uvm_fault.c revision 1.67.4.1 1 /* $NetBSD: uvm_fault.c,v 1.67.4.1 2001/10/01 12:48:39 fvdl Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 #include "opt_uvmhist.h"
38
39 /*
40 * uvm_fault.c: fault handler
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/user.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 *
55 * a word on page faults:
56 *
57 * types of page faults we handle:
58 *
59 * CASE 1: upper layer faults CASE 2: lower layer faults
60 *
61 * CASE 1A CASE 1B CASE 2A CASE 2B
62 * read/write1 write>1 read/write +-cow_write/zero
63 * | | | |
64 * +--|--+ +--|--+ +-----+ + | + | +-----+
65 * amap | V | | ----------->new| | | | ^ |
66 * +-----+ +-----+ +-----+ + | + | +--|--+
67 * | | |
68 * +-----+ +-----+ +--|--+ | +--|--+
69 * uobj | d/c | | d/c | | V | +----| |
70 * +-----+ +-----+ +-----+ +-----+
71 *
72 * d/c = don't care
73 *
74 * case [0]: layerless fault
75 * no amap or uobj is present. this is an error.
76 *
77 * case [1]: upper layer fault [anon active]
78 * 1A: [read] or [write with anon->an_ref == 1]
79 * I/O takes place in top level anon and uobj is not touched.
80 * 1B: [write with anon->an_ref > 1]
81 * new anon is alloc'd and data is copied off ["COW"]
82 *
83 * case [2]: lower layer fault [uobj]
84 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
85 * I/O takes place directly in object.
86 * 2B: [write to copy_on_write] or [read on NULL uobj]
87 * data is "promoted" from uobj to a new anon.
88 * if uobj is null, then we zero fill.
89 *
90 * we follow the standard UVM locking protocol ordering:
91 *
92 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
93 * we hold a PG_BUSY page if we unlock for I/O
94 *
95 *
96 * the code is structured as follows:
97 *
98 * - init the "IN" params in the ufi structure
99 * ReFault:
100 * - do lookups [locks maps], check protection, handle needs_copy
101 * - check for case 0 fault (error)
102 * - establish "range" of fault
103 * - if we have an amap lock it and extract the anons
104 * - if sequential advice deactivate pages behind us
105 * - at the same time check pmap for unmapped areas and anon for pages
106 * that we could map in (and do map it if found)
107 * - check object for resident pages that we could map in
108 * - if (case 2) goto Case2
109 * - >>> handle case 1
110 * - ensure source anon is resident in RAM
111 * - if case 1B alloc new anon and copy from source
112 * - map the correct page in
113 * Case2:
114 * - >>> handle case 2
115 * - ensure source page is resident (if uobj)
116 * - if case 2B alloc new anon and copy from source (could be zero
117 * fill if uobj == NULL)
118 * - map the correct page in
119 * - done!
120 *
121 * note on paging:
122 * if we have to do I/O we place a PG_BUSY page in the correct object,
123 * unlock everything, and do the I/O. when I/O is done we must reverify
124 * the state of the world before assuming that our data structures are
125 * valid. [because mappings could change while the map is unlocked]
126 *
127 * alternative 1: unbusy the page in question and restart the page fault
128 * from the top (ReFault). this is easy but does not take advantage
129 * of the information that we already have from our previous lookup,
130 * although it is possible that the "hints" in the vm_map will help here.
131 *
132 * alternative 2: the system already keeps track of a "version" number of
133 * a map. [i.e. every time you write-lock a map (e.g. to change a
134 * mapping) you bump the version number up by one...] so, we can save
135 * the version number of the map before we release the lock and start I/O.
136 * then when I/O is done we can relock and check the version numbers
137 * to see if anything changed. this might save us some over 1 because
138 * we don't have to unbusy the page and may be less compares(?).
139 *
140 * alternative 3: put in backpointers or a way to "hold" part of a map
141 * in place while I/O is in progress. this could be complex to
142 * implement (especially with structures like amap that can be referenced
143 * by multiple map entries, and figuring out what should wait could be
144 * complex as well...).
145 *
146 * given that we are not currently multiprocessor or multithreaded we might
147 * as well choose alternative 2 now. maybe alternative 3 would be useful
148 * in the future. XXX keep in mind for future consideration//rechecking.
149 */
150
151 /*
152 * local data structures
153 */
154
155 struct uvm_advice {
156 int advice;
157 int nback;
158 int nforw;
159 };
160
161 /*
162 * page range array:
163 * note: index in array must match "advice" value
164 * XXX: borrowed numbers from freebsd. do they work well for us?
165 */
166
167 static struct uvm_advice uvmadvice[] = {
168 { MADV_NORMAL, 3, 4 },
169 { MADV_RANDOM, 0, 0 },
170 { MADV_SEQUENTIAL, 8, 7},
171 };
172
173 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
174
175 /*
176 * private prototypes
177 */
178
179 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
180 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(anons, n)
194 struct vm_anon **anons;
195 int n;
196 {
197 int lcv;
198 struct vm_page *pg;
199
200 for (lcv = 0 ; lcv < n ; lcv++) {
201 if (anons[lcv] == NULL)
202 continue;
203 simple_lock(&anons[lcv]->an_lock);
204 pg = anons[lcv]->u.an_page;
205 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
206 uvm_lock_pageq();
207 if (pg->wire_count == 0) {
208 pmap_clear_reference(pg);
209 uvm_pagedeactivate(pg);
210 }
211 uvm_unlock_pageq();
212 }
213 simple_unlock(&anons[lcv]->an_lock);
214 }
215 }
216
217 /*
218 * normal functions
219 */
220
221 /*
222 * uvmfault_amapcopy: clear "needs_copy" in a map.
223 *
224 * => called with VM data structures unlocked (usually, see below)
225 * => we get a write lock on the maps and clear needs_copy for a VA
226 * => if we are out of RAM we sleep (waiting for more)
227 */
228
229 static void
230 uvmfault_amapcopy(ufi)
231 struct uvm_faultinfo *ufi;
232 {
233 for (;;) {
234
235 /*
236 * no mapping? give up.
237 */
238
239 if (uvmfault_lookup(ufi, TRUE) == FALSE)
240 return;
241
242 /*
243 * copy if needed.
244 */
245
246 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
247 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
248 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
249
250 /*
251 * didn't work? must be out of RAM. unlock and sleep.
252 */
253
254 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
255 uvmfault_unlockmaps(ufi, TRUE);
256 uvm_wait("fltamapcopy");
257 continue;
258 }
259
260 /*
261 * got it! unlock and return.
