uvm_fault.c revision 1.72 1 /* $NetBSD: uvm_fault.c,v 1.72 2001/12/31 22:34:39 chs Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.72 2001/12/31 22:34:39 chs Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
183 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_addr->u_stats.p_ru.ru_minflt++;
308 else
309 curproc->p_addr->u_stats.p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431 /* remove page from anon */
432 anon->u.an_page = NULL;
433
434 /*
435 * remove the swap slot from the anon
436 * and mark the anon as having no real slot.
437 * don't free the swap slot, thus preventing
438 * it from being used again.
439 */
440
441 uvm_swap_markbad(anon->an_swslot, 1);
442 anon->an_swslot = SWSLOT_BAD;
443
444 /*
445 * note: page was never !PG_BUSY, so it
446 * can't be mapped and thus no need to
447 * pmap_page_protect it...
448 */
449
450 uvm_lock_pageq();
451 uvm_pagefree(pg);
452 uvm_unlock_pageq();
453
454 if (locked)
455 uvmfault_unlockall(ufi, amap, NULL,
456 anon);
457 else
458 simple_unlock(&anon->an_lock);
459 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
460 return error;
461 }
462
463 /*
464 * we've successfully read the page, activate it.
465 */
466
467 uvm_lock_pageq();
468 uvm_pageactivate(pg);
469 uvm_unlock_pageq();
470 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
471 UVM_PAGE_OWN(pg, NULL);
472 if (!locked)
473 simple_unlock(&anon->an_lock);
474 }
475
476 /*
477 * we were not able to relock. restart fault.
478 */
479
480 if (!locked) {
481 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
482 return (ERESTART);
483 }
484
485 /*
486 * verify no one has touched the amap and moved the anon on us.
487 */
488
489 if (ufi != NULL &&
490 amap_lookup(&ufi->entry->aref,
491 ufi->orig_rvaddr - ufi->entry->start) != anon) {
492
493 uvmfault_unlockall(ufi, amap, NULL, anon);
494 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
495 return (ERESTART);
496 }
497
498 /*
499 * try it again!
500 */
501
502 uvmexp.fltanretry++;
503 continue;
504 }
505 /*NOTREACHED*/
506 }
507
508 /*
509 * F A U L T - m a i n e n t r y p o i n t
510 */
511
512 /*
513 * uvm_fault: page fault handler
514 *
515 * => called from MD code to resolve a page fault
516 * => VM data structures usually should be unlocked. however, it is
517 * possible to call here with the main map locked if the caller
518 * gets a write lock, sets it recusive, and then calls us (c.f.
519 * uvm_map_pageable). this should be avoided because it keeps
520 * the map locked off during I/O.
521 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
522 */
523
524 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
525 ~VM_PROT_WRITE : VM_PROT_ALL)
526
527 int
528 uvm_fault(orig_map, vaddr, fault_type, access_type)
529 struct vm_map *orig_map;
530 vaddr_t vaddr;
531 vm_fault_t fault_type;
532 vm_prot_t access_type;
533 {
534 struct uvm_faultinfo ufi;
535 vm_prot_t enter_prot, check_prot;
536 boolean_t wired, narrow, promote, locked, shadowed, wire_fault;
537 int npages, nback, nforw, centeridx, error, lcv, gotpages;
538 vaddr_t startva, objaddr, currva, offset, uoff;
539 paddr_t pa;
540 struct vm_amap *amap;
541 struct uvm_object *uobj;
542 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
543 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
544 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
545
546 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
547 orig_map, vaddr, fault_type, access_type);
548
549 anon = NULL;
550 pg = NULL;
551
552 uvmexp.faults++; /* XXX: locking? */
553
554 /*
555 * init the IN parameters in the ufi
556 */
557
558 ufi.orig_map = orig_map;
559 ufi.orig_rvaddr = trunc_page(vaddr);
560 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
561 wire_fault = fault_type == VM_FAULT_WIRE ||
562 fault_type == VM_FAULT_WIREMAX;
563 if (wire_fault)
564 narrow = TRUE; /* don't look for neighborhood
565 * pages on wire */
566 else
567 narrow = FALSE; /* normal fault */
568
569 /*
570 * "goto ReFault" means restart the page fault from ground zero.
571 */
572 ReFault:
573
574 /*
575 * lookup and lock the maps
576 */
577
578 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
579 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
580 return (EFAULT);
581 }
582 /* locked: maps(read) */
583
584 #ifdef DIAGNOSTIC
585 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
586 printf("Page fault on non-pageable map:\n");
587 printf("ufi.map = %p\n", ufi.map);
588 printf("ufi.orig_map = %p\n", ufi.orig_map);
589 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
590 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
591 }
592 #endif
593
594 /*
595 * check protection
596 */
597
598 check_prot = fault_type == VM_FAULT_WIREMAX ?
599 ufi.entry->max_protection : ufi.entry->protection;
600 if ((check_prot & access_type) != access_type) {
601 UVMHIST_LOG(maphist,
602 "<- protection failure (prot=0x%x, access=0x%x)",
603 ufi.entry->protection, access_type, 0, 0);
604 uvmfault_unlockmaps(&ufi, FALSE);
605 return EACCES;
606 }
607
608 /*
609 * "enter_prot" is the protection we want to enter the page in at.
