uvm_fault.c revision 1.82.2.6 1 /* $NetBSD: uvm_fault.c,v 1.82.2.6 2005/03/04 16:55:00 skrll Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.82.2.6 2005/03/04 16:55:00 skrll Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy(struct uvm_faultinfo *);
183 static __inline void uvmfault_anonflush(struct vm_anon **, int);
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_stats->p_ru.ru_minflt++;
308 else
309 curproc->p_stats->p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431
432 /*
433 * remove the swap slot from the anon
434 * and mark the anon as having no real slot.
435 * don't free the swap slot, thus preventing
436 * it from being used again.
437 */
438
439 if (anon->an_swslot > 0)
440 uvm_swap_markbad(anon->an_swslot, 1);
441 anon->an_swslot = SWSLOT_BAD;
442
443 if ((pg->flags & PG_RELEASED) != 0)
444 goto released;
445
446 /*
447 * note: page was never !PG_BUSY, so it
448 * can't be mapped and thus no need to
449 * pmap_page_protect it...
450 */
451
452 uvm_lock_pageq();
453 uvm_pagefree(pg);
454 uvm_unlock_pageq();
455
456 if (locked)
457 uvmfault_unlockall(ufi, amap, NULL,
458 anon);
459 else
460 simple_unlock(&anon->an_lock);
461 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
462 return error;
463 }
464
465 if ((pg->flags & PG_RELEASED) != 0) {
466 released:
467 KASSERT(anon->an_ref == 0);
468
469 /*
470 * released while we unlocked amap.
471 */
472
473 if (locked)
474 uvmfault_unlockall(ufi, amap, NULL,
475 NULL);
476
477 uvm_anon_release(anon);
478
479 if (error) {
480 UVMHIST_LOG(maphist,
481 "<- ERROR/RELEASED", 0,0,0,0);
482 return error;
483 }
484
485 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
486 return ERESTART;
487 }
488
489 /*
490 * we've successfully read the page, activate it.
491 */
492
493 uvm_lock_pageq();
494 uvm_pageactivate(pg);
495 uvm_unlock_pageq();
496 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
497 UVM_PAGE_OWN(pg, NULL);
498 if (!locked)
499 simple_unlock(&anon->an_lock);
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * F A U L T - m a i n e n t r y p o i n t
536 */
537
538 /*
539 * uvm_fault: page fault handler
540 *
541 * => called from MD code to resolve a page fault
542 * => VM data structures usually should be unlocked. however, it is
543 * possible to call here with the main map locked if the caller
544 * gets a write lock, sets it recusive, and then calls us (c.f.
545 * uvm_map_pageable). this should be avoided because it keeps
546 * the map locked off during I/O.
547 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
548 */
549
550 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
551 ~VM_PROT_WRITE : VM_PROT_ALL)
552
553 int
554 uvm_fault(orig_map, vaddr, fault_type, access_type)
555 struct vm_map *orig_map;
556 vaddr_t vaddr;
557 vm_fault_t fault_type;
558 vm_prot_t access_type;
559 {
560 struct uvm_faultinfo ufi;
561 vm_prot_t enter_prot, check_prot;
562 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
563 int npages, nback, nforw, centeridx, error, lcv, gotpages;
564 vaddr_t startva, currva;
565 voff_t uoff;
566 struct vm_amap *amap;
567 struct uvm_object *uobj;
568 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
569 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
570 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
571
572 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
573 orig_map, vaddr, fault_type, access_type);
574
575 anon = NULL;
576 pg = NULL;
577
578 uvmexp.faults++; /* XXX: locking? */
579
580 /*
581 * init the IN parameters in the ufi
582 */
583
584 ufi.orig_map = orig_map;
585 ufi.orig_rvaddr = trunc_page(vaddr);
586 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
587 wire_fault = fault_type == VM_FAULT_WIRE ||
588 fault_type == VM_FAULT_WIREMAX;
589 if (wire_fault)
590 narrow = TRUE; /* don't look for neighborhood
591 * pages on wire */
592 else
593 narrow = FALSE; /* normal fault */
594
595 /*
596 * "goto ReFault" means restart the page fault from ground zero.
597 */
598 ReFault:
599
600 /*
601 * lookup and lock the maps
602 */
603
604 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
605 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
606 return (EFAULT);
607 }
608 /* locked: maps(read) */
609
610 #ifdef DIAGNOSTIC
611 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
612 printf("Page fault on non-pageable map:\n");
613 printf("ufi.map = %p\n", ufi.map);
614 printf("ufi.orig_map = %p\n", ufi.orig_map);
615 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
616 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
617 }
618 #endif
619
620 /*
621 * check protection
622 */
623
624 check_prot = fault_type == VM_FAULT_WIREMAX ?
625 ufi.entry->max_protection : ufi.entry->protection;
626 if ((check_prot & access_type) != access_type) {
627 UVMHIST_LOG(maphist,
628 "<- protection failure (prot=0x%x, access=0x%x)",
629 ufi.entry->protection, access_type, 0, 0);
630 uvmfault_unlockmaps(&ufi, FALSE);
631 return EACCES;
632 }
633
634 /*
635 * "enter_prot" is the protection we want to enter the page in at.