262 */
263
264 uvmfault_unlockmaps(ufi, TRUE);
265 return;
266 }
267 /*NOTREACHED*/
268 }
269
270 /*
271 * uvmfault_anonget: get data in an anon into a non-busy, non-released
272 * page in that anon.
273 *
274 * => maps, amap, and anon locked by caller.
275 * => if we fail (result != 0) we unlock everything.
276 * => if we are successful, we return with everything still locked.
277 * => we don't move the page on the queues [gets moved later]
278 * => if we allocate a new page [we_own], it gets put on the queues.
279 * either way, the result is that the page is on the queues at return time
280 * => for pages which are on loan from a uvm_object (and thus are not
281 * owned by the anon): if successful, we return with the owning object
282 * locked. the caller must unlock this object when it unlocks everything
283 * else.
284 */
285
286 int
287 uvmfault_anonget(ufi, amap, anon)
288 struct uvm_faultinfo *ufi;
289 struct vm_amap *amap;
290 struct vm_anon *anon;
291 {
292 boolean_t we_own; /* we own anon's page? */
293 boolean_t locked; /* did we relock? */
294 struct vm_page *pg;
295 int error;
296 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
297
298 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
299
300 error = 0;
301 uvmexp.fltanget++;
302 /* bump rusage counters */
303 if (anon->u.an_page)
304 curproc->p_addr->u_stats.p_ru.ru_minflt++;
305 else
306 curproc->p_addr->u_stats.p_ru.ru_majflt++;
307
308 /*
309 * loop until we get it, or fail.
310 */
311
312 for (;;) {
313 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
314 pg = anon->u.an_page;
315
316 /*
317 * if there is a resident page and it is loaned, then anon
318 * may not own it. call out to uvm_anon_lockpage() to ensure
319 * the real owner of the page has been identified and locked.
320 */
321
322 if (pg && pg->loan_count)
323 pg = uvm_anon_lockloanpg(anon);
324
325 /*
326 * page there? make sure it is not busy/released.
327 */
328
329 if (pg) {
330
331 /*
332 * at this point, if the page has a uobject [meaning
333 * we have it on loan], then that uobject is locked
334 * by us! if the page is busy, we drop all the
335 * locks (including uobject) and try again.
336 */
337
338 if ((pg->flags & PG_BUSY) == 0) {
339 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
340 return (0);
341 }
342 pg->flags |= PG_WANTED;
343 uvmexp.fltpgwait++;
344
345 /*
346 * the last unlock must be an atomic unlock+wait on
347 * the owner of page
348 */
349
350 if (pg->uobject) { /* owner is uobject ? */
351 uvmfault_unlockall(ufi, amap, NULL, anon);
352 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
353 0,0,0);
354 UVM_UNLOCK_AND_WAIT(pg,
355 &pg->uobject->vmobjlock,
356 FALSE, "anonget1",0);
357 } else {
358 /* anon owns page */
359 uvmfault_unlockall(ufi, amap, NULL, NULL);
360 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
361 0,0,0);
362 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
363 "anonget2",0);
364 }
365 } else {
366
367 /*
368 * no page, we must try and bring it in.
369 */
370
371 pg = uvm_pagealloc(NULL, 0, anon, 0);
372 if (pg == NULL) { /* out of RAM. */
373 uvmfault_unlockall(ufi, amap, NULL, anon);
374 uvmexp.fltnoram++;
375 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
376 0,0,0);
377 uvm_wait("flt_noram1");
378 } else {
379 /* we set the PG_BUSY bit */
380 we_own = TRUE;
381 uvmfault_unlockall(ufi, amap, NULL, anon);
382
383 /*
384 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
385 * page into the uvm_swap_get function with
386 * all data structures unlocked. note that
387 * it is ok to read an_swslot here because
388 * we hold PG_BUSY on the page.
389 */
390 uvmexp.pageins++;
391 error = uvm_swap_get(pg, anon->an_swslot,
392 PGO_SYNCIO);
393
394 /*
395 * we clean up after the i/o below in the
396 * "we_own" case
397 */
398 }
399 }
400
401 /*
402 * now relock and try again
403 */
404
405 locked = uvmfault_relock(ufi);
406 if (locked && amap != NULL) {
407 amap_lock(amap);
408 }
409 if (locked || we_own)
410 simple_lock(&anon->an_lock);
411
412 /*
413 * if we own the page (i.e. we set PG_BUSY), then we need
414 * to clean up after the I/O. there are three cases to
415 * consider:
416 * [1] page released during I/O: free anon and ReFault.
417 * [2] I/O not OK. free the page and cause the fault
418 * to fail.
419 * [3] I/O OK! activate the page and sync with the
420 * non-we_own case (i.e. drop anon lock if not locked).
421 */
422
423 if (we_own) {
424 if (pg->flags & PG_WANTED) {
425 wakeup(pg);
426 }
427 if (error) {
428 /* remove page from anon */
429 anon->u.an_page = NULL;
430
431 /*
432 * remove the swap slot from the anon
433 * and mark the anon as having no real slot.
434 * don't free the swap slot, thus preventing
435 * it from being used again.
436 */
437
438 uvm_swap_markbad(anon->an_swslot, 1);
439 anon->an_swslot = SWSLOT_BAD;
440
441 /*
442 * note: page was never !PG_BUSY, so it
443 * can't be mapped and thus no need to
444 * pmap_page_protect it...
445 */
446
447 uvm_lock_pageq();
448 uvm_pagefree(pg);
449 uvm_unlock_pageq();
450
451 if (locked)
452 uvmfault_unlockall(ufi, amap, NULL,
453 anon);
454 else
455 simple_unlock(&anon->an_lock);
456 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
457 return error;
458 }
459
460 /*
461 * we've successfully read the page, activate it.
462 */
463
464 uvm_lock_pageq();
465 uvm_pageactivate(pg);
466 uvm_unlock_pageq();
467 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
468 UVM_PAGE_OWN(pg, NULL);
469 if (!locked)
470 simple_unlock(&anon->an_lock);
471 }
472
473 /*
474 * we were not able to relock. restart fault.
475 */
476
477 if (!locked) {
478 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
479 return (ERESTART);
480 }
481
482 /*
483 * verify no one has touched the amap and moved the anon on us.
