amap(if there),
967 uobj(if !null), uobjpage(if !null) */
968
969 /*
970 * note that at this point we are done with any front or back pages.
971 * we are now going to focus on the center page (i.e. the one we've
972 * faulted on). if we have faulted on the top (anon) layer
973 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
974 * not touched it yet). if we have faulted on the bottom (uobj)
975 * layer [i.e. case 2] and the page was both present and available,
976 * then we've got a pointer to it as "uobjpage" and we've already
977 * made it BUSY.
978 */
979
980 /*
981 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
982 */
983
984 /*
985 * redirect case 2: if we are not shadowed, go to case 2.
986 */
987
988 if (shadowed == FALSE)
989 goto Case2;
990
991 /* locked: maps(read), amap */
992
993 /*
994 * handle case 1: fault on an anon in our amap
995 */
996
997 anon = anons[centeridx];
998 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
999 simple_lock(&anon->an_lock);
1000
1001 /* locked: maps(read), amap, anon */
1002
1003 /*
1004 * no matter if we have case 1A or case 1B we are going to need to
1005 * have the anon's memory resident. ensure that now.
1006 */
1007
1008 /*
1009 * let uvmfault_anonget do the dirty work.
1010 * if it fails (!OK) it will unlock everything for us.
1011 * if it succeeds, locks are still valid and locked.
1012 * also, if it is OK, then the anon's page is on the queues.
1013 * if the page is on loan from a uvm_object, then anonget will
1014 * lock that object for us if it does not fail.
1015 */
1016
1017 error = uvmfault_anonget(&ufi, amap, anon);
1018 switch (error) {
1019 case 0:
1020 break;
1021
1022 case ERESTART:
1023 goto ReFault;
1024
1025 case EAGAIN:
1026 tsleep(&lbolt, PVM, "fltagain1", 0);
1027 goto ReFault;
1028
1029 default:
1030 return error;
1031 }
1032
1033 /*
1034 * uobj is non null if the page is on loan from an object (i.e. uobj)
1035 */
1036
1037 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1038
1039 /* locked: maps(read), amap, anon, uobj(if one) */
1040
1041 /*
1042 * special handling for loaned pages
1043 */
1044
1045 if (anon->u.an_page->loan_count) {
1046
1047 if (!cow_now) {
1048
1049 /*
1050 * for read faults on loaned pages we just cap the
1051 * protection at read-only.
1052 */
1053
1054 enter_prot = enter_prot & ~VM_PROT_WRITE;
1055
1056 } else {
1057 /*
1058 * note that we can't allow writes into a loaned page!
1059 *
1060 * if we have a write fault on a loaned page in an
1061 * anon then we need to look at the anon's ref count.
1062 * if it is greater than one then we are going to do
1063 * a normal copy-on-write fault into a new anon (this
1064 * is not a problem). however, if the reference count
1065 * is one (a case where we would normally allow a
1066 * write directly to the page) then we need to kill
1067 * the loan before we continue.
1068 */
1069
1070 /* >1 case is already ok */
1071 if (anon->an_ref == 1) {
1072
1073 /* get new un-owned replacement page */
1074 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1075 if (pg == NULL) {
1076 uvmfault_unlockall(&ufi, amap, uobj,
1077 anon);
1078 uvm_wait("flt_noram2");
1079 goto ReFault;
1080 }
1081
1082 /*
1083 * copy data, kill loan, and drop uobj lock
1084 * (if any)
1085 */
1086 /* copy old -> new */
1087 uvm_pagecopy(anon->u.an_page, pg);
1088
1089 /* force reload */
1090 pmap_page_protect(anon->u.an_page,
1091 VM_PROT_NONE);
1092 uvm_lock_pageq(); /* KILL loan */
1093 if (uobj)
1094 /* if we were loaning */
1095 anon->u.an_page->loan_count--;
1096 anon->u.an_page->uanon = NULL;
1097 /* in case we owned */
1098 anon->u.an_page->pqflags &= ~PQ_ANON;
1099 uvm_unlock_pageq();
1100 if (uobj) {
1101 simple_unlock(&uobj->vmobjlock);
1102 uobj = NULL;
1103 }
1104
1105 /* install new page in anon */
1106 anon->u.an_page = pg;
1107 pg->uanon = anon;
1108 pg->pqflags |= PQ_ANON;
1109 pg->flags &= ~(PG_BUSY|PG_FAKE);
1110 UVM_PAGE_OWN(pg, NULL);
1111
1112 /* done! */
1113 } /* ref == 1 */
1114 } /* write fault */
1115 } /* loan count */
1116
1117 /*
1118 * if we are case 1B then we will need to allocate a new blank
1119 * anon to transfer the data into. note that we have a lock
1120 * on anon, so no one can busy or release the page until we are done.