636 * for certain pages (e.g. copy-on-write pages) this protection can
637 * be more strict than ufi.entry->protection. "wired" means either
638 * the entry is wired or we are fault-wiring the pg.
639 */
640
641 enter_prot = ufi.entry->protection;
642 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
643 if (wired) {
644 access_type = enter_prot; /* full access for wired */
645 cow_now = (check_prot & VM_PROT_WRITE) != 0;
646 } else {
647 cow_now = (access_type & VM_PROT_WRITE) != 0;
648 }
649
650 /*
651 * handle "needs_copy" case. if we need to copy the amap we will
652 * have to drop our readlock and relock it with a write lock. (we
653 * need a write lock to change anything in a map entry [e.g.
654 * needs_copy]).
655 */
656
657 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
658 KASSERT(fault_type != VM_FAULT_WIREMAX);
659 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
660 /* need to clear */
661 UVMHIST_LOG(maphist,
662 " need to clear needs_copy and refault",0,0,0,0);
663 uvmfault_unlockmaps(&ufi, FALSE);
664 uvmfault_amapcopy(&ufi);
665 uvmexp.fltamcopy++;
666 goto ReFault;
667
668 } else {
669
670 /*
671 * ensure that we pmap_enter page R/O since
672 * needs_copy is still true
673 */
674
675 enter_prot &= ~VM_PROT_WRITE;
676 }
677 }
678
679 /*
680 * identify the players
681 */
682
683 amap = ufi.entry->aref.ar_amap; /* top layer */
684 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
685
686 /*
687 * check for a case 0 fault. if nothing backing the entry then
688 * error now.
689 */
690
691 if (amap == NULL && uobj == NULL) {
692 uvmfault_unlockmaps(&ufi, FALSE);
693 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
694 return (EFAULT);
695 }
696
697 /*
698 * establish range of interest based on advice from mapper
699 * and then clip to fit map entry. note that we only want
700 * to do this the first time through the fault. if we
701 * ReFault we will disable this by setting "narrow" to true.
702 */
703
704 if (narrow == FALSE) {
705
706 /* wide fault (!narrow) */
707 KASSERT(uvmadvice[ufi.entry->advice].advice ==
708 ufi.entry->advice);
709 nback = MIN(uvmadvice[ufi.entry->advice].nback,
710 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
711 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
712 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
713 ((ufi.entry->end - ufi.orig_rvaddr) >>
714 PAGE_SHIFT) - 1);
715 /*
716 * note: "-1" because we don't want to count the
717 * faulting page as forw
718 */
719 npages = nback + nforw + 1;
720 centeridx = nback;
721
722 narrow = TRUE; /* ensure only once per-fault */
723
724 } else {
725
726 /* narrow fault! */
727 nback = nforw = 0;
728 startva = ufi.orig_rvaddr;
729 npages = 1;
730 centeridx = 0;
731
732 }
733
734 /* locked: maps(read) */
735 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
736 narrow, nback, nforw, startva);
737 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
738 amap, uobj, 0);
739
740 /*
741 * if we've got an amap, lock it and extract current anons.
742 */
743
744 if (amap) {
745 amap_lock(amap);
746 anons = anons_store;
747 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
748 anons, npages);
749 } else {
750 anons = NULL; /* to be safe */
751 }
752
753 /* locked: maps(read), amap(if there) */
754
755 /*
756 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
757 * now and then forget about them (for the rest of the fault).
758 */
759
760 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
761
762 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
763 0,0,0,0);
764 /* flush back-page anons? */
765 if (amap)
766 uvmfault_anonflush(anons, nback);
767
768 /* flush object? */
769 if (uobj) {
770 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
771 simple_lock(&uobj->vmobjlock);
772 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
773 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
774 }
775
776 /* now forget about the backpages */
777 if (amap)
778 anons += nback;
779 startva += (nback << PAGE_SHIFT);
780 npages -= nback;
781 nback = centeridx = 0;
782 }
783
784 /* locked: maps(read), amap(if there) */
785
786 /*
787 * map in the backpages and frontpages we found in the amap in hopes
788 * of preventing future faults. we also init the pages[] array as
789 * we go.
790 */
791
792 currva = startva;
793 shadowed = FALSE;
794 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
795
796 /*
797 * dont play with VAs that are already mapped
798 * except for center)
799 */
800 if (lcv != centeridx &&
801 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
802 pages[lcv] = PGO_DONTCARE;
803 continue;
804 }
805
806 /*
807 * unmapped or center page. check if any anon at this level.
808 */
809 if (amap == NULL || anons[lcv] == NULL) {
810 pages[lcv] = NULL;
811 continue;
812 }
813
814 /*
815 * check for present page and map if possible. re-activate it.