484 */
485
486 if (ufi != NULL &&
487 amap_lookup(&ufi->entry->aref,
488 ufi->orig_rvaddr - ufi->entry->start) != anon) {
489
490 uvmfault_unlockall(ufi, amap, NULL, anon);
491 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
492 return (ERESTART);
493 }
494
495 /*
496 * try it again!
497 */
498
499 uvmexp.fltanretry++;
500 continue;
501 }
502 /*NOTREACHED*/
503 }
504
505 /*
506 * F A U L T - m a i n e n t r y p o i n t
507 */
508
509 /*
510 * uvm_fault: page fault handler
511 *
512 * => called from MD code to resolve a page fault
513 * => VM data structures usually should be unlocked. however, it is
514 * possible to call here with the main map locked if the caller
515 * gets a write lock, sets it recusive, and then calls us (c.f.
516 * uvm_map_pageable). this should be avoided because it keeps
517 * the map locked off during I/O.
518 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
519 */
520
521 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
522 ~VM_PROT_WRITE : VM_PROT_ALL)
523
524 int
525 uvm_fault(orig_map, vaddr, fault_type, access_type)
526 struct vm_map *orig_map;
527 vaddr_t vaddr;
528 vm_fault_t fault_type;
529 vm_prot_t access_type;
530 {
531 struct uvm_faultinfo ufi;
532 vm_prot_t enter_prot;
533 boolean_t wired, narrow, promote, locked, shadowed;
534 int npages, nback, nforw, centeridx, error, lcv, gotpages;
535 vaddr_t startva, objaddr, currva, offset, uoff;
536 paddr_t pa;
537 struct vm_amap *amap;
538 struct uvm_object *uobj;
539 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
540 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
541 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
542
543 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
544 orig_map, vaddr, fault_type, access_type);
545
546 anon = NULL;
547 pg = NULL;
548
549 uvmexp.faults++; /* XXX: locking? */
550
551 /*
552 * init the IN parameters in the ufi
553 */
554
555 ufi.orig_map = orig_map;
556 ufi.orig_rvaddr = trunc_page(vaddr);
557 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
558 if (fault_type == VM_FAULT_WIRE)
559 narrow = TRUE; /* don't look for neighborhood
560 * pages on wire */
561 else
562 narrow = FALSE; /* normal fault */
563
564 /*
565 * "goto ReFault" means restart the page fault from ground zero.
566 */
567 ReFault:
568
569 /*
570 * lookup and lock the maps
571 */
572
573 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
574 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
575 return (EFAULT);
576 }
577 /* locked: maps(read) */
578
579 #ifdef DIAGNOSTIC
580 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
581 printf("Page fault on non-pageable map:\n");
582 printf("ufi.map = %p\n", ufi.map);
583 printf("ufi.orig_map = %p\n", ufi.orig_map);
584 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
585 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
586 }
587 #endif
588
589 /*
590 * check protection
591 */
592
593 if ((ufi.entry->protection & access_type) != access_type) {
594 UVMHIST_LOG(maphist,
595 "<- protection failure (prot=0x%x, access=0x%x)",
596 ufi.entry->protection, access_type, 0, 0);
597 uvmfault_unlockmaps(&ufi, FALSE);
598 return EACCES;
599 }
600
601 /*
602 * "enter_prot" is the protection we want to enter the page in at.
603 * for certain pages (e.g. copy-on-write pages) this protection can
604 * be more strict than ufi.entry->protection. "wired" means either
605 * the entry is wired or we are fault-wiring the pg.
606 */
607
608 enter_prot = ufi.entry->protection;
609 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
610 if (wired)
611 access_type = enter_prot; /* full access for wired */
612
613 /*
614 * handle "needs_copy" case. if we need to copy the amap we will
615 * have to drop our readlock and relock it with a write lock. (we
616 * need a write lock to change anything in a map entry [e.g.
617 * needs_copy]).
618 */
619
620 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
621 if ((access_type & VM_PROT_WRITE) ||
622 (ufi.entry->object.uvm_obj == NULL)) {
623 /* need to clear */
624 UVMHIST_LOG(maphist,
625 " need to clear needs_copy and refault",0,0,0,0);
626 uvmfault_unlockmaps(&ufi, FALSE);
627 uvmfault_amapcopy(&ufi);
628 uvmexp.fltamcopy++;
629 goto ReFault;
630
631 } else {
632
633 /*
634 * ensure that we pmap_enter page R/O since
635 * needs_copy is still true
636 */
637 enter_prot &= ~VM_PROT_WRITE;
638
639 }
640 }
641
642 /*
643 * identify the players
644 */
645
646 amap = ufi.entry->aref.ar_amap; /* top layer */
647 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
648
649 /*
650 * check for a case 0 fault. if nothing backing the entry then
651 * error now.
652 */
653
654 if (amap == NULL && uobj == NULL) {
655 uvmfault_unlockmaps(&ufi, FALSE);
656 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
657 return (EFAULT);
658 }
659
660 /*
661 * establish range of interest based on advice from mapper
662 * and then clip to fit map entry. note that we only want
663 * to do this the first time through the fault. if we
664 * ReFault we will disable this by setting "narrow" to true.
665 */
666
667 if (narrow == FALSE) {
668
669 /* wide fault (!narrow) */
670 KASSERT(uvmadvice[ufi.entry->advice].advice ==
671 ufi.entry->advice);
672 nback = MIN(uvmadvice[ufi.entry->advice].nback,
673 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
674 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
675 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
676 ((ufi.entry->end - ufi.orig_rvaddr) >>
677 PAGE_SHIFT) - 1);
678 /*
679 * note: "-1" because we don't want to count the
680 * faulting page as forw
681 */
682 npages = nback + nforw + 1;
683 centeridx = nback;
684
685 narrow = TRUE; /* ensure only once per-fault */
686
687 } else {
688
689 /* narrow fault! */
690 nback = nforw = 0;
691 startva = ufi.orig_rvaddr;
692 npages = 1;
693 centeridx = 0;
694
695 }
696
697 /* locked: maps(read) */
698 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
699 narrow, nback, nforw, startva);
700 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
701 amap, uobj, 0);
702
703 /*
704 * if we've got an amap, lock it and extract current anons.
705 */
706
707 if (amap) {
708 amap_lock(amap);
709 anons = anons_store;
710 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
711 anons, npages);
712 } else {
713 anons = NULL; /* to be safe */
714 }
715
716 /* locked: maps(read), amap(if there) */
717
718 /*
719 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
720 * now and then forget about them (for the rest of the fault).