1121 * also note that the ref count can't drop to zero here because
1122 * it is > 1 and we are only dropping one ref.
1123 *
1124 * in the (hopefully very rare) case that we are out of RAM we
1125 * will unlock, wait for more RAM, and refault.
1126 *
1127 * if we are out of anon VM we kill the process (XXX: could wait?).
1128 */
1129
1130 if (cow_now && anon->an_ref > 1) {
1131
1132 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1133 uvmexp.flt_acow++;
1134 oanon = anon; /* oanon = old, locked anon */
1135 anon = uvm_analloc();
1136 if (anon) {
1137 /* new anon is locked! */
1138 pg = uvm_pagealloc(NULL, 0, anon, 0);
1139 }
1140
1141 /* check for out of RAM */
1142 if (anon == NULL || pg == NULL) {
1143 if (anon) {
1144 anon->an_ref--;
1145 simple_unlock(&anon->an_lock);
1146 uvm_anfree(anon);
1147 }
1148 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1149 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1150 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1151 UVMHIST_LOG(maphist,
1152 "<- failed. out of VM",0,0,0,0);
1153 uvmexp.fltnoanon++;
1154 return ENOMEM;
1155 }
1156
1157 uvmexp.fltnoram++;
1158 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1159 goto ReFault;
1160 }
1161
1162 /* got all resources, replace anon with nanon */
1163 uvm_pagecopy(oanon->u.an_page, pg);
1164 uvm_pageactivate(pg);
1165 pg->flags &= ~(PG_BUSY|PG_FAKE);
1166 UVM_PAGE_OWN(pg, NULL);
1167 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1168 anon, 1);
1169
1170 /* deref: can not drop to zero here by defn! */
1171 oanon->an_ref--;
1172
1173 /*
1174 * note: oanon is still locked, as is the new anon. we
1175 * need to check for this later when we unlock oanon; if
1176 * oanon != anon, we'll have to unlock anon, too.
1177 */
1178
1179 } else {
1180
1181 uvmexp.flt_anon++;
1182 oanon = anon; /* old, locked anon is same as anon */
1183 pg = anon->u.an_page;
1184 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1185 enter_prot = enter_prot & ~VM_PROT_WRITE;
1186
1187 }
1188
1189 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1190
1191 /*
1192 * now map the page in.
1193 */
1194
1195 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1196 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1197 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1198 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1199 != 0) {
1200
1201 /*
1202 * No need to undo what we did; we can simply think of
1203 * this as the pmap throwing away the mapping information.
1204 *
1205 * We do, however, have to go through the ReFault path,
1206 * as the map may change while we're asleep.
1207 */
1208
1209 if (anon != oanon)
1210 simple_unlock(&anon->an_lock);
1211 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1212 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1213 if (uvmexp.swpgonly == uvmexp.swpages) {
1214 UVMHIST_LOG(maphist,
1215 "<- failed. out of VM",0,0,0,0);
1216 /* XXX instrumentation */
1217 return ENOMEM;
1218 }
1219 /* XXX instrumentation */
1220 uvm_wait("flt_pmfail1");
1221 goto ReFault;
1222 }
1223
1224 /*
1225 * ... update the page queues.
1226 */
1227
1228 uvm_lock_pageq();
1229 if (wire_fault) {
1230 uvm_pagewire(pg);
1231
1232 /*
1233 * since the now-wired page cannot be paged out,
1234 * release its swap resources for others to use.
1235 * since an anon with no swap cannot be PG_CLEAN,
1236 * clear its clean flag now.