610 * for certain pages (e.g. copy-on-write pages) this protection can
611 * be more strict than ufi.entry->protection. "wired" means either
612 * the entry is wired or we are fault-wiring the pg.
613 */
614
615 enter_prot = ufi.entry->protection;
616 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
617 if (wired)
618 access_type = enter_prot; /* full access for wired */
619
620 /*
621 * handle "needs_copy" case. if we need to copy the amap we will
622 * have to drop our readlock and relock it with a write lock. (we
623 * need a write lock to change anything in a map entry [e.g.
624 * needs_copy]).
625 */
626
627 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
628 KASSERT(fault_type != VM_FAULT_WIREMAX);
629 if ((access_type & VM_PROT_WRITE) ||
630 (ufi.entry->object.uvm_obj == NULL)) {
631 /* need to clear */
632 UVMHIST_LOG(maphist,
633 " need to clear needs_copy and refault",0,0,0,0);
634 uvmfault_unlockmaps(&ufi, FALSE);
635 uvmfault_amapcopy(&ufi);
636 uvmexp.fltamcopy++;
637 goto ReFault;
638
639 } else {
640
641 /*
642 * ensure that we pmap_enter page R/O since
643 * needs_copy is still true
644 */
645
646 enter_prot &= ~VM_PROT_WRITE;
647 }
648 }
649
650 /*
651 * identify the players
652 */
653
654 amap = ufi.entry->aref.ar_amap; /* top layer */
655 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
656
657 /*
658 * check for a case 0 fault. if nothing backing the entry then
659 * error now.
660 */
661
662 if (amap == NULL && uobj == NULL) {
663 uvmfault_unlockmaps(&ufi, FALSE);
664 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
665 return (EFAULT);
666 }
667
668 /*
669 * establish range of interest based on advice from mapper
670 * and then clip to fit map entry. note that we only want
671 * to do this the first time through the fault. if we
672 * ReFault we will disable this by setting "narrow" to true.
673 */
674
675 if (narrow == FALSE) {
676
677 /* wide fault (!narrow) */
678 KASSERT(uvmadvice[ufi.entry->advice].advice ==
679 ufi.entry->advice);
680 nback = MIN(uvmadvice[ufi.entry->advice].nback,
681 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
682 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
683 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
684 ((ufi.entry->end - ufi.orig_rvaddr) >>
685 PAGE_SHIFT) - 1);
686 /*
687 * note: "-1" because we don't want to count the
688 * faulting page as forw
689 */
690 npages = nback + nforw + 1;
691 centeridx = nback;
692
693 narrow = TRUE; /* ensure only once per-fault */
694
695 } else {
696
697 /* narrow fault! */
698 nback = nforw = 0;
699 startva = ufi.orig_rvaddr;
700 npages = 1;
701 centeridx = 0;
702
703 }
704
705 /* locked: maps(read) */
706 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
707 narrow, nback, nforw, startva);
708 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
709 amap, uobj, 0);
710
711 /*
712 * if we've got an amap, lock it and extract current anons.
713 */
714
715 if (amap) {
716 amap_lock(amap);
717 anons = anons_store;
718 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
719 anons, npages);
720 } else {
721 anons = NULL; /* to be safe */
722 }
723
724 /* locked: maps(read), amap(if there) */
725
726 /*
727 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
728 * now and then forget about them (for the rest of the fault).
729 */
730
731 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
732
733 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
734 0,0,0,0);
735 /* flush back-page anons? */
736 if (amap)
737 uvmfault_anonflush(anons, nback);
738
739 /* flush object? */
740 if (uobj) {
741 objaddr =
742 (startva - ufi.entry->start) + ufi.entry->offset;
743 simple_lock(&uobj->vmobjlock);
744 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
745 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
746 }
747
748 /* now forget about the backpages */
749 if (amap)
750 anons += nback;
751 startva += (nback << PAGE_SHIFT);
752 npages -= nback;
753 nback = centeridx = 0;
754 }
755
756 /* locked: maps(read), amap(if there) */
757
758 /*
759 * map in the backpages and frontpages we found in the amap in hopes
760 * of preventing future faults. we also init the pages[] array as
761 * we go.
762 */
763
764 currva = startva;
765 shadowed = FALSE;
766 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
767
768 /*
769 * dont play with VAs that are already mapped
770 * except for center)
771 */
772 if (lcv != centeridx &&
773 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
774 pages[lcv] = PGO_DONTCARE;
775 continue;
776 }
777
778 /*
779 * unmapped or center page. check if any anon at this level.
780 */
781 if (amap == NULL || anons[lcv] == NULL) {
782 pages[lcv] = NULL;
783 continue;
784 }
785
786 /*
787 * check for present page and map if possible. re-activate it.
788 */
789
790 pages[lcv] = PGO_DONTCARE;
791 if (lcv == centeridx) { /* save center for later! */
792 shadowed = TRUE;
793 continue;
794 }
795 anon = anons[lcv];
796 simple_lock(&anon->an_lock);
797 /* ignore loaned pages */
798 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
799 (anon->u.an_page->flags & PG_BUSY) == 0) {
800 uvm_lock_pageq();
801 uvm_pageactivate(anon->u.an_page);
802 uvm_unlock_pageq();
803 UVMHIST_LOG(maphist,
804 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
805 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
806 uvmexp.fltnamap++;
807
808 /*
809 * Since this isn't the page that's actually faulting,
810 * ignore pmap_enter() failures; it's not critical
811 * that we enter these right now.