721 */
722
723 if (ufi.entry->advice == MADV_SEQUENTIAL) {
724
725 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
726 0,0,0,0);
727 /* flush back-page anons? */
728 if (amap)
729 uvmfault_anonflush(anons, nback);
730
731 /* flush object? */
732 if (uobj) {
733 objaddr =
734 (startva - ufi.entry->start) + ufi.entry->offset;
735 simple_lock(&uobj->vmobjlock);
736 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
737 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
738 }
739
740 /* now forget about the backpages */
741 if (amap)
742 anons += nback;
743 startva += (nback << PAGE_SHIFT);
744 npages -= nback;
745 nback = centeridx = 0;
746 }
747
748 /* locked: maps(read), amap(if there) */
749
750 /*
751 * map in the backpages and frontpages we found in the amap in hopes
752 * of preventing future faults. we also init the pages[] array as
753 * we go.
754 */
755
756 currva = startva;
757 shadowed = FALSE;
758 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
759
760 /*
761 * dont play with VAs that are already mapped
762 * except for center)
763 */
764 if (lcv != centeridx &&
765 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
766 pages[lcv] = PGO_DONTCARE;
767 continue;
768 }
769
770 /*
771 * unmapped or center page. check if any anon at this level.
772 */
773 if (amap == NULL || anons[lcv] == NULL) {
774 pages[lcv] = NULL;
775 continue;
776 }
777
778 /*
779 * check for present page and map if possible. re-activate it.
780 */
781
782 pages[lcv] = PGO_DONTCARE;
783 if (lcv == centeridx) { /* save center for later! */
784 shadowed = TRUE;
785 continue;
786 }
787 anon = anons[lcv];
788 simple_lock(&anon->an_lock);
789 /* ignore loaned pages */
790 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
791 (anon->u.an_page->flags & PG_BUSY) == 0) {
792 uvm_lock_pageq();
793 uvm_pageactivate(anon->u.an_page);
794 uvm_unlock_pageq();
795 UVMHIST_LOG(maphist,
796 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
797 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
798 uvmexp.fltnamap++;
799
800 /*
801 * Since this isn't the page that's actually faulting,
802 * ignore pmap_enter() failures; it's not critical
803 * that we enter these right now.
804 */
805
806 (void) pmap_enter(ufi.orig_map->pmap, currva,
807 VM_PAGE_TO_PHYS(anon->u.an_page),
808 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
809 enter_prot,
810 PMAP_CANFAIL |
811 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
812 }
813 simple_unlock(&anon->an_lock);
814 pmap_update(ufi.orig_map->pmap);
815 }
816
817 /* locked: maps(read), amap(if there) */
818 /* (shadowed == TRUE) if there is an anon at the faulting address */
819 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
820 (uobj && shadowed == FALSE),0,0);
821
822 /*
823 * note that if we are really short of RAM we could sleep in the above
824 * call to pmap_enter with everything locked. bad?
825 *
826 * XXX Actually, that is bad; pmap_enter() should just fail in that
827 * XXX case. --thorpej
828 */
829
830 /*
831 * if the desired page is not shadowed by the amap and we have a
832 * backing object, then we check to see if the backing object would
833 * prefer to handle the fault itself (rather than letting us do it
834 * with the usual pgo_get hook). the backing object signals this by
835 * providing a pgo_fault routine.
836 */
837
838 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
839 simple_lock(&uobj->vmobjlock);
840
841 /* locked: maps(read), amap (if there), uobj */
842 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
843 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
844
845 /* locked: nothing, pgo_fault has unlocked everything */
846
847 if (error == ERESTART)
848 goto ReFault; /* try again! */
849 /*
850 * object fault routine responsible for pmap_update().
851 */
852 return error;
853 }
854
855 /*
856 * now, if the desired page is not shadowed by the amap and we have
857 * a backing object that does not have a special fault routine, then
858 * we ask (with pgo_get) the object for resident pages that we care
859 * about and attempt to map them in. we do not let pgo_get block
860 * (PGO_LOCKED).
861 */
862
863 if (uobj && shadowed == FALSE) {
864 simple_lock(&uobj->vmobjlock);
865
866 /* locked (!shadowed): maps(read), amap (if there), uobj */
867 /*
868 * the following call to pgo_get does _not_ change locking state
869 */
870
871 uvmexp.fltlget++;
872 gotpages = npages;
873 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
874 (startva - ufi.entry->start),
875 pages, &gotpages, centeridx,
876 access_type & MASK(ufi.entry),
877 ufi.entry->advice, PGO_LOCKED);
878
879 /*
880 * check for pages to map, if we got any
881 */
882
883 uobjpage = NULL;
884
885 if (gotpages) {
886 currva = startva;
887 for (lcv = 0; lcv < npages;
888 lcv++, currva += PAGE_SIZE) {
889 if (pages[lcv] == NULL ||
890 pages[lcv] == PGO_DONTCARE) {
891 continue;
892 }
893
894 /*
895 * if center page is resident and not
896 * PG_BUSY|PG_RELEASED then pgo_get
897 * made it PG_BUSY for us and gave
898 * us a handle to it. remember this
899 * page as "uobjpage." (for later use).
900 */
901
902 if (lcv == centeridx) {
903 uobjpage = pages[lcv];
904 UVMHIST_LOG(maphist, " got uobjpage "
905 "(0x%x) with locked get",
906 uobjpage, 0,0,0);
907 continue;
908 }
909
910 /*
911 * calling pgo_get with PGO_LOCKED returns us
912 * pages which are neither busy nor released,
913 * so we don't need to check for this.
914 * we can just directly enter the pages.
915 */
916
917 uvm_lock_pageq();
918 uvm_pageactivate(pages[lcv]);
919 uvm_unlock_pageq();
920 UVMHIST_LOG(maphist,
921 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
922 ufi.orig_map->pmap, currva, pages[lcv], 0);
923 uvmexp.fltnomap++;
924
925 /*
926 * Since this page isn't the page that's
927 * actually fauling, ignore pmap_enter()
928 * failures; it's not critical that we
929 * enter these right now.
930 */
931
932 (void) pmap_enter(ufi.orig_map->pmap, currva,
933 VM_PAGE_TO_PHYS(pages[lcv]),
934 pages[lcv]->flags & PG_RDONLY ?
935 VM_PROT_READ : enter_prot & MASK(ufi.entry),
936 PMAP_CANFAIL |
937 (wired ? PMAP_WIRED : 0));
938
939 /*
940 * NOTE: page can't be PG_WANTED or PG_RELEASED
941 * because we've held the lock the whole time
942 * we've had the handle.