1237 */
1238
1239 pg->flags &= ~(PG_CLEAN);
1240 uvm_anon_dropswap(anon);
1241 } else {
1242 uvm_pageactivate(pg);
1243 }
1244 uvm_unlock_pageq();
1245
1246 /*
1247 * done case 1! finish up by unlocking everything and returning success
1248 */
1249
1250 if (anon != oanon)
1251 simple_unlock(&anon->an_lock);
1252 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1253 pmap_update(ufi.orig_map->pmap);
1254 return 0;
1255
1256 Case2:
1257 /*
1258 * handle case 2: faulting on backing object or zero fill
1259 */
1260
1261 /*
1262 * locked:
1263 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1264 */
1265
1266 /*
1267 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1268 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1269 * have a backing object, check and see if we are going to promote
1270 * the data up to an anon during the fault.
1271 */
1272
1273 if (uobj == NULL) {
1274 uobjpage = PGO_DONTCARE;
1275 promote = TRUE; /* always need anon here */
1276 } else {
1277 KASSERT(uobjpage != PGO_DONTCARE);
1278 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1279 }
1280 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1281 promote, (uobj == NULL), 0,0);
1282
1283 /*
1284 * if uobjpage is not null then we do not need to do I/O to get the
1285 * uobjpage.
1286 *
1287 * if uobjpage is null, then we need to unlock and ask the pager to
1288 * get the data for us. once we have the data, we need to reverify
1289 * the state the world. we are currently not holding any resources.
1290 */
1291
1292 if (uobjpage) {
1293 /* update rusage counters */
1294 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1295 } else {
1296 /* update rusage counters */
1297 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1298
1299 /* locked: maps(read), amap(if there), uobj */
1300 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1301 /* locked: uobj */
1302
1303 uvmexp.fltget++;
1304 gotpages = 1;
1305 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1306 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1307 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1308 PGO_SYNCIO);
1309 /* locked: uobjpage(if no error) */
1310
1311 /*
1312 * recover from I/O
1313 */
1314
1315 if (error) {
1316 if (error == EAGAIN) {
1317 UVMHIST_LOG(maphist,
1318 " pgo_get says TRY AGAIN!",0,0,0,0);
1319 tsleep(&lbolt, PVM, "fltagain2", 0);
1320 goto ReFault;
1321 }
1322
1323 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1324 error, 0,0,0);
1325 return error;
1326 }
1327
1328 /* locked: uobjpage */
1329
1330 uvm_lock_pageq();
1331 uvm_pageactivate(uobjpage);
1332 uvm_unlock_pageq();
1333
1334 /*
1335 * re-verify the state of the world by first trying to relock
1336 * the maps. always relock the object.
1337 */
1338
1339 locked = uvmfault_relock(&ufi);
1340 if (locked && amap)
1341 amap_lock(amap);
1342 simple_lock(&uobj->vmobjlock);
1343
1344 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1345 /* locked(!locked): uobj, uobjpage */
1346
1347 /*
1348 * verify that the page has not be released and re-verify
1349 * that amap slot is still free. if there is a problem,
1350 * we unlock and clean up.
1351 */
1352
1353 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1354 (locked && amap &&
1355 amap_lookup(&ufi.entry->aref,
1356 ufi.orig_rvaddr - ufi.entry->start))) {
1357 if (locked)
1358 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1359 locked = FALSE;
1360 }
1361
1362 /*
1363 * didn't get the lock? release the page and retry.
1364 */
1365
1366 if (locked == FALSE) {
1367 UVMHIST_LOG(maphist,
1368 " wasn't able to relock after fault: retry",
1369 0,0,0,0);
1370 if (uobjpage->flags & PG_WANTED)
1371 wakeup(uobjpage);
1372 if (uobjpage->flags & PG_RELEASED) {
1373 uvmexp.fltpgrele++;
1374 uvm_pagefree(uobjpage);
1375 goto ReFault;
1376 }
1377 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1378 UVM_PAGE_OWN(uobjpage, NULL);
1379 simple_unlock(&uobj->vmobjlock);
1380 goto ReFault;
1381 }
1382
1383 /*
1384 * we have the data in uobjpage which is busy and
1385 * not released. we are holding object lock (so the page
1386 * can't be released on us).