816 */
817
818 pages[lcv] = PGO_DONTCARE;
819 if (lcv == centeridx) { /* save center for later! */
820 shadowed = TRUE;
821 continue;
822 }
823 anon = anons[lcv];
824 simple_lock(&anon->an_lock);
825 /* ignore loaned pages */
826 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
827 (anon->u.an_page->flags & PG_BUSY) == 0) {
828 uvm_lock_pageq();
829 uvm_pageactivate(anon->u.an_page);
830 uvm_unlock_pageq();
831 UVMHIST_LOG(maphist,
832 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
833 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
834 uvmexp.fltnamap++;
835
836 /*
837 * Since this isn't the page that's actually faulting,
838 * ignore pmap_enter() failures; it's not critical
839 * that we enter these right now.
840 */
841
842 (void) pmap_enter(ufi.orig_map->pmap, currva,
843 VM_PAGE_TO_PHYS(anon->u.an_page),
844 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
845 enter_prot,
846 PMAP_CANFAIL |
847 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
848 }
849 simple_unlock(&anon->an_lock);
850 pmap_update(ufi.orig_map->pmap);
851 }
852
853 /* locked: maps(read), amap(if there) */
854 /* (shadowed == TRUE) if there is an anon at the faulting address */
855 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
856 (uobj && shadowed == FALSE),0,0);
857
858 /*
859 * note that if we are really short of RAM we could sleep in the above
860 * call to pmap_enter with everything locked. bad?
861 *
862 * XXX Actually, that is bad; pmap_enter() should just fail in that
863 * XXX case. --thorpej
864 */
865
866 /*
867 * if the desired page is not shadowed by the amap and we have a
868 * backing object, then we check to see if the backing object would
869 * prefer to handle the fault itself (rather than letting us do it
870 * with the usual pgo_get hook). the backing object signals this by
871 * providing a pgo_fault routine.
872 */
873
874 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
875 simple_lock(&uobj->vmobjlock);
876
877 /* locked: maps(read), amap (if there), uobj */
878 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
879 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
880
881 /* locked: nothing, pgo_fault has unlocked everything */
882
883 if (error == ERESTART)
884 goto ReFault; /* try again! */
885 /*
886 * object fault routine responsible for pmap_update().
887 */
888 return error;
889 }
890
891 /*
892 * now, if the desired page is not shadowed by the amap and we have
893 * a backing object that does not have a special fault routine, then
894 * we ask (with pgo_get) the object for resident pages that we care
895 * about and attempt to map them in. we do not let pgo_get block
896 * (PGO_LOCKED).
897 */
898
899 if (uobj && shadowed == FALSE) {
900 simple_lock(&uobj->vmobjlock);
901
902 /* locked (!shadowed): maps(read), amap (if there), uobj */
903 /*
904 * the following call to pgo_get does _not_ change locking state
905 */
906
907 uvmexp.fltlget++;
908 gotpages = npages;
909 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
910 (startva - ufi.entry->start),
911 pages, &gotpages, centeridx,
912 access_type & MASK(ufi.entry),
913 ufi.entry->advice, PGO_LOCKED);
914
915 /*
916 * check for pages to map, if we got any
917 */
918
919 uobjpage = NULL;
920
921 if (gotpages) {
922 currva = startva;
923 for (lcv = 0; lcv < npages;
924 lcv++, currva += PAGE_SIZE) {
925 struct vm_page *curpg;
926 boolean_t readonly;
927
928 curpg = pages[lcv];
929 if (curpg == NULL || curpg == PGO_DONTCARE) {
930 continue;
931 }
932
933 /*
934 * if center page is resident and not
935 * PG_BUSY|PG_RELEASED then pgo_get
936 * made it PG_BUSY for us and gave
937 * us a handle to it. remember this
938 * page as "uobjpage." (for later use).
939 */
940
941 if (lcv == centeridx) {
942 uobjpage = curpg;
943 UVMHIST_LOG(maphist, " got uobjpage "
944 "(0x%x) with locked get",
945 uobjpage, 0,0,0);
946 continue;
947 }
948
949 /*
950 * calling pgo_get with PGO_LOCKED returns us
951 * pages which are neither busy nor released,
952 * so we don't need to check for this.
953 * we can just directly enter the pages.
954 */
955
956 uvm_lock_pageq();
957 uvm_pageactivate(curpg);
958 uvm_unlock_pageq();
959 UVMHIST_LOG(maphist,
960 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
961 ufi.orig_map->pmap, currva, curpg, 0);
962 uvmexp.fltnomap++;
963
964 /*
965 * Since this page isn't the page that's
966 * actually faulting, ignore pmap_enter()
967 * failures; it's not critical that we
968 * enter these right now.
969 */
970 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
971 KASSERT((curpg->flags & PG_RELEASED) == 0);
972 readonly = (curpg->flags & PG_RDONLY)
973 || (curpg->loan_count > 0);
974
975 (void) pmap_enter(ufi.orig_map->pmap, currva,
976 VM_PAGE_TO_PHYS(curpg),
977 readonly ?
978 enter_prot & ~VM_PROT_WRITE :
979 enter_prot & MASK(ufi.entry),
980 PMAP_CANFAIL |
981 (wired ? PMAP_WIRED : 0));
982
983 /*
984 * NOTE: page can't be PG_WANTED or PG_RELEASED
985 * because we've held the lock the whole time
986 * we've had the handle.
