uvm_fault.c revision 1.71 1 /* $NetBSD: uvm_fault.c,v 1.71 2001/11/10 07:36:59 lukem Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.71 2001/11/10 07:36:59 lukem Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
183 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_addr->u_stats.p_ru.ru_minflt++;
308 else
309 curproc->p_addr->u_stats.p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431 /* remove page from anon */
432 anon->u.an_page = NULL;
433
434 /*
435 * remove the swap slot from the anon
436 * and mark the anon as having no real slot.
437 * don't free the swap slot, thus preventing
438 * it from being used again.
439 */
440
441 uvm_swap_markbad(anon->an_swslot, 1);
442 anon->an_swslot = SWSLOT_BAD;
443
444 /*
445 * note: page was never !PG_BUSY, so it
446 * can't be mapped and thus no need to
447 * pmap_page_protect it...
448 */
449
450 uvm_lock_pageq();
451 uvm_pagefree(pg);
452 uvm_unlock_pageq();
453
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 anon);
457 else
458 simple_unlock(&anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 /*
464 * we've successfully read the page, activate it.
465 */
466
467 uvm_lock_pageq();
468 uvm_pageactivate(pg);
469 uvm_unlock_pageq();
470 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
471 UVM_PAGE_OWN(pg, NULL);
472 if (!locked)
473 simple_unlock(&anon->an_lock);
474 }
475
476 /*
477 * we were not able to relock. restart fault.
478 */
479
480 if (!locked) {
481 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
482 return (ERESTART);
483 }
484
485 /*
486 * verify no one has touched the amap and moved the anon on us.
487 */
488
489 if (ufi != NULL &&
490 amap_lookup(&ufi->entry->aref,
491 ufi->orig_rvaddr - ufi->entry->start) != anon) {
492
493 uvmfault_unlockall(ufi, amap, NULL, anon);
494 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
495 return (ERESTART);
496 }
497
498 /*
499 * try it again!
500 */
501
502 uvmexp.fltanretry++;
503 continue;
504 }
505 /*NOTREACHED*/
506 }
507
508 /*
509 * F A U L T - m a i n e n t r y p o i n t
510 */
511
512 /*
513 * uvm_fault: page fault handler
514 *
515 * => called from MD code to resolve a page fault
516 * => VM data structures usually should be unlocked. however, it is
517 * possible to call here with the main map locked if the caller
518 * gets a write lock, sets it recusive, and then calls us (c.f.
519 * uvm_map_pageable). this should be avoided because it keeps
520 * the map locked off during I/O.
521 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
522 */
523
524 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
525 ~VM_PROT_WRITE : VM_PROT_ALL)
526
527 int
528 uvm_fault(orig_map, vaddr, fault_type, access_type)
529 struct vm_map *orig_map;
530 vaddr_t vaddr;
531 vm_fault_t fault_type;
532 vm_prot_t access_type;
533 {
534 struct uvm_faultinfo ufi;
535 vm_prot_t enter_prot;
536 boolean_t wired, narrow, promote, locked, shadowed;
537 int npages, nback, nforw, centeridx, error, lcv, gotpages;
538 vaddr_t startva, objaddr, currva, offset, uoff;
539 paddr_t pa;
540 struct vm_amap *amap;
541 struct uvm_object *uobj;
542 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
543 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
544 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
545
546 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
547 orig_map, vaddr, fault_type, access_type);
548
549 anon = NULL;
550 pg = NULL;
551
552 uvmexp.faults++; /* XXX: locking? */
553
554 /*
555 * init the IN parameters in the ufi
556 */
557
558 ufi.orig_map = orig_map;
559 ufi.orig_rvaddr = trunc_page(vaddr);
560 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
561 if (fault_type == VM_FAULT_WIRE)
562 narrow = TRUE; /* don't look for neighborhood
563 * pages on wire */
564 else
565 narrow = FALSE; /* normal fault */
566
567 /*
568 * "goto ReFault" means restart the page fault from ground zero.
569 */
570 ReFault:
571
572 /*
573 * lookup and lock the maps
574 */
575
576 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
577 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
578 return (EFAULT);
579 }
580 /* locked: maps(read) */
581
582 #ifdef DIAGNOSTIC
583 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
584 printf("Page fault on non-pageable map:\n");
585 printf("ufi.map = %p\n", ufi.map);
586 printf("ufi.orig_map = %p\n", ufi.orig_map);
587 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
588 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
589 }
590 #endif
591
592 /*
593 * check protection
594 */
595
596 if ((ufi.entry->protection & access_type) != access_type) {
597 UVMHIST_LOG(maphist,
598 "<- protection failure (prot=0x%x, access=0x%x)",
599 ufi.entry->protection, access_type, 0, 0);
600 uvmfault_unlockmaps(&ufi, FALSE);
601 return EACCES;
602 }
603
604 /*
605 * "enter_prot" is the protection we want to enter the page in at.
606 * for certain pages (e.g. copy-on-write pages) this protection can
607 * be more strict than ufi.entry->protection. "wired" means either
608 * the entry is wired or we are fault-wiring the pg.