812 */
813
814 (void) pmap_enter(ufi.orig_map->pmap, currva,
815 VM_PAGE_TO_PHYS(anon->u.an_page),
816 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
817 enter_prot,
818 PMAP_CANFAIL |
819 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
820 }
821 simple_unlock(&anon->an_lock);
822 pmap_update(ufi.orig_map->pmap);
823 }
824
825 /* locked: maps(read), amap(if there) */
826 /* (shadowed == TRUE) if there is an anon at the faulting address */
827 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
828 (uobj && shadowed == FALSE),0,0);
829
830 /*
831 * note that if we are really short of RAM we could sleep in the above
832 * call to pmap_enter with everything locked. bad?
833 *
834 * XXX Actually, that is bad; pmap_enter() should just fail in that
835 * XXX case. --thorpej
836 */
837
838 /*
839 * if the desired page is not shadowed by the amap and we have a
840 * backing object, then we check to see if the backing object would
841 * prefer to handle the fault itself (rather than letting us do it
842 * with the usual pgo_get hook). the backing object signals this by
843 * providing a pgo_fault routine.
844 */
845
846 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
847 simple_lock(&uobj->vmobjlock);
848
849 /* locked: maps(read), amap (if there), uobj */
850 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
851 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
852
853 /* locked: nothing, pgo_fault has unlocked everything */
854
855 if (error == ERESTART)
856 goto ReFault; /* try again! */
857 /*
858 * object fault routine responsible for pmap_update().
859 */
860 return error;
861 }
862
863 /*
864 * now, if the desired page is not shadowed by the amap and we have
865 * a backing object that does not have a special fault routine, then
866 * we ask (with pgo_get) the object for resident pages that we care
867 * about and attempt to map them in. we do not let pgo_get block
868 * (PGO_LOCKED).
869 */
870
871 if (uobj && shadowed == FALSE) {
872 simple_lock(&uobj->vmobjlock);
873
874 /* locked (!shadowed): maps(read), amap (if there), uobj */
875 /*
876 * the following call to pgo_get does _not_ change locking state
877 */
878
879 uvmexp.fltlget++;
880 gotpages = npages;
881 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
882 (startva - ufi.entry->start),
883 pages, &gotpages, centeridx,
884 access_type & MASK(ufi.entry),
885 ufi.entry->advice, PGO_LOCKED);
886
887 /*
888 * check for pages to map, if we got any
889 */
890
891 uobjpage = NULL;
892
893 if (gotpages) {
894 currva = startva;
895 for (lcv = 0; lcv < npages;
896 lcv++, currva += PAGE_SIZE) {
897 if (pages[lcv] == NULL ||
898 pages[lcv] == PGO_DONTCARE) {
899 continue;
900 }
901
902 /*
903 * if center page is resident and not
904 * PG_BUSY|PG_RELEASED then pgo_get
905 * made it PG_BUSY for us and gave
906 * us a handle to it. remember this
907 * page as "uobjpage." (for later use).
908 */
909
910 if (lcv == centeridx) {
911 uobjpage = pages[lcv];
912 UVMHIST_LOG(maphist, " got uobjpage "
913 "(0x%x) with locked get",
914 uobjpage, 0,0,0);
915 continue;
916 }
917
918 /*
919 * calling pgo_get with PGO_LOCKED returns us
920 * pages which are neither busy nor released,
921 * so we don't need to check for this.
922 * we can just directly enter the pages.
923 */
924
925 uvm_lock_pageq();
926 uvm_pageactivate(pages[lcv]);
927 uvm_unlock_pageq();
928 UVMHIST_LOG(maphist,
929 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
930 ufi.orig_map->pmap, currva, pages[lcv], 0);
931 uvmexp.fltnomap++;
932
933 /*
934 * Since this page isn't the page that's
935 * actually fauling, ignore pmap_enter()
936 * failures; it's not critical that we
937 * enter these right now.
938 */
939
940 (void) pmap_enter(ufi.orig_map->pmap, currva,
941 VM_PAGE_TO_PHYS(pages[lcv]),
942 pages[lcv]->flags & PG_RDONLY ?
943 VM_PROT_READ : enter_prot & MASK(ufi.entry),
944 PMAP_CANFAIL |
945 (wired ? PMAP_WIRED : 0));
946
947 /*
948 * NOTE: page can't be PG_WANTED or PG_RELEASED
949 * because we've held the lock the whole time
950 * we've had the handle.
951 */
952
953 pages[lcv]->flags &= ~(PG_BUSY);
954 UVM_PAGE_OWN(pages[lcv], NULL);
955 }
956 pmap_update(ufi.orig_map->pmap);
957 }
958 } else {
959 uobjpage = NULL;
960 }
961
962 /* locked (shadowed): maps(read), amap */
963 /* locked (!shadowed): maps(read), amap(if there),
964 uobj(if !null), uobjpage(if !null) */
965
966 /*
967 * note that at this point we are done with any front or back pages.