1387 */
1388
1389 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1390 }
1391
1392 /*
1393 * locked:
1394 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1395 */
1396
1397 /*
1398 * notes:
1399 * - at this point uobjpage can not be NULL
1400 * - at this point uobjpage can not be PG_RELEASED (since we checked
1401 * for it above)
1402 * - at this point uobjpage could be PG_WANTED (handle later)
1403 */
1404
1405 if (promote == FALSE) {
1406
1407 /*
1408 * we are not promoting. if the mapping is COW ensure that we
1409 * don't give more access than we should (e.g. when doing a read
1410 * fault on a COPYONWRITE mapping we want to map the COW page in
1411 * R/O even though the entry protection could be R/W).
1412 *
1413 * set "pg" to the page we want to map in (uobjpage, usually)
1414 */
1415
1416 /* no anon in this case. */
1417 anon = NULL;
1418
1419 uvmexp.flt_obj++;
1420 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1421 enter_prot &= ~VM_PROT_WRITE;
1422 pg = uobjpage; /* map in the actual object */
1423
1424 /* assert(uobjpage != PGO_DONTCARE) */
1425
1426 /*
1427 * we are faulting directly on the page. be careful
1428 * about writing to loaned pages...
1429 */
1430
1431 if (uobjpage->loan_count) {
1432 if (!cow_now) {
1433 /* read fault: cap the protection at readonly */
1434 /* cap! */
1435 enter_prot = enter_prot & ~VM_PROT_WRITE;
1436 } else {
1437 /* write fault: must break the loan here */
1438
1439 /* alloc new un-owned page */
1440 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1441
1442 if (pg == NULL) {
1443
1444 /*
1445 * drop ownership of page, it can't
1446 * be released
1447 */
1448
1449 if (uobjpage->flags & PG_WANTED)
1450 wakeup(uobjpage);
1451 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1452 UVM_PAGE_OWN(uobjpage, NULL);
1453
1454 uvmfault_unlockall(&ufi, amap, uobj,
1455 NULL);
1456 UVMHIST_LOG(maphist,
1457 " out of RAM breaking loan, waiting",
1458 0,0,0,0);
1459 uvmexp.fltnoram++;
1460 uvm_wait("flt_noram4");
1461 goto ReFault;
1462 }
1463
1464 /*
1465 * copy the data from the old page to the new
1466 * one and clear the fake/clean flags on the
1467 * new page (keep it busy). force a reload
1468 * of the old page by clearing it from all
1469 * pmaps. then lock the page queues to
1470 * rename the pages.
1471 */
1472
1473 uvm_pagecopy(uobjpage, pg); /* old -> new */
1474 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1475 pmap_page_protect(uobjpage, VM_PROT_NONE);
1476 if (uobjpage->flags & PG_WANTED)
1477 wakeup(uobjpage);
1478 /* uobj still locked */
1479 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1480 UVM_PAGE_OWN(uobjpage, NULL);
1481
1482 uvm_lock_pageq();
1483 offset = uobjpage->offset;
1484 uvm_pagerealloc(uobjpage, NULL, 0);
1485
1486 /*
1487 * at this point we have absolutely no
1488 * control over uobjpage
1489 */
1490
1491 /* install new page */
1492 uvm_pageactivate(pg);
1493 uvm_pagerealloc(pg, uobj, offset);
1494 uvm_unlock_pageq();
1495
1496 /*
1497 * done! loan is broken and "pg" is
1498 * PG_BUSY. it can now replace uobjpage.
1499 */
1500
1501 uobjpage = pg;
1502 }
1503 }
1504 } else {
1505
1506 /*
1507 * if we are going to promote the data to an anon we
1508 * allocate a blank anon here and plug it into our amap.
1509 */
1510 #if DIAGNOSTIC
1511 if (amap == NULL)
1512 panic("uvm_fault: want to promote data, but no anon");
1513 #endif
1514
1515 anon = uvm_analloc();
1516 if (anon) {
1517
1518 /*
1519 * The new anon is locked.
1520 *
1521 * In `Fill in data...' below, if
1522 * uobjpage == PGO_DONTCARE, we want
1523 * a zero'd, dirty page, so have
1524 * uvm_pagealloc() do that for us.
1525 */
1526
1527 pg = uvm_pagealloc(NULL, 0, anon,
1528 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1529 }
1530
1531 /*
1532 * out of memory resources?