609 */
610
611 enter_prot = ufi.entry->protection;
612 wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
613 if (wired)
614 access_type = enter_prot; /* full access for wired */
615
616 /*
617 * handle "needs_copy" case. if we need to copy the amap we will
618 * have to drop our readlock and relock it with a write lock. (we
619 * need a write lock to change anything in a map entry [e.g.
620 * needs_copy]).
621 */
622
623 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
624 if ((access_type & VM_PROT_WRITE) ||
625 (ufi.entry->object.uvm_obj == NULL)) {
626 /* need to clear */
627 UVMHIST_LOG(maphist,
628 " need to clear needs_copy and refault",0,0,0,0);
629 uvmfault_unlockmaps(&ufi, FALSE);
630 uvmfault_amapcopy(&ufi);
631 uvmexp.fltamcopy++;
632 goto ReFault;
633
634 } else {
635
636 /*
637 * ensure that we pmap_enter page R/O since
638 * needs_copy is still true
639 */
640 enter_prot &= ~VM_PROT_WRITE;
641
642 }
643 }
644
645 /*
646 * identify the players
647 */
648
649 amap = ufi.entry->aref.ar_amap; /* top layer */
650 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
651
652 /*
653 * check for a case 0 fault. if nothing backing the entry then
654 * error now.
655 */
656
657 if (amap == NULL && uobj == NULL) {
658 uvmfault_unlockmaps(&ufi, FALSE);
659 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
660 return (EFAULT);
661 }
662
663 /*
664 * establish range of interest based on advice from mapper
665 * and then clip to fit map entry. note that we only want
666 * to do this the first time through the fault. if we
667 * ReFault we will disable this by setting "narrow" to true.
668 */
669
670 if (narrow == FALSE) {
671
672 /* wide fault (!narrow) */
673 KASSERT(uvmadvice[ufi.entry->advice].advice ==
674 ufi.entry->advice);
675 nback = MIN(uvmadvice[ufi.entry->advice].nback,
676 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
677 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
678 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
679 ((ufi.entry->end - ufi.orig_rvaddr) >>
680 PAGE_SHIFT) - 1);
681 /*
682 * note: "-1" because we don't want to count the
683 * faulting page as forw
684 */
685 npages = nback + nforw + 1;
686 centeridx = nback;
687
688 narrow = TRUE; /* ensure only once per-fault */
689
690 } else {
691
692 /* narrow fault! */
693 nback = nforw = 0;
694 startva = ufi.orig_rvaddr;
695 npages = 1;
696 centeridx = 0;
697
698 }
699
700 /* locked: maps(read) */
701 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
702 narrow, nback, nforw, startva);
703 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
704 amap, uobj, 0);
705
706 /*
707 * if we've got an amap, lock it and extract current anons.
708 */
709
710 if (amap) {
711 amap_lock(amap);
712 anons = anons_store;
713 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
714 anons, npages);
715 } else {
716 anons = NULL; /* to be safe */
717 }
718
719 /* locked: maps(read), amap(if there) */
720
721 /*
722 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
723 * now and then forget about them (for the rest of the fault).
724 */
725
726 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
727
728 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
729 0,0,0,0);
730 /* flush back-page anons? */
731 if (amap)
732 uvmfault_anonflush(anons, nback);
733
734 /* flush object? */
735 if (uobj) {
736 objaddr =
737 (startva - ufi.entry->start) + ufi.entry->offset;
738 simple_lock(&uobj->vmobjlock);
739 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
740 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
741 }
742
743 /* now forget about the backpages */
744 if (amap)
745 anons += nback;
746 startva += (nback << PAGE_SHIFT);
747 npages -= nback;
748 nback = centeridx = 0;
749 }
750
751 /* locked: maps(read), amap(if there) */
752
753 /*
754 * map in the backpages and frontpages we found in the amap in hopes
755 * of preventing future faults. we also init the pages[] array as
756 * we go.
757 */
758
759 currva = startva;
760 shadowed = FALSE;
761 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
762
763 /*
764 * dont play with VAs that are already mapped
765 * except for center)
766 */
767 if (lcv != centeridx &&
768 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
769 pages[lcv] = PGO_DONTCARE;
770 continue;
771 }
772
773 /*
774 * unmapped or center page. check if any anon at this level.
775 */
776 if (amap == NULL || anons[lcv] == NULL) {
777 pages[lcv] = NULL;
778 continue;
779 }
780
781 /*
782 * check for present page and map if possible. re-activate it.
783 */
784
785 pages[lcv] = PGO_DONTCARE;
786 if (lcv == centeridx) { /* save center for later! */
787 shadowed = TRUE;
788 continue;
789 }
790 anon = anons[lcv];
791 simple_lock(&anon->an_lock);
792 /* ignore loaned pages */
793 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
794 (anon->u.an_page->flags & PG_BUSY) == 0) {
795 uvm_lock_pageq();
796 uvm_pageactivate(anon->u.an_page);
797 uvm_unlock_pageq();
798 UVMHIST_LOG(maphist,
799 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
800 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
801 uvmexp.fltnamap++;
802
803 /*
804 * Since this isn't the page that's actually faulting,
805 * ignore pmap_enter() failures; it's not critical
806 * that we enter these right now.