943 */
944
945 pages[lcv]->flags &= ~(PG_BUSY);
946 UVM_PAGE_OWN(pages[lcv], NULL);
947 }
948 pmap_update(ufi.orig_map->pmap);
949 }
950 } else {
951 uobjpage = NULL;
952 }
953
954 /* locked (shadowed): maps(read), amap */
955 /* locked (!shadowed): maps(read), amap(if there),
956 uobj(if !null), uobjpage(if !null) */
957
958 /*
959 * note that at this point we are done with any front or back pages.
960 * we are now going to focus on the center page (i.e. the one we've
961 * faulted on). if we have faulted on the top (anon) layer
962 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
963 * not touched it yet). if we have faulted on the bottom (uobj)
964 * layer [i.e. case 2] and the page was both present and available,
965 * then we've got a pointer to it as "uobjpage" and we've already
966 * made it BUSY.
967 */
968
969 /*
970 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
971 */
972
973 /*
974 * redirect case 2: if we are not shadowed, go to case 2.
975 */
976
977 if (shadowed == FALSE)
978 goto Case2;
979
980 /* locked: maps(read), amap */
981
982 /*
983 * handle case 1: fault on an anon in our amap
984 */
985
986 anon = anons[centeridx];
987 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
988 simple_lock(&anon->an_lock);
989
990 /* locked: maps(read), amap, anon */
991
992 /*
993 * no matter if we have case 1A or case 1B we are going to need to
994 * have the anon's memory resident. ensure that now.
995 */
996
997 /*
998 * let uvmfault_anonget do the dirty work.
999 * if it fails (!OK) it will unlock everything for us.
1000 * if it succeeds, locks are still valid and locked.
1001 * also, if it is OK, then the anon's page is on the queues.
1002 * if the page is on loan from a uvm_object, then anonget will
1003 * lock that object for us if it does not fail.
1004 */
1005
1006 error = uvmfault_anonget(&ufi, amap, anon);
1007 switch (error) {
1008 case 0:
1009 break;
1010
1011 case ERESTART:
1012 goto ReFault;
1013
1014 case EAGAIN:
1015 tsleep(&lbolt, PVM, "fltagain1", 0);
1016 goto ReFault;
1017
1018 default:
1019 return error;
1020 }
1021
1022 /*
1023 * uobj is non null if the page is on loan from an object (i.e. uobj)
1024 */
1025
1026 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1027
1028 /* locked: maps(read), amap, anon, uobj(if one) */
1029
1030 /*
1031 * special handling for loaned pages
1032 */
1033
1034 if (anon->u.an_page->loan_count) {
1035
1036 if ((access_type & VM_PROT_WRITE) == 0) {
1037
1038 /*
1039 * for read faults on loaned pages we just cap the
1040 * protection at read-only.
1041 */
1042
1043 enter_prot = enter_prot & ~VM_PROT_WRITE;
1044
1045 } else {
1046 /*
1047 * note that we can't allow writes into a loaned page!
1048 *
1049 * if we have a write fault on a loaned page in an
1050 * anon then we need to look at the anon's ref count.
1051 * if it is greater than one then we are going to do
1052 * a normal copy-on-write fault into a new anon (this
1053 * is not a problem). however, if the reference count
1054 * is one (a case where we would normally allow a
1055 * write directly to the page) then we need to kill
1056 * the loan before we continue.
1057 */
1058
1059 /* >1 case is already ok */
1060 if (anon->an_ref == 1) {
1061
1062 /* get new un-owned replacement page */
1063 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1064 if (pg == NULL) {
1065 uvmfault_unlockall(&ufi, amap, uobj,
1066 anon);
1067 uvm_wait("flt_noram2");
1068 goto ReFault;
1069 }
1070
1071 /*
1072 * copy data, kill loan, and drop uobj lock
1073 * (if any)
1074 */
1075 /* copy old -> new */
1076 uvm_pagecopy(anon->u.an_page, pg);
1077
1078 /* force reload */
1079 pmap_page_protect(anon->u.an_page,
1080 VM_PROT_NONE);
1081 uvm_lock_pageq(); /* KILL loan */
1082 if (uobj)
1083 /* if we were loaning */
1084 anon->u.an_page->loan_count--;
1085 anon->u.an_page->uanon = NULL;
1086 /* in case we owned */
1087 anon->u.an_page->pqflags &= ~PQ_ANON;
1088 uvm_unlock_pageq();
1089 if (uobj) {
1090 simple_unlock(&uobj->vmobjlock);
1091 uobj = NULL;
1092 }
1093
1094 /* install new page in anon */
1095 anon->u.an_page = pg;
1096 pg->uanon = anon;
1097 pg->pqflags |= PQ_ANON;
1098 pg->flags &= ~(PG_BUSY|PG_FAKE);
1099 UVM_PAGE_OWN(pg, NULL);
1100
1101 /* done! */
1102 } /* ref == 1 */
1103 } /* write fault */
1104 } /* loan count */
1105
1106 /*
1107 * if we are case 1B then we will need to allocate a new blank
1108 * anon to transfer the data into. note that we have a lock
1109 * on anon, so no one can busy or release the page until we are done.
1110 * also note that the ref count can't drop to zero here because
1111 * it is > 1 and we are only dropping one ref.
1112 *
1113 * in the (hopefully very rare) case that we are out of RAM we
1114 * will unlock, wait for more RAM, and refault.
1115 *
1116 * if we are out of anon VM we kill the process (XXX: could wait?).
1117 */
1118
1119 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1120
1121 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1122 uvmexp.flt_acow++;
1123 oanon = anon; /* oanon = old, locked anon */
1124 anon = uvm_analloc();
1125 if (anon) {
1126 /* new anon is locked! */
1127 pg = uvm_pagealloc(NULL, 0, anon, 0);
1128 }
1129
1130 /* check for out of RAM */
1131 if (anon == NULL || pg == NULL) {
1132 if (anon) {
1133 anon->an_ref--;
1134 simple_unlock(&anon->an_lock);
1135 uvm_anfree(anon);
1136 }
1137 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1138 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1139 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1140 UVMHIST_LOG(maphist,
1141 "<- failed. out of VM",0,0,0,0);
1142 uvmexp.fltnoanon++;
1143 return ENOMEM;
1144 }
1145
1146 uvmexp.fltnoram++;
1147 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1148 goto ReFault;
1149 }
1150
1151 /* got all resources, replace anon with nanon */
1152 uvm_pagecopy(oanon->u.an_page, pg);
1153 uvm_pageactivate(pg);
1154 pg->flags &= ~(PG_BUSY|PG_FAKE);
1155 UVM_PAGE_OWN(pg, NULL);
1156 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1157 anon, 1);
1158
1159 /* deref: can not drop to zero here by defn! */
1160 oanon->an_ref--;
1161
1162 /*
1163 * note: oanon is still locked, as is the new anon. we
1164 * need to check for this later when we unlock oanon; if
1165 * oanon != anon, we'll have to unlock anon, too.