987 */
988
989 curpg->flags &= ~(PG_BUSY);
990 UVM_PAGE_OWN(curpg, NULL);
991 }
992 pmap_update(ufi.orig_map->pmap);
993 }
994 } else {
995 uobjpage = NULL;
996 }
997
998 /* locked (shadowed): maps(read), amap */
999 /* locked (!shadowed): maps(read), amap(if there),
1000 uobj(if !null), uobjpage(if !null) */
1001
1002 /*
1003 * note that at this point we are done with any front or back pages.
1004 * we are now going to focus on the center page (i.e. the one we've
1005 * faulted on). if we have faulted on the top (anon) layer
1006 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1007 * not touched it yet). if we have faulted on the bottom (uobj)
1008 * layer [i.e. case 2] and the page was both present and available,
1009 * then we've got a pointer to it as "uobjpage" and we've already
1010 * made it BUSY.
1011 */
1012
1013 /*
1014 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1015 */
1016
1017 /*
1018 * redirect case 2: if we are not shadowed, go to case 2.
1019 */
1020
1021 if (shadowed == FALSE)
1022 goto Case2;
1023
1024 /* locked: maps(read), amap */
1025
1026 /*
1027 * handle case 1: fault on an anon in our amap
1028 */
1029
1030 anon = anons[centeridx];
1031 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1032 simple_lock(&anon->an_lock);
1033
1034 /* locked: maps(read), amap, anon */
1035
1036 /*
1037 * no matter if we have case 1A or case 1B we are going to need to
1038 * have the anon's memory resident. ensure that now.
1039 */
1040
1041 /*
1042 * let uvmfault_anonget do the dirty work.
1043 * if it fails (!OK) it will unlock everything for us.
1044 * if it succeeds, locks are still valid and locked.
1045 * also, if it is OK, then the anon's page is on the queues.
1046 * if the page is on loan from a uvm_object, then anonget will
1047 * lock that object for us if it does not fail.
1048 */
1049
1050 error = uvmfault_anonget(&ufi, amap, anon);
1051 switch (error) {
1052 case 0:
1053 break;
1054
1055 case ERESTART:
1056 goto ReFault;
1057
1058 case EAGAIN:
1059 tsleep(&lbolt, PVM, "fltagain1", 0);
1060 goto ReFault;
1061
1062 default:
1063 return error;
1064 }
1065
1066 /*
1067 * uobj is non null if the page is on loan from an object (i.e. uobj)
1068 */
1069
1070 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1071
1072 /* locked: maps(read), amap, anon, uobj(if one) */
1073
1074 /*
1075 * special handling for loaned pages
1076 */
1077
1078 if (anon->u.an_page->loan_count) {
1079
1080 if (!cow_now) {
1081
1082 /*
1083 * for read faults on loaned pages we just cap the
1084 * protection at read-only.
1085 */
1086
1087 enter_prot = enter_prot & ~VM_PROT_WRITE;
1088
1089 } else {
1090 /*
1091 * note that we can't allow writes into a loaned page!
1092 *
1093 * if we have a write fault on a loaned page in an
1094 * anon then we need to look at the anon's ref count.
1095 * if it is greater than one then we are going to do
1096 * a normal copy-on-write fault into a new anon (this
1097 * is not a problem). however, if the reference count
1098 * is one (a case where we would normally allow a
1099 * write directly to the page) then we need to kill
1100 * the loan before we continue.
1101 */
1102
1103 /* >1 case is already ok */
1104 if (anon->an_ref == 1) {
1105
1106 /* get new un-owned replacement page */
1107 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1108 if (pg == NULL) {
1109 uvmfault_unlockall(&ufi, amap, uobj,
1110 anon);
1111 uvm_wait("flt_noram2");
1112 goto ReFault;
1113 }
1114
1115 /*
1116 * copy data, kill loan, and drop uobj lock
1117 * (if any)
1118 */
1119 /* copy old -> new */
1120 uvm_pagecopy(anon->u.an_page, pg);
1121
1122 /* force reload */
1123 pmap_page_protect(anon->u.an_page,
1124 VM_PROT_NONE);
1125 uvm_lock_pageq(); /* KILL loan */
1126
1127 anon->u.an_page->uanon = NULL;
1128 /* in case we owned */
1129 anon->u.an_page->pqflags &= ~PQ_ANON;
1130
1131 if (uobj) {
1132 /* if we were receiver of loan */
1133 anon->u.an_page->loan_count--;
1134 } else {
1135 /*
1136 * we were the lender (A->K); need
1137 * to remove the page from pageq's.