807 */
808
809 (void) pmap_enter(ufi.orig_map->pmap, currva,
810 VM_PAGE_TO_PHYS(anon->u.an_page),
811 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
812 enter_prot,
813 PMAP_CANFAIL |
814 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
815 }
816 simple_unlock(&anon->an_lock);
817 pmap_update(ufi.orig_map->pmap);
818 }
819
820 /* locked: maps(read), amap(if there) */
821 /* (shadowed == TRUE) if there is an anon at the faulting address */
822 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
823 (uobj && shadowed == FALSE),0,0);
824
825 /*
826 * note that if we are really short of RAM we could sleep in the above
827 * call to pmap_enter with everything locked. bad?
828 *
829 * XXX Actually, that is bad; pmap_enter() should just fail in that
830 * XXX case. --thorpej
831 */
832
833 /*
834 * if the desired page is not shadowed by the amap and we have a
835 * backing object, then we check to see if the backing object would
836 * prefer to handle the fault itself (rather than letting us do it
837 * with the usual pgo_get hook). the backing object signals this by
838 * providing a pgo_fault routine.
839 */
840
841 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
842 simple_lock(&uobj->vmobjlock);
843
844 /* locked: maps(read), amap (if there), uobj */
845 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
846 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
847
848 /* locked: nothing, pgo_fault has unlocked everything */
849
850 if (error == ERESTART)
851 goto ReFault; /* try again! */
852 /*
853 * object fault routine responsible for pmap_update().
854 */
855 return error;
856 }
857
858 /*
859 * now, if the desired page is not shadowed by the amap and we have
860 * a backing object that does not have a special fault routine, then
861 * we ask (with pgo_get) the object for resident pages that we care
862 * about and attempt to map them in. we do not let pgo_get block
863 * (PGO_LOCKED).
864 */
865
866 if (uobj && shadowed == FALSE) {
867 simple_lock(&uobj->vmobjlock);
868
869 /* locked (!shadowed): maps(read), amap (if there), uobj */
870 /*
871 * the following call to pgo_get does _not_ change locking state
872 */
873
874 uvmexp.fltlget++;
875 gotpages = npages;
876 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
877 (startva - ufi.entry->start),
878 pages, &gotpages, centeridx,
879 access_type & MASK(ufi.entry),
880 ufi.entry->advice, PGO_LOCKED);
881
882 /*
883 * check for pages to map, if we got any
884 */
885
886 uobjpage = NULL;
887
888 if (gotpages) {
889 currva = startva;
890 for (lcv = 0; lcv < npages;
891 lcv++, currva += PAGE_SIZE) {
892 if (pages[lcv] == NULL ||
893 pages[lcv] == PGO_DONTCARE) {
894 continue;
895 }
896
897 /*
898 * if center page is resident and not
899 * PG_BUSY|PG_RELEASED then pgo_get
900 * made it PG_BUSY for us and gave
901 * us a handle to it. remember this
902 * page as "uobjpage." (for later use).
903 */
904
905 if (lcv == centeridx) {
906 uobjpage = pages[lcv];
907 UVMHIST_LOG(maphist, " got uobjpage "
908 "(0x%x) with locked get",
909 uobjpage, 0,0,0);
910 continue;
911 }
912
913 /*
914 * calling pgo_get with PGO_LOCKED returns us
915 * pages which are neither busy nor released,
916 * so we don't need to check for this.
917 * we can just directly enter the pages.
918 */
919
920 uvm_lock_pageq();
921 uvm_pageactivate(pages[lcv]);
922 uvm_unlock_pageq();
923 UVMHIST_LOG(maphist,
924 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
925 ufi.orig_map->pmap, currva, pages[lcv], 0);
926 uvmexp.fltnomap++;
927
928 /*
929 * Since this page isn't the page that's
930 * actually fauling, ignore pmap_enter()
931 * failures; it's not critical that we
932 * enter these right now.
933 */
934
935 (void) pmap_enter(ufi.orig_map->pmap, currva,
936 VM_PAGE_TO_PHYS(pages[lcv]),
937 pages[lcv]->flags & PG_RDONLY ?
938 VM_PROT_READ : enter_prot & MASK(ufi.entry),
939 PMAP_CANFAIL |
940 (wired ? PMAP_WIRED : 0));
941
942 /*
943 * NOTE: page can't be PG_WANTED or PG_RELEASED
944 * because we've held the lock the whole time
945 * we've had the handle.
946 */
947
948 pages[lcv]->flags &= ~(PG_BUSY);
949 UVM_PAGE_OWN(pages[lcv], NULL);
950 }
951 pmap_update(ufi.orig_map->pmap);
952 }
953 } else {
954 uobjpage = NULL;
955 }
956
957 /* locked (shadowed): maps(read), amap */
958 /* locked (!shadowed): maps(read), amap(if there),
959 uobj(if !null), uobjpage(if !null) */
960
961 /*
962 * note that at this point we are done with any front or back pages.