968 * we are now going to focus on the center page (i.e. the one we've
969 * faulted on). if we have faulted on the top (anon) layer
970 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
971 * not touched it yet). if we have faulted on the bottom (uobj)
972 * layer [i.e. case 2] and the page was both present and available,
973 * then we've got a pointer to it as "uobjpage" and we've already
974 * made it BUSY.
975 */
976
977 /*
978 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
979 */
980
981 /*
982 * redirect case 2: if we are not shadowed, go to case 2.
983 */
984
985 if (shadowed == FALSE)
986 goto Case2;
987
988 /* locked: maps(read), amap */
989
990 /*
991 * handle case 1: fault on an anon in our amap
992 */
993
994 anon = anons[centeridx];
995 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
996 simple_lock(&anon->an_lock);
997
998 /* locked: maps(read), amap, anon */
999
1000 /*
1001 * no matter if we have case 1A or case 1B we are going to need to
1002 * have the anon's memory resident. ensure that now.
1003 */
1004
1005 /*
1006 * let uvmfault_anonget do the dirty work.
1007 * if it fails (!OK) it will unlock everything for us.
1008 * if it succeeds, locks are still valid and locked.
1009 * also, if it is OK, then the anon's page is on the queues.
1010 * if the page is on loan from a uvm_object, then anonget will
1011 * lock that object for us if it does not fail.
1012 */
1013
1014 error = uvmfault_anonget(&ufi, amap, anon);
1015 switch (error) {
1016 case 0:
1017 break;
1018
1019 case ERESTART:
1020 goto ReFault;
1021
1022 case EAGAIN:
1023 tsleep(&lbolt, PVM, "fltagain1", 0);
1024 goto ReFault;
1025
1026 default:
1027 return error;
1028 }
1029
1030 /*
1031 * uobj is non null if the page is on loan from an object (i.e. uobj)
1032 */
1033
1034 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1035
1036 /* locked: maps(read), amap, anon, uobj(if one) */
1037
1038 /*
1039 * special handling for loaned pages
1040 */
1041
1042 if (anon->u.an_page->loan_count) {
1043
1044 if ((access_type & VM_PROT_WRITE) == 0) {
1045
1046 /*
1047 * for read faults on loaned pages we just cap the
1048 * protection at read-only.
1049 */
1050
1051 enter_prot = enter_prot & ~VM_PROT_WRITE;
1052
1053 } else {
1054 /*
1055 * note that we can't allow writes into a loaned page!
1056 *
1057 * if we have a write fault on a loaned page in an
1058 * anon then we need to look at the anon's ref count.
1059 * if it is greater than one then we are going to do
1060 * a normal copy-on-write fault into a new anon (this
1061 * is not a problem). however, if the reference count
1062 * is one (a case where we would normally allow a
1063 * write directly to the page) then we need to kill
1064 * the loan before we continue.
1065 */
1066
1067 /* >1 case is already ok */
1068 if (anon->an_ref == 1) {
1069
1070 /* get new un-owned replacement page */
1071 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1072 if (pg == NULL) {
1073 uvmfault_unlockall(&ufi, amap, uobj,
1074 anon);
1075 uvm_wait("flt_noram2");
1076 goto ReFault;
1077 }
1078
1079 /*
1080 * copy data, kill loan, and drop uobj lock
1081 * (if any)
1082 */
1083 /* copy old -> new */
1084 uvm_pagecopy(anon->u.an_page, pg);
1085
1086 /* force reload */
1087 pmap_page_protect(anon->u.an_page,
1088 VM_PROT_NONE);
1089 uvm_lock_pageq(); /* KILL loan */
1090 if (uobj)
1091 /* if we were loaning */
1092 anon->u.an_page->loan_count--;
1093 anon->u.an_page->uanon = NULL;
1094 /* in case we owned */
1095 anon->u.an_page->pqflags &= ~PQ_ANON;
1096 uvm_unlock_pageq();
1097 if (uobj) {
1098 simple_unlock(&uobj->vmobjlock);
1099 uobj = NULL;
1100 }
1101
1102 /* install new page in anon */
1103 anon->u.an_page = pg;
1104 pg->uanon = anon;
1105 pg->pqflags |= PQ_ANON;
1106 pg->flags &= ~(PG_BUSY|PG_FAKE);
1107 UVM_PAGE_OWN(pg, NULL);
1108
1109 /* done! */
1110 } /* ref == 1 */
1111 } /* write fault */
1112 } /* loan count */
1113
1114 /*
1115 * if we are case 1B then we will need to allocate a new blank
1116 * anon to transfer the data into. note that we have a lock
1117 * on anon, so no one can busy or release the page until we are done.
1118 * also note that the ref count can't drop to zero here because
1119 * it is > 1 and we are only dropping one ref.
1120 *
1121 * in the (hopefully very rare) case that we are out of RAM we
1122 * will unlock, wait for more RAM, and refault.
1123 *
1124 * if we are out of anon VM we kill the process (XXX: could wait?).