1138 */
1139 uvm_pagedequeue(anon->u.an_page);
1140 }
1141
1142 uvm_pageactivate(pg);
1143 uvm_unlock_pageq();
1144 if (uobj) {
1145 simple_unlock(&uobj->vmobjlock);
1146 uobj = NULL;
1147 }
1148
1149 /* install new page in anon */
1150 anon->u.an_page = pg;
1151 pg->uanon = anon;
1152 pg->pqflags |= PQ_ANON;
1153 pg->flags &= ~(PG_BUSY|PG_FAKE);
1154 UVM_PAGE_OWN(pg, NULL);
1155
1156 /* done! */
1157 } /* ref == 1 */
1158 } /* write fault */
1159 } /* loan count */
1160
1161 /*
1162 * if we are case 1B then we will need to allocate a new blank
1163 * anon to transfer the data into. note that we have a lock
1164 * on anon, so no one can busy or release the page until we are done.
1165 * also note that the ref count can't drop to zero here because
1166 * it is > 1 and we are only dropping one ref.
1167 *
1168 * in the (hopefully very rare) case that we are out of RAM we
1169 * will unlock, wait for more RAM, and refault.
1170 *
1171 * if we are out of anon VM we kill the process (XXX: could wait?).
1172 */
1173
1174 if (cow_now && anon->an_ref > 1) {
1175
1176 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1177 uvmexp.flt_acow++;
1178 oanon = anon; /* oanon = old, locked anon */
1179 anon = uvm_analloc();
1180 if (anon) {
1181 /* new anon is locked! */
1182 pg = uvm_pagealloc(NULL, 0, anon, 0);
1183 }
1184
1185 /* check for out of RAM */
1186 if (anon == NULL || pg == NULL) {
1187 if (anon) {
1188 anon->an_ref--;
1189 simple_unlock(&anon->an_lock);
1190 uvm_anfree(anon);
1191 }
1192 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1193 if (anon == NULL || uvm_swapisfull()) {
1194 UVMHIST_LOG(maphist,
1195 "<- failed. out of VM",0,0,0,0);
1196 uvmexp.fltnoanon++;
1197 return ENOMEM;
1198 }
1199
1200 uvmexp.fltnoram++;
1201 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1202 goto ReFault;
1203 }
1204
1205 /* got all resources, replace anon with nanon */
1206 uvm_pagecopy(oanon->u.an_page, pg);
1207 uvm_lock_pageq();
1208 uvm_pageactivate(pg);
1209 pg->flags &= ~(PG_BUSY|PG_FAKE);
1210 uvm_unlock_pageq();
1211 UVM_PAGE_OWN(pg, NULL);
1212 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1213 anon, TRUE);
1214
1215 /* deref: can not drop to zero here by defn! */
1216 oanon->an_ref--;
1217
1218 /*
1219 * note: oanon is still locked, as is the new anon. we
1220 * need to check for this later when we unlock oanon; if
1221 * oanon != anon, we'll have to unlock anon, too.
1222 */
1223
1224 } else {
1225
1226 uvmexp.flt_anon++;
1227 oanon = anon; /* old, locked anon is same as anon */
1228 pg = anon->u.an_page;
1229 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1230 enter_prot = enter_prot & ~VM_PROT_WRITE;
1231
1232 }
1233
1234 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1235
1236 /*
1237 * now map the page in.
1238 */
1239
1240 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1241 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1242 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1243 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1244 != 0) {
1245
1246 /*
1247 * No need to undo what we did; we can simply think of
1248 * this as the pmap throwing away the mapping information.
1249 *
1250 * We do, however, have to go through the ReFault path,
1251 * as the map may change while we're asleep.
1252 */
1253
1254 if (anon != oanon)
1255 simple_unlock(&anon->an_lock);
1256 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1257 if (uvm_swapisfull()) {
1258 UVMHIST_LOG(maphist,
1259 "<- failed. out of VM",0,0,0,0);
1260 /* XXX instrumentation */
1261 return ENOMEM;
1262 }
1263 /* XXX instrumentation */
1264 uvm_wait("flt_pmfail1");
1265 goto ReFault;
1266 }
1267
1268 /*
1269 * ... update the page queues.
1270 */
1271
1272 uvm_lock_pageq();
1273 if (wire_fault) {
1274 uvm_pagewire(pg);
1275
1276 /*
1277 * since the now-wired page cannot be paged out,
1278 * release its swap resources for others to use.
1279 * since an anon with no swap cannot be PG_CLEAN,
1280 * clear its clean flag now.
1281 */
1282
1283 pg->flags &= ~(PG_CLEAN);
1284 uvm_anon_dropswap(anon);
1285 } else {
1286 uvm_pageactivate(pg);
1287 }
1288 uvm_unlock_pageq();
1289
1290 /*
1291 * done case 1! finish up by unlocking everything and returning success
1292 */
1293
1294 if (anon != oanon)
1295 simple_unlock(&anon->an_lock);
1296 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1297 pmap_update(ufi.orig_map->pmap);
1298 return 0;
1299
1300 Case2:
1301 /*
1302 * handle case 2: faulting on backing object or zero fill
1303 */
1304
1305 /*
1306 * locked:
1307 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1308 */
1309
1310 /*
1311 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1312 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1313 * have a backing object, check and see if we are going to promote
1314 * the data up to an anon during the fault.