963 * we are now going to focus on the center page (i.e. the one we've
964 * faulted on). if we have faulted on the top (anon) layer
965 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
966 * not touched it yet). if we have faulted on the bottom (uobj)
967 * layer [i.e. case 2] and the page was both present and available,
968 * then we've got a pointer to it as "uobjpage" and we've already
969 * made it BUSY.
970 */
971
972 /*
973 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
974 */
975
976 /*
977 * redirect case 2: if we are not shadowed, go to case 2.
978 */
979
980 if (shadowed == FALSE)
981 goto Case2;
982
983 /* locked: maps(read), amap */
984
985 /*
986 * handle case 1: fault on an anon in our amap
987 */
988
989 anon = anons[centeridx];
990 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
991 simple_lock(&anon->an_lock);
992
993 /* locked: maps(read), amap, anon */
994
995 /*
996 * no matter if we have case 1A or case 1B we are going to need to
997 * have the anon's memory resident. ensure that now.
998 */
999
1000 /*
1001 * let uvmfault_anonget do the dirty work.
1002 * if it fails (!OK) it will unlock everything for us.
1003 * if it succeeds, locks are still valid and locked.
1004 * also, if it is OK, then the anon's page is on the queues.
1005 * if the page is on loan from a uvm_object, then anonget will
1006 * lock that object for us if it does not fail.
1007 */
1008
1009 error = uvmfault_anonget(&ufi, amap, anon);
1010 switch (error) {
1011 case 0:
1012 break;
1013
1014 case ERESTART:
1015 goto ReFault;
1016
1017 case EAGAIN:
1018 tsleep(&lbolt, PVM, "fltagain1", 0);
1019 goto ReFault;
1020
1021 default:
1022 return error;
1023 }
1024
1025 /*
1026 * uobj is non null if the page is on loan from an object (i.e. uobj)
1027 */
1028
1029 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1030
1031 /* locked: maps(read), amap, anon, uobj(if one) */
1032
1033 /*
1034 * special handling for loaned pages
1035 */
1036
1037 if (anon->u.an_page->loan_count) {
1038
1039 if ((access_type & VM_PROT_WRITE) == 0) {
1040
1041 /*
1042 * for read faults on loaned pages we just cap the
1043 * protection at read-only.
1044 */
1045
1046 enter_prot = enter_prot & ~VM_PROT_WRITE;
1047
1048 } else {
1049 /*
1050 * note that we can't allow writes into a loaned page!
1051 *
1052 * if we have a write fault on a loaned page in an
1053 * anon then we need to look at the anon's ref count.
1054 * if it is greater than one then we are going to do
1055 * a normal copy-on-write fault into a new anon (this
1056 * is not a problem). however, if the reference count
1057 * is one (a case where we would normally allow a
1058 * write directly to the page) then we need to kill
1059 * the loan before we continue.
1060 */
1061
1062 /* >1 case is already ok */
1063 if (anon->an_ref == 1) {
1064
1065 /* get new un-owned replacement page */
1066 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1067 if (pg == NULL) {
1068 uvmfault_unlockall(&ufi, amap, uobj,
1069 anon);
1070 uvm_wait("flt_noram2");
1071 goto ReFault;
1072 }
1073
1074 /*
1075 * copy data, kill loan, and drop uobj lock
1076 * (if any)
1077 */
1078 /* copy old -> new */
1079 uvm_pagecopy(anon->u.an_page, pg);
1080
1081 /* force reload */
1082 pmap_page_protect(anon->u.an_page,
1083 VM_PROT_NONE);
1084 uvm_lock_pageq(); /* KILL loan */
1085 if (uobj)
1086 /* if we were loaning */
1087 anon->u.an_page->loan_count--;
1088 anon->u.an_page->uanon = NULL;
1089 /* in case we owned */
1090 anon->u.an_page->pqflags &= ~PQ_ANON;
1091 uvm_unlock_pageq();
1092 if (uobj) {
1093 simple_unlock(&uobj->vmobjlock);
1094 uobj = NULL;
1095 }
1096
1097 /* install new page in anon */
1098 anon->u.an_page = pg;
1099 pg->uanon = anon;
1100 pg->pqflags |= PQ_ANON;
1101 pg->flags &= ~(PG_BUSY|PG_FAKE);
1102 UVM_PAGE_OWN(pg, NULL);
1103
1104 /* done! */
1105 } /* ref == 1 */
1106 } /* write fault */
1107 } /* loan count */
1108
1109 /*
1110 * if we are case 1B then we will need to allocate a new blank
1111 * anon to transfer the data into. note that we have a lock
1112 * on anon, so no one can busy or release the page until we are done.
1113 * also note that the ref count can't drop to zero here because
1114 * it is > 1 and we are only dropping one ref.
1115 *
1116 * in the (hopefully very rare) case that we are out of RAM we
1117 * will unlock, wait for more RAM, and refault.
1118 *
1119 * if we are out of anon VM we kill the process (XXX: could wait?).