1125 */
1126
1127 if ((access_type & VM_PROT_WRITE) != 0 && anon->an_ref > 1) {
1128
1129 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1130 uvmexp.flt_acow++;
1131 oanon = anon; /* oanon = old, locked anon */
1132 anon = uvm_analloc();
1133 if (anon) {
1134 /* new anon is locked! */
1135 pg = uvm_pagealloc(NULL, 0, anon, 0);
1136 }
1137
1138 /* check for out of RAM */
1139 if (anon == NULL || pg == NULL) {
1140 if (anon) {
1141 anon->an_ref--;
1142 simple_unlock(&anon->an_lock);
1143 uvm_anfree(anon);
1144 }
1145 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1146 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1147 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1148 UVMHIST_LOG(maphist,
1149 "<- failed. out of VM",0,0,0,0);
1150 uvmexp.fltnoanon++;
1151 return ENOMEM;
1152 }
1153
1154 uvmexp.fltnoram++;
1155 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1156 goto ReFault;
1157 }
1158
1159 /* got all resources, replace anon with nanon */
1160 uvm_pagecopy(oanon->u.an_page, pg);
1161 uvm_pageactivate(pg);
1162 pg->flags &= ~(PG_BUSY|PG_FAKE);
1163 UVM_PAGE_OWN(pg, NULL);
1164 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1165 anon, 1);
1166
1167 /* deref: can not drop to zero here by defn! */
1168 oanon->an_ref--;
1169
1170 /*
1171 * note: oanon is still locked, as is the new anon. we
1172 * need to check for this later when we unlock oanon; if
1173 * oanon != anon, we'll have to unlock anon, too.
1174 */
1175
1176 } else {
1177
1178 uvmexp.flt_anon++;
1179 oanon = anon; /* old, locked anon is same as anon */
1180 pg = anon->u.an_page;
1181 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1182 enter_prot = enter_prot & ~VM_PROT_WRITE;
1183
1184 }
1185
1186 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1187
1188 /*
1189 * now map the page in.
1190 */
1191
1192 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1193 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1194 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1195 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1196 != 0) {
1197
1198 /*
1199 * No need to undo what we did; we can simply think of
1200 * this as the pmap throwing away the mapping information.
1201 *
1202 * We do, however, have to go through the ReFault path,
1203 * as the map may change while we're asleep.
1204 */
1205
1206 if (anon != oanon)
1207 simple_unlock(&anon->an_lock);
1208 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1209 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1210 if (uvmexp.swpgonly == uvmexp.swpages) {
1211 UVMHIST_LOG(maphist,
1212 "<- failed. out of VM",0,0,0,0);
1213 /* XXX instrumentation */
1214 return ENOMEM;
1215 }
1216 /* XXX instrumentation */
1217 uvm_wait("flt_pmfail1");
1218 goto ReFault;
1219 }
1220
1221 /*
1222 * ... update the page queues.
1223 */
1224
1225 uvm_lock_pageq();
1226 if (wire_fault) {
1227 uvm_pagewire(pg);
1228
1229 /*
1230 * since the now-wired page cannot be paged out,
1231 * release its swap resources for others to use.
1232 * since an anon with no swap cannot be PG_CLEAN,
1233 * clear its clean flag now.
1234 */
1235
1236 pg->flags &= ~(PG_CLEAN);
1237 uvm_anon_dropswap(anon);
1238 } else {
1239 uvm_pageactivate(pg);
1240 }
1241 uvm_unlock_pageq();
1242
1243 /*
1244 * done case 1! finish up by unlocking everything and returning success
1245 */
1246
1247 if (anon != oanon)
1248 simple_unlock(&anon->an_lock);
1249 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1250 pmap_update(ufi.orig_map->pmap);
1251 return 0;
1252
1253 Case2:
1254 /*
1255 * handle case 2: faulting on backing object or zero fill
1256 */
1257
1258 /*
1259 * locked:
1260 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1261 */
1262
1263 /*
1264 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1265 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1266 * have a backing object, check and see if we are going to promote
1267 * the data up to an anon during the fault.
1268 */
1269
1270 if (uobj == NULL) {
1271 uobjpage = PGO_DONTCARE;
1272 promote = TRUE; /* always need anon here */
1273 } else {
1274 KASSERT(uobjpage != PGO_DONTCARE);
1275 promote = (access_type & VM_PROT_WRITE) &&
1276 UVM_ET_ISCOPYONWRITE(ufi.entry);
1277 }
1278 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1279 promote, (uobj == NULL), 0,0);
1280
1281 /*
1282 * if uobjpage is not null then we do not need to do I/O to get the
1283 * uobjpage.
1284 *
1285 * if uobjpage is null, then we need to unlock and ask the pager to
1286 * get the data for us. once we have the data, we need to reverify
1287 * the state the world. we are currently not holding any resources.
1288 */
1289
1290 if (uobjpage) {
1291 /* update rusage counters */
1292 curproc->p_addr->u_stats.p_ru.ru_minflt++;
1293 } else {
1294 /* update rusage counters */
1295 curproc->p_addr->u_stats.p_ru.ru_majflt++;
1296
1297 /* locked: maps(read), amap(if there), uobj */
1298 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1299 /* locked: uobj */
1300
1301 uvmexp.fltget++;
1302 gotpages = 1;
1303 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1304 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1305 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1306 PGO_SYNCIO);
1307 /* locked: uobjpage(if no error) */
1308
1309 /*
1310 * recover from I/O
1311 */
1312
1313 if (error) {
1314 if (error == EAGAIN) {
1315 UVMHIST_LOG(maphist,
1316 " pgo_get says TRY AGAIN!",0,0,0,0);
1317 tsleep(&lbolt, PVM, "fltagain2", 0);
1318 goto ReFault;
1319 }
1320
1321 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1322 error, 0,0,0);
1323 return error;
1324 }
1325
1326 /* locked: uobjpage */
1327
1328 uvm_lock_pageq();
1329 uvm_pageactivate(uobjpage);
1330 uvm_unlock_pageq();
1331
1332 /*
1333 * re-verify the state of the world by first trying to relock
1334 * the maps. always relock the object.