1166 */
1167
1168 } else {
1169
1170 uvmexp.flt_anon++;
1171 oanon = anon; /* old, locked anon is same as anon */
1172 pg = anon->u.an_page;
1173 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1174 enter_prot = enter_prot & ~VM_PROT_WRITE;
1175
1176 }
1177
1178 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1179
1180 /*
1181 * now map the page in.
1182 */
1183
1184 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1185 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1186 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1187 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1188 != 0) {
1189
1190 /*
1191 * No need to undo what we did; we can simply think of
1192 * this as the pmap throwing away the mapping information.
1193 *
1194 * We do, however, have to go through the ReFault path,
1195 * as the map may change while we're asleep.
1196 */
1197
1198 if (anon != oanon)
1199 simple_unlock(&anon->an_lock);
1200 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1201 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1202 if (uvmexp.swpgonly == uvmexp.swpages) {
1203 UVMHIST_LOG(maphist,
1204 "<- failed. out of VM",0,0,0,0);
1205 /* XXX instrumentation */
1206 return ENOMEM;
1207 }
1208 /* XXX instrumentation */
1209 uvm_wait("flt_pmfail1");
1210 goto ReFault;
1211 }
1212
1213 /*
1214 * ... update the page queues.
1215 */
1216
1217 uvm_lock_pageq();
1218 if (fault_type == VM_FAULT_WIRE) {
1219 uvm_pagewire(pg);
1220
1221 /*
1222 * since the now-wired page cannot be paged out,
1223 * release its swap resources for others to use.
1224 * since an anon with no swap cannot be PG_CLEAN,
1225 * clear its clean flag now.
1226 */
1227
1228 pg->flags &= ~(PG_CLEAN);
1229 uvm_anon_dropswap(anon);
1230 } else {
1231 uvm_pageactivate(pg);
1232 }
1233 uvm_unlock_pageq();
1234
1235 /*
1236 * done case 1! finish up by unlocking everything and returning success
1237 */
1238
1239 if (anon != oanon)
1240 simple_unlock(&anon->an_lock);
1241 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1242 pmap_update(ufi.orig_map->pmap);
1243 return 0;
1244
1245 Case2:
1246 /*
1247 * handle case 2: faulting on backing object or zero fill
1248 */
1249
1250 /*
1251 * locked:
1252 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1253 */
1254
1255 /*
1256 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1257 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1258 * have a backing object, check and see if we are going to promote
1259 * the data up to an anon during the fault.
1260 */
1261
1262 if (uobj == NULL) {
1263 uobjpage = PGO_DONTCARE;
1264 promote = TRUE; /* always need anon here */
1265 } else {
1266 KASSERT(uobjpage != PGO_DONTCARE);
1267 promote = (access_type & VM_PROT_WRITE) &&
1268 UVM_ET_ISCOPYONWRITE(ufi.entry);
1269 }
1270 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1271 promote, (uobj == NULL), 0,0);
1272
1273 /*
1274 * if uobjpage is not null then we do not need to do I/O to get the
1275 * uobjpage.
1276 *
1277 * if uobjpage is null, then we need to unlock and ask the pager to
1278 * get the data for us. once we have the data, we need to reverify
1279 * the state the world. we are currently not holding any resources.
1280 */
1281
1282 if (uobjpage) {
1283 /* update rusage counters */
1284 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1285 } else {
1286 /* update rusage counters */
1287 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1288
1289 /* locked: maps(read), amap(if there), uobj */
1290 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1291 /* locked: uobj */
1292
1293 uvmexp.fltget++;
1294 gotpages = 1;
1295 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1296 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1297 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1298 PGO_SYNCIO);
1299 /* locked: uobjpage(if no error) */
1300
1301 /*
1302 * recover from I/O
1303 */
1304
1305 if (error) {
1306 if (error == EAGAIN) {
1307 UVMHIST_LOG(maphist,
1308 " pgo_get says TRY AGAIN!",0,0,0,0);
1309 tsleep(&lbolt, PVM, "fltagain2", 0);
1310 goto ReFault;
1311 }
1312
1313 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1314 error, 0,0,0);
1315 return error;
1316 }
1317
1318 /* locked: uobjpage */
1319
1320 uvm_lock_pageq();
1321 uvm_pageactivate(uobjpage);
1322 uvm_unlock_pageq();
1323
1324 /*
1325 * re-verify the state of the world by first trying to relock
1326 * the maps. always relock the object.
1327 */
1328
1329 locked = uvmfault_relock(&ufi);
1330 if (locked && amap)
1331 amap_lock(amap);
1332 simple_lock(&uobj->vmobjlock);
1333
1334 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1335 /* locked(!locked): uobj, uobjpage */
1336
1337 /*
1338 * verify that the page has not be released and re-verify
1339 * that amap slot is still free. if there is a problem,
1340 * we unlock and clean up.
1341 */
1342
1343 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1344 (locked && amap &&
1345 amap_lookup(&ufi.entry->aref,
1346 ufi.orig_rvaddr - ufi.entry->start))) {
1347 if (locked)
1348 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1349 locked = FALSE;
1350 }
1351
1352 /*
1353 * didn't get the lock? release the page and retry.
1354 */
1355
1356 if (locked == FALSE) {
1357 UVMHIST_LOG(maphist,
1358 " wasn't able to relock after fault: retry",
1359 0,0,0,0);
1360 if (uobjpage->flags & PG_WANTED)
1361 wakeup(uobjpage);
1362 if (uobjpage->flags & PG_RELEASED) {
1363 uvmexp.fltpgrele++;
1364 uvm_pagefree(uobjpage);
1365 goto ReFault;
1366 }
1367 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1368 UVM_PAGE_OWN(uobjpage, NULL);
1369 simple_unlock(&uobj->vmobjlock);
1370 goto ReFault;
1371 }
1372
1373 /*
1374 * we have the data in uobjpage which is busy and
1375 * not released. we are holding object lock (so the page
1376 * can't be released on us).