1120 */
1121
1122 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1123
1124 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1125 uvmexp.flt_acow++;
1126 oanon = anon; /* oanon = old, locked anon */
1127 anon = uvm_analloc();
1128 if (anon) {
1129 /* new anon is locked! */
1130 pg = uvm_pagealloc(NULL, 0, anon, 0);
1131 }
1132
1133 /* check for out of RAM */
1134 if (anon == NULL || pg == NULL) {
1135 if (anon) {
1136 anon->an_ref--;
1137 simple_unlock(&anon->an_lock);
1138 uvm_anfree(anon);
1139 }
1140 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1141 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1142 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1143 UVMHIST_LOG(maphist,
1144 "<- failed. out of VM",0,0,0,0);
1145 uvmexp.fltnoanon++;
1146 return ENOMEM;
1147 }
1148
1149 uvmexp.fltnoram++;
1150 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1151 goto ReFault;
1152 }
1153
1154 /* got all resources, replace anon with nanon */
1155 uvm_pagecopy(oanon->u.an_page, pg);
1156 uvm_pageactivate(pg);
1157 pg->flags &= ~(PG_BUSY|PG_FAKE);
1158 UVM_PAGE_OWN(pg, NULL);
1159 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1160 anon, 1);
1161
1162 /* deref: can not drop to zero here by defn! */
1163 oanon->an_ref--;
1164
1165 /*
1166 * note: oanon is still locked, as is the new anon. we
1167 * need to check for this later when we unlock oanon; if
1168 * oanon != anon, we'll have to unlock anon, too.
1169 */
1170
1171 } else {
1172
1173 uvmexp.flt_anon++;
1174 oanon = anon; /* old, locked anon is same as anon */
1175 pg = anon->u.an_page;
1176 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1177 enter_prot = enter_prot & ~VM_PROT_WRITE;
1178
1179 }
1180
1181 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1182
1183 /*
1184 * now map the page in.
1185 */
1186
1187 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1188 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1189 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1190 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1191 != 0) {
1192
1193 /*
1194 * No need to undo what we did; we can simply think of
1195 * this as the pmap throwing away the mapping information.
1196 *
1197 * We do, however, have to go through the ReFault path,
1198 * as the map may change while we're asleep.
1199 */
1200
1201 if (anon != oanon)
1202 simple_unlock(&anon->an_lock);
1203 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1204 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1205 if (uvmexp.swpgonly == uvmexp.swpages) {
1206 UVMHIST_LOG(maphist,
1207 "<- failed. out of VM",0,0,0,0);
1208 /* XXX instrumentation */
1209 return ENOMEM;
1210 }
1211 /* XXX instrumentation */
1212 uvm_wait("flt_pmfail1");
1213 goto ReFault;
1214 }
1215
1216 /*
1217 * ... update the page queues.
1218 */
1219
1220 uvm_lock_pageq();
1221 if (fault_type == VM_FAULT_WIRE) {
1222 uvm_pagewire(pg);
1223
1224 /*
1225 * since the now-wired page cannot be paged out,
1226 * release its swap resources for others to use.
1227 * since an anon with no swap cannot be PG_CLEAN,
1228 * clear its clean flag now.
1229 */
1230
1231 pg->flags &= ~(PG_CLEAN);
1232 uvm_anon_dropswap(anon);
1233 } else {
1234 uvm_pageactivate(pg);
1235 }
1236 uvm_unlock_pageq();
1237
1238 /*
1239 * done case 1! finish up by unlocking everything and returning success
1240 */
1241
1242 if (anon != oanon)
1243 simple_unlock(&anon->an_lock);
1244 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1245 pmap_update(ufi.orig_map->pmap);
1246 return 0;
1247
1248 Case2:
1249 /*
1250 * handle case 2: faulting on backing object or zero fill
1251 */
1252
1253 /*
1254 * locked:
1255 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1256 */
1257
1258 /*
1259 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1260 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1261 * have a backing object, check and see if we are going to promote
1262 * the data up to an anon during the fault.
1263 */
1264
1265 if (uobj == NULL) {
1266 uobjpage = PGO_DONTCARE;
1267 promote = TRUE; /* always need anon here */
1268 } else {
1269 KASSERT(uobjpage != PGO_DONTCARE);
1270 promote = (access_type & VM_PROT_WRITE) &&
1271 UVM_ET_ISCOPYONWRITE(ufi.entry);
1272 }
1273 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1274 promote, (uobj == NULL), 0,0);
1275
1276 /*
1277 * if uobjpage is not null then we do not need to do I/O to get the
1278 * uobjpage.
1279 *
1280 * if uobjpage is null, then we need to unlock and ask the pager to
1281 * get the data for us. once we have the data, we need to reverify
1282 * the state the world. we are currently not holding any resources.