1533 */
1534
1535 if (anon == NULL || pg == NULL) {
1536 if (anon != NULL) {
1537 anon->an_ref--;
1538 simple_unlock(&anon->an_lock);
1539 uvm_anfree(anon);
1540 }
1541
1542 /*
1543 * arg! must unbusy our page and fail or sleep.
1544 */
1545
1546 if (uobjpage != PGO_DONTCARE) {
1547 if (uobjpage->flags & PG_WANTED)
1548 /* still holding object lock */
1549 wakeup(uobjpage);
1550
1551 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1552 UVM_PAGE_OWN(uobjpage, NULL);
1553 }
1554
1555 /* unlock and fail ... */
1556 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1557 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1558 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1559 UVMHIST_LOG(maphist, " promote: out of VM",
1560 0,0,0,0);
1561 uvmexp.fltnoanon++;
1562 return ENOMEM;
1563 }
1564
1565 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1566 0,0,0,0);
1567 uvmexp.fltnoram++;
1568 uvm_wait("flt_noram5");
1569 goto ReFault;
1570 }
1571
1572 /*
1573 * fill in the data
1574 */
1575
1576 if (uobjpage != PGO_DONTCARE) {
1577 uvmexp.flt_prcopy++;
1578 /* copy page [pg now dirty] */
1579 uvm_pagecopy(uobjpage, pg);
1580
1581 /*
1582 * promote to shared amap? make sure all sharing
1583 * procs see it
1584 */
1585
1586 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1587 pmap_page_protect(uobjpage, VM_PROT_NONE);
1588 /*
1589 * XXX: PAGE MIGHT BE WIRED!
1590 */
1591 }
1592
1593 /*
1594 * dispose of uobjpage. it can't be PG_RELEASED
1595 * since we still hold the object lock.
1596 * drop handle to uobj as well.
1597 */
1598
1599 if (uobjpage->flags & PG_WANTED)
1600 /* still have the obj lock */
1601 wakeup(uobjpage);
1602 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1603 UVM_PAGE_OWN(uobjpage, NULL);
1604 simple_unlock(&uobj->vmobjlock);
1605 uobj = NULL;
1606
1607 UVMHIST_LOG(maphist,
1608 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1609 uobjpage, anon, pg, 0);
1610
1611 } else {
1612 uvmexp.flt_przero++;
1613
1614 /*
1615 * Page is zero'd and marked dirty by uvm_pagealloc()
1616 * above.
1617 */
1618
1619 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1620 anon, pg, 0, 0);
1621 }
1622 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1623 anon, 0);
1624 }
1625
1626 /*
1627 * locked:
1628 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1629 * anon(if !null), pg(if anon)
1630 *
1631 * note: pg is either the uobjpage or the new page in the new anon
1632 */
1633
1634 /*
1635 * all resources are present. we can now map it in and free our
1636 * resources.
1637 */
1638
1639 UVMHIST_LOG(maphist,
1640 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1641 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1642 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1643 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1644 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1645 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1646
1647 /*
1648 * No need to undo what we did; we can simply think of
1649 * this as the pmap throwing away the mapping information.
1650 *
1651 * We do, however, have to go through the ReFault path,
1652 * as the map may change while we're asleep.
1653 */
1654
1655 if (pg->flags & PG_WANTED)
1656 wakeup(pg);
1657
1658 /*
1659 * note that pg can't be PG_RELEASED since we did not drop
1660 * the object lock since the last time we checked.
1661 */
1662
1663 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1664 UVM_PAGE_OWN(pg, NULL);
1665 uvmfault_unlockall(&ufi, amap, uobj, anon);
1666 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1667 if (uvmexp.swpgonly == uvmexp.swpages) {
1668 UVMHIST_LOG(maphist,
1669 "<- failed. out of VM",0,0,0,0);
1670 /* XXX instrumentation */
1671 return ENOMEM;
1672 }
1673 /* XXX instrumentation */
1674 uvm_wait("flt_pmfail2");
1675 goto ReFault;
1676 }
1677
1678 uvm_lock_pageq();
1679 if (wire_fault) {
1680 uvm_pagewire(pg);
1681 if (pg->pqflags & PQ_AOBJ) {
1682
1683 /*
1684 * since the now-wired page cannot be paged out,
1685 * release its swap resources for others to use.
1686 * since an aobj page with no swap cannot be PG_CLEAN,
1687 * clear its clean flag now.