1377 */
1378
1379 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1380 }
1381
1382 /*
1383 * locked:
1384 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1385 */
1386
1387 /*
1388 * notes:
1389 * - at this point uobjpage can not be NULL
1390 * - at this point uobjpage can not be PG_RELEASED (since we checked
1391 * for it above)
1392 * - at this point uobjpage could be PG_WANTED (handle later)
1393 */
1394
1395 if (promote == FALSE) {
1396
1397 /*
1398 * we are not promoting. if the mapping is COW ensure that we
1399 * don't give more access than we should (e.g. when doing a read
1400 * fault on a COPYONWRITE mapping we want to map the COW page in
1401 * R/O even though the entry protection could be R/W).
1402 *
1403 * set "pg" to the page we want to map in (uobjpage, usually)
1404 */
1405
1406 /* no anon in this case. */
1407 anon = NULL;
1408
1409 uvmexp.flt_obj++;
1410 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1411 enter_prot &= ~VM_PROT_WRITE;
1412 pg = uobjpage; /* map in the actual object */
1413
1414 /* assert(uobjpage != PGO_DONTCARE) */
1415
1416 /*
1417 * we are faulting directly on the page. be careful
1418 * about writing to loaned pages...
1419 */
1420
1421 if (uobjpage->loan_count) {
1422 if ((access_type & VM_PROT_WRITE) == 0) {
1423 /* read fault: cap the protection at readonly */
1424 /* cap! */
1425 enter_prot = enter_prot & ~VM_PROT_WRITE;
1426 } else {
1427 /* write fault: must break the loan here */
1428
1429 /* alloc new un-owned page */
1430 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1431
1432 if (pg == NULL) {
1433
1434 /*
1435 * drop ownership of page, it can't
1436 * be released
1437 */
1438
1439 if (uobjpage->flags & PG_WANTED)
1440 wakeup(uobjpage);
1441 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1442 UVM_PAGE_OWN(uobjpage, NULL);
1443
1444 uvmfault_unlockall(&ufi, amap, uobj,
1445 NULL);
1446 UVMHIST_LOG(maphist,
1447 " out of RAM breaking loan, waiting",
1448 0,0,0,0);
1449 uvmexp.fltnoram++;
1450 uvm_wait("flt_noram4");
1451 goto ReFault;
1452 }
1453
1454 /*
1455 * copy the data from the old page to the new
1456 * one and clear the fake/clean flags on the
1457 * new page (keep it busy). force a reload
1458 * of the old page by clearing it from all
1459 * pmaps. then lock the page queues to
1460 * rename the pages.
1461 */
1462
1463 uvm_pagecopy(uobjpage, pg); /* old -> new */
1464 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1465 pmap_page_protect(uobjpage, VM_PROT_NONE);
1466 if (uobjpage->flags & PG_WANTED)
1467 wakeup(uobjpage);
1468 /* uobj still locked */
1469 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1470 UVM_PAGE_OWN(uobjpage, NULL);
1471
1472 uvm_lock_pageq();
1473 offset = uobjpage->offset;
1474 uvm_pagerealloc(uobjpage, NULL, 0);
1475
1476 /*
1477 * at this point we have absolutely no
1478 * control over uobjpage
1479 */
1480
1481 /* install new page */
1482 uvm_pageactivate(pg);
1483 uvm_pagerealloc(pg, uobj, offset);
1484 uvm_unlock_pageq();
1485
1486 /*
1487 * done! loan is broken and "pg" is
1488 * PG_BUSY. it can now replace uobjpage.
1489 */
1490
1491 uobjpage = pg;
1492 }
1493 }
1494 } else {
1495
1496 /*
1497 * if we are going to promote the data to an anon we
1498 * allocate a blank anon here and plug it into our amap.
1499 */
1500 #if DIAGNOSTIC
1501 if (amap == NULL)
1502 panic("uvm_fault: want to promote data, but no anon");
1503 #endif
1504
1505 anon = uvm_analloc();
1506 if (anon) {
1507
1508 /*
1509 * The new anon is locked.
1510 *
1511 * In `Fill in data...' below, if
1512 * uobjpage == PGO_DONTCARE, we want
1513 * a zero'd, dirty page, so have
1514 * uvm_pagealloc() do that for us.
1515 */
1516
1517 pg = uvm_pagealloc(NULL, 0, anon,
1518 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1519 }
1520
1521 /*
1522 * out of memory resources?
1523 */
1524
1525 if (anon == NULL || pg == NULL) {
1526 if (anon != NULL) {
1527 anon->an_ref--;
1528 simple_unlock(&anon->an_lock);
1529 uvm_anfree(anon);
1530 }
1531
1532 /*
1533 * arg! must unbusy our page and fail or sleep.
1534 */
1535
1536 if (uobjpage != PGO_DONTCARE) {
1537 if (uobjpage->flags & PG_WANTED)
1538 /* still holding object lock */
1539 wakeup(uobjpage);
1540
1541 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1542 UVM_PAGE_OWN(uobjpage, NULL);
1543 }
1544
1545 /* unlock and fail ... */
1546 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1547 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1548 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1549 UVMHIST_LOG(maphist, " promote: out of VM",
1550 0,0,0,0);
1551 uvmexp.fltnoanon++;
1552 return ENOMEM;
1553 }
1554
1555 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1556 0,0,0,0);
1557 uvmexp.fltnoram++;
1558 uvm_wait("flt_noram5");
1559 goto ReFault;
1560 }
1561
1562 /*
1563 * fill in the data
1564 */
1565
1566 if (uobjpage != PGO_DONTCARE) {
1567 uvmexp.flt_prcopy++;
1568 /* copy page [pg now dirty] */
1569 uvm_pagecopy(uobjpage, pg);
1570
1571 /*
1572 * promote to shared amap? make sure all sharing
1573 * procs see it
1574 */
1575
1576 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1577 pmap_page_protect(uobjpage, VM_PROT_NONE);
1578 /*
1579 * XXX: PAGE MIGHT BE WIRED!
1580 */
1581 }
1582
1583 /*
1584 * dispose of uobjpage. it can't be PG_RELEASED
1585 * since we still hold the object lock.
1586 * drop handle to uobj as well.
1587 */
1588
1589 if (uobjpage->flags & PG_WANTED)
1590 /* still have the obj lock */
1591 wakeup(uobjpage);
1592 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1593 UVM_PAGE_OWN(uobjpage, NULL);
1594 simple_unlock(&uobj->vmobjlock);
1595 uobj = NULL;
1596
1597 UVMHIST_LOG(maphist,
1598 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1599 uobjpage, anon, pg, 0);
1600
1601 } else {
1602 uvmexp.flt_przero++;
1603
1604 /*
1605 * Page is zero'd and marked dirty by uvm_pagealloc()
1606 * above.