1283 */
1284
1285 if (uobjpage) {
1286 /* update rusage counters */
1287 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1288 } else {
1289 /* update rusage counters */
1290 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1291
1292 /* locked: maps(read), amap(if there), uobj */
1293 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1294 /* locked: uobj */
1295
1296 uvmexp.fltget++;
1297 gotpages = 1;
1298 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1299 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1300 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1301 PGO_SYNCIO);
1302 /* locked: uobjpage(if no error) */
1303
1304 /*
1305 * recover from I/O
1306 */
1307
1308 if (error) {
1309 if (error == EAGAIN) {
1310 UVMHIST_LOG(maphist,
1311 " pgo_get says TRY AGAIN!",0,0,0,0);
1312 tsleep(&lbolt, PVM, "fltagain2", 0);
1313 goto ReFault;
1314 }
1315
1316 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1317 error, 0,0,0);
1318 return error;
1319 }
1320
1321 /* locked: uobjpage */
1322
1323 uvm_lock_pageq();
1324 uvm_pageactivate(uobjpage);
1325 uvm_unlock_pageq();
1326
1327 /*
1328 * re-verify the state of the world by first trying to relock
1329 * the maps. always relock the object.
1330 */
1331
1332 locked = uvmfault_relock(&ufi);
1333 if (locked && amap)
1334 amap_lock(amap);
1335 simple_lock(&uobj->vmobjlock);
1336
1337 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1338 /* locked(!locked): uobj, uobjpage */
1339
1340 /*
1341 * verify that the page has not be released and re-verify
1342 * that amap slot is still free. if there is a problem,
1343 * we unlock and clean up.
1344 */
1345
1346 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1347 (locked && amap &&
1348 amap_lookup(&ufi.entry->aref,
1349 ufi.orig_rvaddr - ufi.entry->start))) {
1350 if (locked)
1351 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1352 locked = FALSE;
1353 }
1354
1355 /*
1356 * didn't get the lock? release the page and retry.
1357 */
1358
1359 if (locked == FALSE) {
1360 UVMHIST_LOG(maphist,
1361 " wasn't able to relock after fault: retry",
1362 0,0,0,0);
1363 if (uobjpage->flags & PG_WANTED)
1364 wakeup(uobjpage);
1365 if (uobjpage->flags & PG_RELEASED) {
1366 uvmexp.fltpgrele++;
1367 uvm_pagefree(uobjpage);
1368 goto ReFault;
1369 }
1370 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1371 UVM_PAGE_OWN(uobjpage, NULL);
1372 simple_unlock(&uobj->vmobjlock);
1373 goto ReFault;
1374 }
1375
1376 /*
1377 * we have the data in uobjpage which is busy and
1378 * not released. we are holding object lock (so the page
1379 * can't be released on us).
1380 */
1381
1382 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1383 }
1384
1385 /*
1386 * locked:
1387 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1388 */
1389
1390 /*
1391 * notes:
1392 * - at this point uobjpage can not be NULL
1393 * - at this point uobjpage can not be PG_RELEASED (since we checked
1394 * for it above)
1395 * - at this point uobjpage could be PG_WANTED (handle later)
1396 */
1397
1398 if (promote == FALSE) {
1399
1400 /*
1401 * we are not promoting. if the mapping is COW ensure that we
1402 * don't give more access than we should (e.g. when doing a read
1403 * fault on a COPYONWRITE mapping we want to map the COW page in
1404 * R/O even though the entry protection could be R/W).
1405 *
1406 * set "pg" to the page we want to map in (uobjpage, usually)
1407 */
1408
1409 /* no anon in this case. */
1410 anon = NULL;
1411
1412 uvmexp.flt_obj++;
1413 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1414 enter_prot &= ~VM_PROT_WRITE;
1415 pg = uobjpage; /* map in the actual object */
1416
1417 /* assert(uobjpage != PGO_DONTCARE) */
1418
1419 /*
1420 * we are faulting directly on the page. be careful
1421 * about writing to loaned pages...
1422 */
1423
1424 if (uobjpage->loan_count) {
1425 if ((access_type & VM_PROT_WRITE) == 0) {
1426 /* read fault: cap the protection at readonly */
1427 /* cap! */
1428 enter_prot = enter_prot & ~VM_PROT_WRITE;
1429 } else {
1430 /* write fault: must break the loan here */
1431
1432 /* alloc new un-owned page */
1433 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1434
1435 if (pg == NULL) {
1436
1437 /*
1438 * drop ownership of page, it can't
1439 * be released
1440 */
1441
1442 if (uobjpage->flags & PG_WANTED)
1443 wakeup(uobjpage);
1444 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1445 UVM_PAGE_OWN(uobjpage, NULL);
1446
1447 uvmfault_unlockall(&ufi, amap, uobj,
1448 NULL);
1449 UVMHIST_LOG(maphist,
1450 " out of RAM breaking loan, waiting",
1451 0,0,0,0);
1452 uvmexp.fltnoram++;
1453 uvm_wait("flt_noram4");
1454 goto ReFault;
1455 }
1456
1457 /*
1458 * copy the data from the old page to the new
1459 * one and clear the fake/clean flags on the
1460 * new page (keep it busy). force a reload
1461 * of the old page by clearing it from all
1462 * pmaps. then lock the page queues to
1463 * rename the pages.