1335 */
1336
1337 locked = uvmfault_relock(&ufi);
1338 if (locked && amap)
1339 amap_lock(amap);
1340 simple_lock(&uobj->vmobjlock);
1341
1342 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1343 /* locked(!locked): uobj, uobjpage */
1344
1345 /*
1346 * verify that the page has not be released and re-verify
1347 * that amap slot is still free. if there is a problem,
1348 * we unlock and clean up.
1349 */
1350
1351 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1352 (locked && amap &&
1353 amap_lookup(&ufi.entry->aref,
1354 ufi.orig_rvaddr - ufi.entry->start))) {
1355 if (locked)
1356 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1357 locked = FALSE;
1358 }
1359
1360 /*
1361 * didn't get the lock? release the page and retry.
1362 */
1363
1364 if (locked == FALSE) {
1365 UVMHIST_LOG(maphist,
1366 " wasn't able to relock after fault: retry",
1367 0,0,0,0);
1368 if (uobjpage->flags & PG_WANTED)
1369 wakeup(uobjpage);
1370 if (uobjpage->flags & PG_RELEASED) {
1371 uvmexp.fltpgrele++;
1372 uvm_pagefree(uobjpage);
1373 goto ReFault;
1374 }
1375 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1376 UVM_PAGE_OWN(uobjpage, NULL);
1377 simple_unlock(&uobj->vmobjlock);
1378 goto ReFault;
1379 }
1380
1381 /*
1382 * we have the data in uobjpage which is busy and
1383 * not released. we are holding object lock (so the page
1384 * can't be released on us).
1385 */
1386
1387 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1388 }
1389
1390 /*
1391 * locked:
1392 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1393 */
1394
1395 /*
1396 * notes:
1397 * - at this point uobjpage can not be NULL
1398 * - at this point uobjpage can not be PG_RELEASED (since we checked
1399 * for it above)
1400 * - at this point uobjpage could be PG_WANTED (handle later)
1401 */
1402
1403 if (promote == FALSE) {
1404
1405 /*
1406 * we are not promoting. if the mapping is COW ensure that we
1407 * don't give more access than we should (e.g. when doing a read
1408 * fault on a COPYONWRITE mapping we want to map the COW page in
1409 * R/O even though the entry protection could be R/W).
1410 *
1411 * set "pg" to the page we want to map in (uobjpage, usually)
1412 */
1413
1414 /* no anon in this case. */
1415 anon = NULL;
1416
1417 uvmexp.flt_obj++;
1418 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1419 enter_prot &= ~VM_PROT_WRITE;
1420 pg = uobjpage; /* map in the actual object */
1421
1422 /* assert(uobjpage != PGO_DONTCARE) */
1423
1424 /*
1425 * we are faulting directly on the page. be careful
1426 * about writing to loaned pages...
1427 */
1428
1429 if (uobjpage->loan_count) {
1430 if ((access_type & VM_PROT_WRITE) == 0) {
1431 /* read fault: cap the protection at readonly */
1432 /* cap! */
1433 enter_prot = enter_prot & ~VM_PROT_WRITE;
1434 } else {
1435 /* write fault: must break the loan here */
1436
1437 /* alloc new un-owned page */
1438 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1439
1440 if (pg == NULL) {
1441
1442 /*
1443 * drop ownership of page, it can't
1444 * be released
1445 */
1446
1447 if (uobjpage->flags & PG_WANTED)
1448 wakeup(uobjpage);
1449 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1450 UVM_PAGE_OWN(uobjpage, NULL);
1451
1452 uvmfault_unlockall(&ufi, amap, uobj,
1453 NULL);
1454 UVMHIST_LOG(maphist,
1455 " out of RAM breaking loan, waiting",
1456 0,0,0,0);
1457 uvmexp.fltnoram++;
1458 uvm_wait("flt_noram4");
1459 goto ReFault;
1460 }
1461
1462 /*
1463 * copy the data from the old page to the new
1464 * one and clear the fake/clean flags on the
1465 * new page (keep it busy). force a reload
1466 * of the old page by clearing it from all
1467 * pmaps. then lock the page queues to
1468 * rename the pages.