1607 */
1608
1609 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1610 anon, pg, 0, 0);
1611 }
1612 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1613 anon, 0);
1614 }
1615
1616 /*
1617 * locked:
1618 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1619 * anon(if !null), pg(if anon)
1620 *
1621 * note: pg is either the uobjpage or the new page in the new anon
1622 */
1623
1624 /*
1625 * all resources are present. we can now map it in and free our
1626 * resources.
1627 */
1628
1629 UVMHIST_LOG(maphist,
1630 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1631 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1632 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1633 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1634 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1635 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1636
1637 /*
1638 * No need to undo what we did; we can simply think of
1639 * this as the pmap throwing away the mapping information.
1640 *
1641 * We do, however, have to go through the ReFault path,
1642 * as the map may change while we're asleep.
1643 */
1644
1645 if (pg->flags & PG_WANTED)
1646 wakeup(pg);
1647
1648 /*
1649 * note that pg can't be PG_RELEASED since we did not drop
1650 * the object lock since the last time we checked.
1651 */
1652
1653 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1654 UVM_PAGE_OWN(pg, NULL);
1655 uvmfault_unlockall(&ufi, amap, uobj, anon);
1656 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1657 if (uvmexp.swpgonly == uvmexp.swpages) {
1658 UVMHIST_LOG(maphist,
1659 "<- failed. out of VM",0,0,0,0);
1660 /* XXX instrumentation */
1661 return ENOMEM;
1662 }
1663 /* XXX instrumentation */
1664 uvm_wait("flt_pmfail2");
1665 goto ReFault;
1666 }
1667
1668 uvm_lock_pageq();
1669 if (fault_type == VM_FAULT_WIRE) {
1670 uvm_pagewire(pg);
1671 if (pg->pqflags & PQ_AOBJ) {
1672
1673 /*
1674 * since the now-wired page cannot be paged out,
1675 * release its swap resources for others to use.
1676 * since an aobj page with no swap cannot be PG_CLEAN,
1677 * clear its clean flag now.
1678 */
1679
1680 pg->flags &= ~(PG_CLEAN);
1681 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1682 }
1683 } else {
1684 uvm_pageactivate(pg);
1685 }
1686 uvm_unlock_pageq();
1687 if (pg->flags & PG_WANTED)
1688 wakeup(pg);
1689
1690 /*
1691 * note that pg can't be PG_RELEASED since we did not drop the object
1692 * lock since the last time we checked.
1693 */
1694
1695 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1696 UVM_PAGE_OWN(pg, NULL);
1697 uvmfault_unlockall(&ufi, amap, uobj, anon);
1698 pmap_update(ufi.orig_map->pmap);
1699 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1700 return 0;
1701 }
1702
1703 /*
1704 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1705 *
1706 * => map may be read-locked by caller, but MUST NOT be write-locked.
1707 * => if map is read-locked, any operations which may cause map to
1708 * be write-locked in uvm_fault() must be taken care of by
1709 * the caller. See uvm_map_pageable().
1710 */
1711
1712 int
1713 uvm_fault_wire(map, start, end, access_type)
1714 struct vm_map *map;
1715 vaddr_t start, end;
1716 vm_prot_t access_type;
1717 {
1718 vaddr_t va;
1719 int error;
1720
1721 /*
1722 * now fault it in a page at a time. if the fault fails then we have
1723 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1724 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1725 */
1726
1727 /*
1728 * XXX work around overflowing a vaddr_t. this prevents us from
1729 * wiring the last page in the address space, though.
1730 */
1731 if (start > end) {
1732 return EFAULT;
1733 }
1734
1735 for (va = start ; va < end ; va += PAGE_SIZE) {
1736 error = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1737 if (error) {
1738 if (va != start) {
1739 uvm_fault_unwire(map, start, va);
1740 }
1741 return error;
1742 }
1743 }
1744 return 0;
1745 }
1746
1747 /*
1748 * uvm_fault_unwire(): unwire range of virtual space.
1749 */
1750
1751 void
1752 uvm_fault_unwire(map, start, end)
1753 struct vm_map *map;
1754 vaddr_t start, end;
1755 {
1756 vm_map_lock_read(map);
1757 uvm_fault_unwire_locked(map, start, end);
1758 vm_map_unlock_read(map);
1759 }
1760
1761 /*
1762 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1763 *
1764 * => map must be at least read-locked.
1765 */
1766
1767 void
1768 uvm_fault_unwire_locked(map, start, end)
1769 struct vm_map *map;
1770 vaddr_t start, end;
1771 {
1772 struct vm_map_entry *entry;
1773 pmap_t pmap = vm_map_pmap(map);
1774 vaddr_t va;
1775 paddr_t pa;
1776 struct vm_page *pg;
1777
1778 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1779
1780 /*
1781 * we assume that the area we are unwiring has actually been wired
1782 * in the first place. this means that we should be able to extract
1783 * the PAs from the pmap. we also lock out the page daemon so that
1784 * we can call uvm_pageunwire.
1785 */
1786
1787 uvm_lock_pageq();
1788
1789 /*
1790 * find the beginning map entry for the region.
1791 */
1792 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1793 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1794 panic("uvm_fault_unwire_locked: address not in map");
1795
1796 for (va = start; va < end; va += PAGE_SIZE) {
1797 if (pmap_extract(pmap, va, &pa) == FALSE)
1798 panic("uvm_fault_unwire_locked: unwiring "
1799 "non-wired memory");
1800
1801 /*
1802 * make sure the current entry is for the address we're
1803 * dealing with. if not, grab the next entry.
1804 */
1805
1806 KASSERT(va >= entry->start);
1807 if (va >= entry->end) {
1808 KASSERT(entry->next != &map->header &&
1809 entry->next->start <= entry->end);
1810 entry = entry->next;
1811 }
1812
1813 /*
1814 * if the entry is no longer wired, tell the pmap.
1815 */
1816 if (VM_MAPENT_ISWIRED(entry) == 0)
1817 pmap_unwire(pmap, va);
1818
1819 pg = PHYS_TO_VM_PAGE(pa);
1820 if (pg)
1821 uvm_pageunwire(pg);
1822 }
1823
1824 uvm_unlock_pageq();
1825 }
1826