1464 */
1465
1466 uvm_pagecopy(uobjpage, pg); /* old -> new */
1467 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1468 pmap_page_protect(uobjpage, VM_PROT_NONE);
1469 if (uobjpage->flags & PG_WANTED)
1470 wakeup(uobjpage);
1471 /* uobj still locked */
1472 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1473 UVM_PAGE_OWN(uobjpage, NULL);
1474
1475 uvm_lock_pageq();
1476 offset = uobjpage->offset;
1477 uvm_pagerealloc(uobjpage, NULL, 0);
1478
1479 /*
1480 * at this point we have absolutely no
1481 * control over uobjpage
1482 */
1483
1484 /* install new page */
1485 uvm_pageactivate(pg);
1486 uvm_pagerealloc(pg, uobj, offset);
1487 uvm_unlock_pageq();
1488
1489 /*
1490 * done! loan is broken and "pg" is
1491 * PG_BUSY. it can now replace uobjpage.
1492 */
1493
1494 uobjpage = pg;
1495 }
1496 }
1497 } else {
1498
1499 /*
1500 * if we are going to promote the data to an anon we
1501 * allocate a blank anon here and plug it into our amap.
1502 */
1503 #if DIAGNOSTIC
1504 if (amap == NULL)
1505 panic("uvm_fault: want to promote data, but no anon");
1506 #endif
1507
1508 anon = uvm_analloc();
1509 if (anon) {
1510
1511 /*
1512 * The new anon is locked.
1513 *
1514 * In `Fill in data...' below, if
1515 * uobjpage == PGO_DONTCARE, we want
1516 * a zero'd, dirty page, so have
1517 * uvm_pagealloc() do that for us.
1518 */
1519
1520 pg = uvm_pagealloc(NULL, 0, anon,
1521 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1522 }
1523
1524 /*
1525 * out of memory resources?
1526 */
1527
1528 if (anon == NULL || pg == NULL) {
1529 if (anon != NULL) {
1530 anon->an_ref--;
1531 simple_unlock(&anon->an_lock);
1532 uvm_anfree(anon);
1533 }
1534
1535 /*
1536 * arg! must unbusy our page and fail or sleep.
1537 */
1538
1539 if (uobjpage != PGO_DONTCARE) {
1540 if (uobjpage->flags & PG_WANTED)
1541 /* still holding object lock */
1542 wakeup(uobjpage);
1543
1544 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1545 UVM_PAGE_OWN(uobjpage, NULL);
1546 }
1547
1548 /* unlock and fail ... */
1549 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1550 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1551 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1552 UVMHIST_LOG(maphist, " promote: out of VM",
1553 0,0,0,0);
1554 uvmexp.fltnoanon++;
1555 return ENOMEM;
1556 }
1557
1558 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1559 0,0,0,0);
1560 uvmexp.fltnoram++;
1561 uvm_wait("flt_noram5");
1562 goto ReFault;
1563 }
1564
1565 /*
1566 * fill in the data
1567 */
1568
1569 if (uobjpage != PGO_DONTCARE) {
1570 uvmexp.flt_prcopy++;
1571 /* copy page [pg now dirty] */
1572 uvm_pagecopy(uobjpage, pg);
1573
1574 /*
1575 * promote to shared amap? make sure all sharing
1576 * procs see it
1577 */
1578
1579 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1580 pmap_page_protect(uobjpage, VM_PROT_NONE);
1581 /*
1582 * XXX: PAGE MIGHT BE WIRED!
1583 */
1584 }
1585
1586 /*
1587 * dispose of uobjpage. it can't be PG_RELEASED
1588 * since we still hold the object lock.
1589 * drop handle to uobj as well.
1590 */
1591
1592 if (uobjpage->flags & PG_WANTED)
1593 /* still have the obj lock */
1594 wakeup(uobjpage);
1595 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1596 UVM_PAGE_OWN(uobjpage, NULL);
1597 simple_unlock(&uobj->vmobjlock);
1598 uobj = NULL;
1599
1600 UVMHIST_LOG(maphist,
1601 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1602 uobjpage, anon, pg, 0);
1603
1604 } else {
1605 uvmexp.flt_przero++;
1606
1607 /*
1608 * Page is zero'd and marked dirty by uvm_pagealloc()
1609 * above.
1610 */
1611
1612 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1613 anon, pg, 0, 0);
1614 }
1615 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1616 anon, 0);
1617 }
1618
1619 /*
1620 * locked:
1621 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1622 * anon(if !null), pg(if anon)
1623 *
1624 * note: pg is either the uobjpage or the new page in the new anon
1625 */
1626
1627 /*
1628 * all resources are present. we can now map it in and free our
1629 * resources.
1630 */
1631
1632 UVMHIST_LOG(maphist,
1633 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1634 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1635 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1636 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1637 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1638 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1639
1640 /*
1641 * No need to undo what we did; we can simply think of
1642 * this as the pmap throwing away the mapping information.
1643 *
1644 * We do, however, have to go through the ReFault path,
1645 * as the map may change while we're asleep.
1646 */
1647
1648 if (pg->flags & PG_WANTED)
1649 wakeup(pg);
1650
1651 /*
1652 * note that pg can't be PG_RELEASED since we did not drop
1653 * the object lock since the last time we checked.