1315 */
1316
1317 if (uobj == NULL) {
1318 uobjpage = PGO_DONTCARE;
1319 promote = TRUE; /* always need anon here */
1320 } else {
1321 KASSERT(uobjpage != PGO_DONTCARE);
1322 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1323 }
1324 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1325 promote, (uobj == NULL), 0,0);
1326
1327 /*
1328 * if uobjpage is not null then we do not need to do I/O to get the
1329 * uobjpage.
1330 *
1331 * if uobjpage is null, then we need to unlock and ask the pager to
1332 * get the data for us. once we have the data, we need to reverify
1333 * the state the world. we are currently not holding any resources.
1334 */
1335
1336 if (uobjpage) {
1337 /* update rusage counters */
1338 curproc->p_stats->p_ru.ru_minflt++;
1339 } else {
1340 /* update rusage counters */
1341 curproc->p_stats->p_ru.ru_majflt++;
1342
1343 /* locked: maps(read), amap(if there), uobj */
1344 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1345 /* locked: uobj */
1346
1347 uvmexp.fltget++;
1348 gotpages = 1;
1349 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1350 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1351 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1352 PGO_SYNCIO);
1353 /* locked: uobjpage(if no error) */
1354
1355 /*
1356 * recover from I/O
1357 */
1358
1359 if (error) {
1360 if (error == EAGAIN) {
1361 UVMHIST_LOG(maphist,
1362 " pgo_get says TRY AGAIN!",0,0,0,0);
1363 tsleep(&lbolt, PVM, "fltagain2", 0);
1364 goto ReFault;
1365 }
1366
1367 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1368 error, 0,0,0);
1369 return error;
1370 }
1371
1372 /* locked: uobjpage */
1373
1374 uvm_lock_pageq();
1375 uvm_pageactivate(uobjpage);
1376 uvm_unlock_pageq();
1377
1378 /*
1379 * re-verify the state of the world by first trying to relock
1380 * the maps. always relock the object.
1381 */
1382
1383 locked = uvmfault_relock(&ufi);
1384 if (locked && amap)
1385 amap_lock(amap);
1386 simple_lock(&uobj->vmobjlock);
1387
1388 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1389 /* locked(!locked): uobj, uobjpage */
1390
1391 /*
1392 * verify that the page has not be released and re-verify
1393 * that amap slot is still free. if there is a problem,
1394 * we unlock and clean up.
1395 */
1396
1397 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1398 (locked && amap &&
1399 amap_lookup(&ufi.entry->aref,
1400 ufi.orig_rvaddr - ufi.entry->start))) {
1401 if (locked)
1402 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1403 locked = FALSE;
1404 }
1405
1406 /*
1407 * didn't get the lock? release the page and retry.
1408 */
1409
1410 if (locked == FALSE) {
1411 UVMHIST_LOG(maphist,
1412 " wasn't able to relock after fault: retry",
1413 0,0,0,0);
1414 if (uobjpage->flags & PG_WANTED)
1415 wakeup(uobjpage);
1416 if (uobjpage->flags & PG_RELEASED) {
1417 uvmexp.fltpgrele++;
1418 uvm_pagefree(uobjpage);
1419 goto ReFault;
1420 }
1421 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1422 UVM_PAGE_OWN(uobjpage, NULL);
1423 simple_unlock(&uobj->vmobjlock);
1424 goto ReFault;
1425 }
1426
1427 /*
1428 * we have the data in uobjpage which is busy and
1429 * not released. we are holding object lock (so the page
1430 * can't be released on us).
1431 */
1432
1433 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1434 }
1435
1436 /*
1437 * locked:
1438 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1439 */
1440
1441 /*
1442 * notes:
1443 * - at this point uobjpage can not be NULL
1444 * - at this point uobjpage can not be PG_RELEASED (since we checked
1445 * for it above)
1446 * - at this point uobjpage could be PG_WANTED (handle later)
1447 */
1448
1449 if (promote == FALSE) {
1450
1451 /*
1452 * we are not promoting. if the mapping is COW ensure that we
1453 * don't give more access than we should (e.g. when doing a read
1454 * fault on a COPYONWRITE mapping we want to map the COW page in
1455 * R/O even though the entry protection could be R/W).
1456 *
1457 * set "pg" to the page we want to map in (uobjpage, usually)
1458 */
1459
1460 /* no anon in this case. */
1461 anon = NULL;
1462
1463 uvmexp.flt_obj++;
1464 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1465 enter_prot &= ~VM_PROT_WRITE;
1466 pg = uobjpage; /* map in the actual object */
1467
1468 /* assert(uobjpage != PGO_DONTCARE) */
1469
1470 /*
1471 * we are faulting directly on the page. be careful
1472 * about writing to loaned pages...