1469 */
1470
1471 uvm_pagecopy(uobjpage, pg); /* old -> new */
1472 pg->flags &= ~(PG_FAKE|PG_CLEAN);
1473 pmap_page_protect(uobjpage, VM_PROT_NONE);
1474 if (uobjpage->flags & PG_WANTED)
1475 wakeup(uobjpage);
1476 /* uobj still locked */
1477 uobjpage->flags &= ~(PG_WANTED|PG_BUSY);
1478 UVM_PAGE_OWN(uobjpage, NULL);
1479
1480 uvm_lock_pageq();
1481 offset = uobjpage->offset;
1482 uvm_pagerealloc(uobjpage, NULL, 0);
1483
1484 /*
1485 * at this point we have absolutely no
1486 * control over uobjpage
1487 */
1488
1489 /* install new page */
1490 uvm_pageactivate(pg);
1491 uvm_pagerealloc(pg, uobj, offset);
1492 uvm_unlock_pageq();
1493
1494 /*
1495 * done! loan is broken and "pg" is
1496 * PG_BUSY. it can now replace uobjpage.
1497 */
1498
1499 uobjpage = pg;
1500 }
1501 }
1502 } else {
1503
1504 /*
1505 * if we are going to promote the data to an anon we
1506 * allocate a blank anon here and plug it into our amap.
1507 */
1508 #if DIAGNOSTIC
1509 if (amap == NULL)
1510 panic("uvm_fault: want to promote data, but no anon");
1511 #endif
1512
1513 anon = uvm_analloc();
1514 if (anon) {
1515
1516 /*
1517 * The new anon is locked.
1518 *
1519 * In `Fill in data...' below, if
1520 * uobjpage == PGO_DONTCARE, we want
1521 * a zero'd, dirty page, so have
1522 * uvm_pagealloc() do that for us.
1523 */
1524
1525 pg = uvm_pagealloc(NULL, 0, anon,
1526 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1527 }
1528
1529 /*
1530 * out of memory resources?
1531 */
1532
1533 if (anon == NULL || pg == NULL) {
1534 if (anon != NULL) {
1535 anon->an_ref--;
1536 simple_unlock(&anon->an_lock);
1537 uvm_anfree(anon);
1538 }
1539
1540 /*
1541 * arg! must unbusy our page and fail or sleep.
1542 */
1543
1544 if (uobjpage != PGO_DONTCARE) {
1545 if (uobjpage->flags & PG_WANTED)
1546 /* still holding object lock */
1547 wakeup(uobjpage);
1548
1549 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1550 UVM_PAGE_OWN(uobjpage, NULL);
1551 }
1552
1553 /* unlock and fail ... */
1554 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1555 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1556 if (anon == NULL || uvmexp.swpgonly == uvmexp.swpages) {
1557 UVMHIST_LOG(maphist, " promote: out of VM",
1558 0,0,0,0);
1559 uvmexp.fltnoanon++;
1560 return ENOMEM;
1561 }
1562
1563 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1564 0,0,0,0);
1565 uvmexp.fltnoram++;
1566 uvm_wait("flt_noram5");
1567 goto ReFault;
1568 }
1569
1570 /*
1571 * fill in the data
1572 */
1573
1574 if (uobjpage != PGO_DONTCARE) {
1575 uvmexp.flt_prcopy++;
1576 /* copy page [pg now dirty] */
1577 uvm_pagecopy(uobjpage, pg);
1578
1579 /*
1580 * promote to shared amap? make sure all sharing
1581 * procs see it
1582 */
1583
1584 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1585 pmap_page_protect(uobjpage, VM_PROT_NONE);
1586 /*
1587 * XXX: PAGE MIGHT BE WIRED!
1588 */
1589 }
1590
1591 /*
1592 * dispose of uobjpage. it can't be PG_RELEASED
1593 * since we still hold the object lock.
1594 * drop handle to uobj as well.
1595 */
1596
1597 if (uobjpage->flags & PG_WANTED)
1598 /* still have the obj lock */
1599 wakeup(uobjpage);
1600 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1601 UVM_PAGE_OWN(uobjpage, NULL);
1602 simple_unlock(&uobj->vmobjlock);
1603 uobj = NULL;
1604
1605 UVMHIST_LOG(maphist,
1606 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1607 uobjpage, anon, pg, 0);
1608
1609 } else {
1610 uvmexp.flt_przero++;
1611
1612 /*
1613 * Page is zero'd and marked dirty by uvm_pagealloc()
1614 * above.
1615 */
1616
1617 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1618 anon, pg, 0, 0);
1619 }
1620 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1621 anon, 0);
1622 }
1623
1624 /*
1625 * locked:
1626 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1627 * anon(if !null), pg(if anon)
1628 *
1629 * note: pg is either the uobjpage or the new page in the new anon
1630 */
1631
1632 /*
1633 * all resources are present. we can now map it in and free our
1634 * resources.
1635 */
1636
1637 UVMHIST_LOG(maphist,
1638 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1639 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1640 KASSERT(access_type == VM_PROT_READ || (pg->flags & PG_RDONLY) == 0);
1641 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1642 pg->flags & PG_RDONLY ? VM_PROT_READ : enter_prot,
1643 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1644
1645 /*
1646 * No need to undo what we did; we can simply think of
1647 * this as the pmap throwing away the mapping information.
1648 *
1649 * We do, however, have to go through the ReFault path,
1650 * as the map may change while we're asleep.
1651 */
1652
1653 if (pg->flags & PG_WANTED)
1654 wakeup(pg);
1655
1656 /*
1657 * note that pg can't be PG_RELEASED since we did not drop
1658 * the object lock since the last time we checked.