1654 */
1655
1656 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1657 UVM_PAGE_OWN(pg, NULL);
1658 uvmfault_unlockall(&ufi, amap, uobj, anon);
1659 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1660 if (uvmexp.swpgonly == uvmexp.swpages) {
1661 UVMHIST_LOG(maphist,
1662 "<- failed. out of VM",0,0,0,0);
1663 /* XXX instrumentation */
1664 return ENOMEM;
1665 }
1666 /* XXX instrumentation */
1667 uvm_wait("flt_pmfail2");
1668 goto ReFault;
1669 }
1670
1671 uvm_lock_pageq();
1672 if (fault_type == VM_FAULT_WIRE) {
1673 uvm_pagewire(pg);
1674 if (pg->pqflags & PQ_AOBJ) {
1675
1676 /*
1677 * since the now-wired page cannot be paged out,
1678 * release its swap resources for others to use.
1679 * since an aobj page with no swap cannot be PG_CLEAN,
1680 * clear its clean flag now.
1681 */
1682
1683 pg->flags &= ~(PG_CLEAN);
1684 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1685 }
1686 } else {
1687 uvm_pageactivate(pg);
1688 }
1689 uvm_unlock_pageq();
1690 if (pg->flags & PG_WANTED)
1691 wakeup(pg);
1692
1693 /*
1694 * note that pg can't be PG_RELEASED since we did not drop the object
1695 * lock since the last time we checked.
1696 */
1697
1698 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1699 UVM_PAGE_OWN(pg, NULL);
1700 uvmfault_unlockall(&ufi, amap, uobj, anon);
1701 pmap_update(ufi.orig_map->pmap);
1702 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1703 return 0;
1704 }
1705
1706 /*
1707 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1708 *
1709 * => map may be read-locked by caller, but MUST NOT be write-locked.
1710 * => if map is read-locked, any operations which may cause map to
1711 * be write-locked in uvm_fault() must be taken care of by
1712 * the caller. See uvm_map_pageable().
1713 */
1714
1715 int
1716 uvm_fault_wire(map, start, end, access_type)
1717 struct vm_map *map;
1718 vaddr_t start, end;
1719 vm_prot_t access_type;
1720 {
1721 vaddr_t va;
1722 int error;
1723
1724 /*
1725 * now fault it in a page at a time. if the fault fails then we have
1726 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1727 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1728 */
1729
1730 /*
1731 * XXX work around overflowing a vaddr_t. this prevents us from
1732 * wiring the last page in the address space, though.
1733 */
1734 if (start > end) {
1735 return EFAULT;
1736 }
1737
1738 for (va = start ; va < end ; va += PAGE_SIZE) {
1739 error = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1740 if (error) {
1741 if (va != start) {
1742 uvm_fault_unwire(map, start, va);
1743 }
1744 return error;
1745 }
1746 }
1747 return 0;
1748 }
1749
1750 /*
1751 * uvm_fault_unwire(): unwire range of virtual space.
1752 */
1753
1754 void
1755 uvm_fault_unwire(map, start, end)
1756 struct vm_map *map;
1757 vaddr_t start, end;
1758 {
1759 vm_map_lock_read(map);
1760 uvm_fault_unwire_locked(map, start, end);
1761 vm_map_unlock_read(map);
1762 }
1763
1764 /*
1765 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1766 *
1767 * => map must be at least read-locked.
1768 */
1769
1770 void
1771 uvm_fault_unwire_locked(map, start, end)
1772 struct vm_map *map;
1773 vaddr_t start, end;
1774 {
1775 struct vm_map_entry *entry;
1776 pmap_t pmap = vm_map_pmap(map);
1777 vaddr_t va;
1778 paddr_t pa;
1779 struct vm_page *pg;
1780
1781 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1782
1783 /*
1784 * we assume that the area we are unwiring has actually been wired
1785 * in the first place. this means that we should be able to extract
1786 * the PAs from the pmap. we also lock out the page daemon so that
1787 * we can call uvm_pageunwire.
1788 */
1789
1790 uvm_lock_pageq();
1791
1792 /*
1793 * find the beginning map entry for the region.
1794 */
1795 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1796 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1797 panic("uvm_fault_unwire_locked: address not in map");
1798
1799 for (va = start; va < end; va += PAGE_SIZE) {
1800 if (pmap_extract(pmap, va, &pa) == FALSE)
1801 panic("uvm_fault_unwire_locked: unwiring "
1802 "non-wired memory");
1803
1804 /*
1805 * make sure the current entry is for the address we're
1806 * dealing with. if not, grab the next entry.
1807 */
1808
1809 KASSERT(va >= entry->start);
1810 if (va >= entry->end) {
1811 KASSERT(entry->next != &map->header &&
1812 entry->next->start <= entry->end);
1813 entry = entry->next;
1814 }
1815
1816 /*
1817 * if the entry is no longer wired, tell the pmap.
1818 */
1819 if (VM_MAPENT_ISWIRED(entry) == 0)
1820 pmap_unwire(pmap, va);
1821
1822 pg = PHYS_TO_VM_PAGE(pa);
1823 if (pg)
1824 uvm_pageunwire(pg);
1825 }
1826
1827 uvm_unlock_pageq();
1828 }
1829