1473 */
1474
1475 if (uobjpage->loan_count) {
1476 if (!cow_now) {
1477 /* read fault: cap the protection at readonly */
1478 /* cap! */
1479 enter_prot = enter_prot & ~VM_PROT_WRITE;
1480 } else {
1481 /* write fault: must break the loan here */
1482
1483 pg = uvm_loanbreak(uobjpage);
1484 if (pg == NULL) {
1485
1486 /*
1487 * drop ownership of page, it can't
1488 * be released
1489 */
1490
1491 if (uobjpage->flags & PG_WANTED)
1492 wakeup(uobjpage);
1493 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1494 UVM_PAGE_OWN(uobjpage, NULL);
1495
1496 uvmfault_unlockall(&ufi, amap, uobj,
1497 NULL);
1498 UVMHIST_LOG(maphist,
1499 " out of RAM breaking loan, waiting",
1500 0,0,0,0);
1501 uvmexp.fltnoram++;
1502 uvm_wait("flt_noram4");
1503 goto ReFault;
1504 }
1505 uobjpage = pg;
1506 }
1507 }
1508 } else {
1509
1510 /*
1511 * if we are going to promote the data to an anon we
1512 * allocate a blank anon here and plug it into our amap.
1513 */
1514 #if DIAGNOSTIC
1515 if (amap == NULL)
1516 panic("uvm_fault: want to promote data, but no anon");
1517 #endif
1518
1519 anon = uvm_analloc();
1520 if (anon) {
1521
1522 /*
1523 * The new anon is locked.
1524 *
1525 * In `Fill in data...' below, if
1526 * uobjpage == PGO_DONTCARE, we want
1527 * a zero'd, dirty page, so have
1528 * uvm_pagealloc() do that for us.
1529 */
1530
1531 pg = uvm_pagealloc(NULL, 0, anon,
1532 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1533 }
1534
1535 /*
1536 * out of memory resources?
1537 */
1538
1539 if (anon == NULL || pg == NULL) {
1540 if (anon != NULL) {
1541 anon->an_ref--;
1542 simple_unlock(&anon->an_lock);
1543 uvm_anfree(anon);
1544 }
1545
1546 /*
1547 * arg! must unbusy our page and fail or sleep.
1548 */
1549
1550 if (uobjpage != PGO_DONTCARE) {
1551 if (uobjpage->flags & PG_WANTED)
1552 /* still holding object lock */
1553 wakeup(uobjpage);
1554
1555 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1556 UVM_PAGE_OWN(uobjpage, NULL);
1557 }
1558
1559 /* unlock and fail ... */
1560 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1561 if (anon == NULL || uvm_swapisfull()) {
1562 UVMHIST_LOG(maphist, " promote: out of VM",
1563 0,0,0,0);
1564 uvmexp.fltnoanon++;
1565 return ENOMEM;
1566 }
1567
1568 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1569 0,0,0,0);
1570 uvmexp.fltnoram++;
1571 uvm_wait("flt_noram5");
1572 goto ReFault;
1573 }
1574
1575 /*
1576 * fill in the data
1577 */
1578
1579 if (uobjpage != PGO_DONTCARE) {
1580 uvmexp.flt_prcopy++;
1581 /* copy page [pg now dirty] */
1582 uvm_pagecopy(uobjpage, pg);
1583
1584 /*
1585 * promote to shared amap? make sure all sharing
1586 * procs see it
1587 */
1588
1589 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1590 pmap_page_protect(uobjpage, VM_PROT_NONE);
1591 /*
1592 * XXX: PAGE MIGHT BE WIRED!
1593 */
1594 }
1595
1596 /*
1597 * dispose of uobjpage. it can't be PG_RELEASED
1598 * since we still hold the object lock.
1599 * drop handle to uobj as well.
1600 */
1601
1602 if (uobjpage->flags & PG_WANTED)
1603 /* still have the obj lock */
1604 wakeup(uobjpage);
1605 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1606 UVM_PAGE_OWN(uobjpage, NULL);
1607 simple_unlock(&uobj->vmobjlock);
1608 uobj = NULL;
1609
1610 UVMHIST_LOG(maphist,
1611 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1612 uobjpage, anon, pg, 0);
1613
1614 } else {
1615 uvmexp.flt_przero++;
1616
1617 /*
1618 * Page is zero'd and marked dirty by uvm_pagealloc()
1619 * above.
1620 */
1621
1622 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1623 anon, pg, 0, 0);
1624 }
1625 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1626 anon, FALSE);
1627 }
1628
1629 /*
1630 * locked:
1631 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1632 * anon(if !null), pg(if anon)
1633 *
1634 * note: pg is either the uobjpage or the new page in the new anon
1635 */
1636
1637 /*
1638 * all resources are present. we can now map it in and free our
1639 * resources.
1640 */
1641
1642 UVMHIST_LOG(maphist,
1643 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1644 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1645 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1646 (pg->flags & PG_RDONLY) == 0);
1647 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1648 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1649 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1650
1651 /*
1652 * No need to undo what we did; we can simply think of
1653 * this as the pmap throwing away the mapping information.
1654 *
1655 * We do, however, have to go through the ReFault path,
1656 * as the map may change while we're asleep.
1657 */
1658
1659 if (pg->flags & PG_WANTED)
1660 wakeup(pg);
1661
1662 /*
1663 * note that pg can't be PG_RELEASED since we did not drop
1664 * the object lock since the last time we checked.