1659 */
1660
1661 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1662 UVM_PAGE_OWN(pg, NULL);
1663 uvmfault_unlockall(&ufi, amap, uobj, anon);
1664 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1665 if (uvmexp.swpgonly == uvmexp.swpages) {
1666 UVMHIST_LOG(maphist,
1667 "<- failed. out of VM",0,0,0,0);
1668 /* XXX instrumentation */
1669 return ENOMEM;
1670 }
1671 /* XXX instrumentation */
1672 uvm_wait("flt_pmfail2");
1673 goto ReFault;
1674 }
1675
1676 uvm_lock_pageq();
1677 if (wire_fault) {
1678 uvm_pagewire(pg);
1679 if (pg->pqflags & PQ_AOBJ) {
1680
1681 /*
1682 * since the now-wired page cannot be paged out,
1683 * release its swap resources for others to use.
1684 * since an aobj page with no swap cannot be PG_CLEAN,
1685 * clear its clean flag now.
1686 */
1687
1688 pg->flags &= ~(PG_CLEAN);
1689 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1690 }
1691 } else {
1692 uvm_pageactivate(pg);
1693 }
1694 uvm_unlock_pageq();
1695 if (pg->flags & PG_WANTED)
1696 wakeup(pg);
1697
1698 /*
1699 * note that pg can't be PG_RELEASED since we did not drop the object
1700 * lock since the last time we checked.
1701 */
1702
1703 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1704 UVM_PAGE_OWN(pg, NULL);
1705 uvmfault_unlockall(&ufi, amap, uobj, anon);
1706 pmap_update(ufi.orig_map->pmap);
1707 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1708 return 0;
1709 }
1710
1711 /*
1712 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1713 *
1714 * => map may be read-locked by caller, but MUST NOT be write-locked.
1715 * => if map is read-locked, any operations which may cause map to
1716 * be write-locked in uvm_fault() must be taken care of by
1717 * the caller. See uvm_map_pageable().
1718 */
1719
1720 int
1721 uvm_fault_wire(map, start, end, fault_type, access_type)
1722 struct vm_map *map;
1723 vaddr_t start, end;
1724 vm_fault_t fault_type;
1725 vm_prot_t access_type;
1726 {
1727 vaddr_t va;
1728 int error;
1729
1730 /*
1731 * now fault it in a page at a time. if the fault fails then we have
1732 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1733 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1734 */
1735
1736 /*
1737 * XXX work around overflowing a vaddr_t. this prevents us from
1738 * wiring the last page in the address space, though.
1739 */
1740 if (start > end) {
1741 return EFAULT;
1742 }
1743
1744 for (va = start ; va < end ; va += PAGE_SIZE) {
1745 error = uvm_fault(map, va, fault_type, access_type);
1746 if (error) {
1747 if (va != start) {
1748 uvm_fault_unwire(map, start, va);
1749 }
1750 return error;
1751 }
1752 }
1753 return 0;
1754 }
1755
1756 /*
1757 * uvm_fault_unwire(): unwire range of virtual space.
1758 */
1759
1760 void
1761 uvm_fault_unwire(map, start, end)
1762 struct vm_map *map;
1763 vaddr_t start, end;
1764 {
1765 vm_map_lock_read(map);
1766 uvm_fault_unwire_locked(map, start, end);
1767 vm_map_unlock_read(map);
1768 }
1769
1770 /*
1771 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1772 *
1773 * => map must be at least read-locked.
1774 */
1775
1776 void
1777 uvm_fault_unwire_locked(map, start, end)
1778 struct vm_map *map;
1779 vaddr_t start, end;
1780 {
1781 struct vm_map_entry *entry;
1782 pmap_t pmap = vm_map_pmap(map);
1783 vaddr_t va;
1784 paddr_t pa;
1785 struct vm_page *pg;
1786
1787 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1788
1789 /*
1790 * we assume that the area we are unwiring has actually been wired
1791 * in the first place. this means that we should be able to extract
1792 * the PAs from the pmap. we also lock out the page daemon so that
1793 * we can call uvm_pageunwire.
1794 */
1795
1796 uvm_lock_pageq();
1797
1798 /*
1799 * find the beginning map entry for the region.
1800 */
1801 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1802 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1803 panic("uvm_fault_unwire_locked: address not in map");
1804
1805 for (va = start; va < end; va += PAGE_SIZE) {
1806 if (pmap_extract(pmap, va, &pa) == FALSE)
1807 panic("uvm_fault_unwire_locked: unwiring "
1808 "non-wired memory");
1809
1810 /*
1811 * make sure the current entry is for the address we're
1812 * dealing with. if not, grab the next entry.
1813 */
1814
1815 KASSERT(va >= entry->start);
1816 if (va >= entry->end) {
1817 KASSERT(entry->next != &map->header &&
1818 entry->next->start <= entry->end);
1819 entry = entry->next;
1820 }
1821
1822 /*
1823 * if the entry is no longer wired, tell the pmap.
1824 */
1825 if (VM_MAPENT_ISWIRED(entry) == 0)
1826 pmap_unwire(pmap, va);
1827
1828 pg = PHYS_TO_VM_PAGE(pa);
1829 if (pg)
1830 uvm_pageunwire(pg);
1831 }
1832
1833 uvm_unlock_pageq();
1834 }
1835