1688 */
1689
1690 pg->flags &= ~(PG_CLEAN);
1691 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1692 }
1693 } else {
1694 uvm_pageactivate(pg);
1695 }
1696 uvm_unlock_pageq();
1697 if (pg->flags & PG_WANTED)
1698 wakeup(pg);
1699
1700 /*
1701 * note that pg can't be PG_RELEASED since we did not drop the object
1702 * lock since the last time we checked.
1703 */
1704
1705 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1706 UVM_PAGE_OWN(pg, NULL);
1707 uvmfault_unlockall(&ufi, amap, uobj, anon);
1708 pmap_update(ufi.orig_map->pmap);
1709 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1710 return 0;
1711 }
1712
1713 /*
1714 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1715 *
1716 * => map may be read-locked by caller, but MUST NOT be write-locked.
1717 * => if map is read-locked, any operations which may cause map to
1718 * be write-locked in uvm_fault() must be taken care of by
1719 * the caller. See uvm_map_pageable().
1720 */
1721
1722 int
1723 uvm_fault_wire(map, start, end, fault_type, access_type)
1724 struct vm_map *map;
1725 vaddr_t start, end;
1726 vm_fault_t fault_type;
1727 vm_prot_t access_type;
1728 {
1729 vaddr_t va;
1730 int error;
1731
1732 /*
1733 * now fault it in a page at a time. if the fault fails then we have
1734 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1735 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1736 */
1737
1738 /*
1739 * XXX work around overflowing a vaddr_t. this prevents us from
1740 * wiring the last page in the address space, though.
1741 */
1742 if (start > end) {
1743 return EFAULT;
1744 }
1745
1746 for (va = start ; va < end ; va += PAGE_SIZE) {
1747 error = uvm_fault(map, va, fault_type, access_type);
1748 if (error) {
1749 if (va != start) {
1750 uvm_fault_unwire(map, start, va);
1751 }
1752 return error;
1753 }
1754 }
1755 return 0;
1756 }
1757
1758 /*
1759 * uvm_fault_unwire(): unwire range of virtual space.
1760 */
1761
1762 void
1763 uvm_fault_unwire(map, start, end)
1764 struct vm_map *map;
1765 vaddr_t start, end;
1766 {
1767 vm_map_lock_read(map);
1768 uvm_fault_unwire_locked(map, start, end);
1769 vm_map_unlock_read(map);
1770 }
1771
1772 /*
1773 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1774 *
1775 * => map must be at least read-locked.
1776 */
1777
1778 void
1779 uvm_fault_unwire_locked(map, start, end)
1780 struct vm_map *map;
1781 vaddr_t start, end;
1782 {
1783 struct vm_map_entry *entry;
1784 pmap_t pmap = vm_map_pmap(map);
1785 vaddr_t va;
1786 paddr_t pa;
1787 struct vm_page *pg;
1788
1789 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1790
1791 /*
1792 * we assume that the area we are unwiring has actually been wired
1793 * in the first place. this means that we should be able to extract
1794 * the PAs from the pmap. we also lock out the page daemon so that
1795 * we can call uvm_pageunwire.
1796 */
1797
1798 uvm_lock_pageq();
1799
1800 /*
1801 * find the beginning map entry for the region.
1802 */
1803
1804 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1805 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1806 panic("uvm_fault_unwire_locked: address not in map");
1807
1808 for (va = start; va < end; va += PAGE_SIZE) {
1809 if (pmap_extract(pmap, va, &pa) == FALSE)
1810 continue;
1811
1812 /*
1813 * find the map entry for the current address.
1814 */
1815
1816 KASSERT(va >= entry->start);
1817 while (va >= entry->end) {
1818 KASSERT(entry->next != &map->header &&
1819 entry->next->start <= entry->end);
1820 entry = entry->next;
1821 }
1822
1823 /*
1824 * if the entry is no longer wired, tell the pmap.
1825 */
1826
1827 if (VM_MAPENT_ISWIRED(entry) == 0)
1828 pmap_unwire(pmap, va);
1829
1830 pg = PHYS_TO_VM_PAGE(pa);
1831 if (pg)
1832 uvm_pageunwire(pg);
1833 }
1834
1835 uvm_unlock_pageq();
1836 }
1837