1665 */
1666
1667 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1668 UVM_PAGE_OWN(pg, NULL);
1669 uvmfault_unlockall(&ufi, amap, uobj, anon);
1670 if (uvm_swapisfull()) {
1671 UVMHIST_LOG(maphist,
1672 "<- failed. out of VM",0,0,0,0);
1673 /* XXX instrumentation */
1674 return ENOMEM;
1675 }
1676 /* XXX instrumentation */
1677 uvm_wait("flt_pmfail2");
1678 goto ReFault;
1679 }
1680
1681 uvm_lock_pageq();
1682 if (wire_fault) {
1683 uvm_pagewire(pg);
1684 if (pg->pqflags & PQ_AOBJ) {
1685
1686 /*
1687 * since the now-wired page cannot be paged out,
1688 * release its swap resources for others to use.
1689 * since an aobj page with no swap cannot be PG_CLEAN,
1690 * clear its clean flag now.
1691 */
1692
1693 pg->flags &= ~(PG_CLEAN);
1694 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1695 }
1696 } else {
1697 uvm_pageactivate(pg);
1698 }
1699 uvm_unlock_pageq();
1700 if (pg->flags & PG_WANTED)
1701 wakeup(pg);
1702
1703 /*
1704 * note that pg can't be PG_RELEASED since we did not drop the object
1705 * lock since the last time we checked.
1706 */
1707
1708 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1709 UVM_PAGE_OWN(pg, NULL);
1710 uvmfault_unlockall(&ufi, amap, uobj, anon);
1711 pmap_update(ufi.orig_map->pmap);
1712 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1713 return 0;
1714 }
1715
1716 /*
1717 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1718 *
1719 * => map may be read-locked by caller, but MUST NOT be write-locked.
1720 * => if map is read-locked, any operations which may cause map to
1721 * be write-locked in uvm_fault() must be taken care of by
1722 * the caller. See uvm_map_pageable().
1723 */
1724
1725 int
1726 uvm_fault_wire(map, start, end, fault_type, access_type)
1727 struct vm_map *map;
1728 vaddr_t start, end;
1729 vm_fault_t fault_type;
1730 vm_prot_t access_type;
1731 {
1732 vaddr_t va;
1733 int error;
1734
1735 /*
1736 * now fault it in a page at a time. if the fault fails then we have
1737 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1738 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1739 */
1740
1741 /*
1742 * XXX work around overflowing a vaddr_t. this prevents us from
1743 * wiring the last page in the address space, though.
1744 */
1745 if (start > end) {
1746 return EFAULT;
1747 }
1748
1749 for (va = start ; va < end ; va += PAGE_SIZE) {
1750 error = uvm_fault(map, va, fault_type, access_type);
1751 if (error) {
1752 if (va != start) {
1753 uvm_fault_unwire(map, start, va);
1754 }
1755 return error;
1756 }
1757 }
1758 return 0;
1759 }
1760
1761 /*
1762 * uvm_fault_unwire(): unwire range of virtual space.
1763 */
1764
1765 void
1766 uvm_fault_unwire(map, start, end)
1767 struct vm_map *map;
1768 vaddr_t start, end;
1769 {
1770 vm_map_lock_read(map);
1771 uvm_fault_unwire_locked(map, start, end);
1772 vm_map_unlock_read(map);
1773 }
1774
1775 /*
1776 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1777 *
1778 * => map must be at least read-locked.
1779 */
1780
1781 void
1782 uvm_fault_unwire_locked(map, start, end)
1783 struct vm_map *map;
1784 vaddr_t start, end;
1785 {
1786 struct vm_map_entry *entry;
1787 pmap_t pmap = vm_map_pmap(map);
1788 vaddr_t va;
1789 paddr_t pa;
1790 struct vm_page *pg;
1791
1792 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1793
1794 /*
1795 * we assume that the area we are unwiring has actually been wired
1796 * in the first place. this means that we should be able to extract
1797 * the PAs from the pmap. we also lock out the page daemon so that
1798 * we can call uvm_pageunwire.
1799 */
1800
1801 uvm_lock_pageq();
1802
1803 /*
1804 * find the beginning map entry for the region.
1805 */
1806
1807 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1808 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1809 panic("uvm_fault_unwire_locked: address not in map");
1810
1811 for (va = start; va < end; va += PAGE_SIZE) {
1812 if (pmap_extract(pmap, va, &pa) == FALSE)
1813 continue;
1814
1815 /*
1816 * find the map entry for the current address.
1817 */
1818
1819 KASSERT(va >= entry->start);
1820 while (va >= entry->end) {
1821 KASSERT(entry->next != &map->header &&
1822 entry->next->start <= entry->end);
1823 entry = entry->next;
1824 }
1825
1826 /*
1827 * if the entry is no longer wired, tell the pmap.
1828 */
1829
1830 if (VM_MAPENT_ISWIRED(entry) == 0)
1831 pmap_unwire(pmap, va);
1832
1833 pg = PHYS_TO_VM_PAGE(pa);
1834 if (pg)
1835 uvm_pageunwire(pg);
1836 }
1837
1838 uvm_unlock_pageq();
1839 }
1840