uvm_fault.c revision 1.85 1 /* $NetBSD: uvm_fault.c,v 1.85 2004/02/10 00:40:06 dbj Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.85 2004/02/10 00:40:06 dbj Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy __P((struct uvm_faultinfo *));
183 static __inline void uvmfault_anonflush __P((struct vm_anon **, int));
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_stats->p_ru.ru_minflt++;
308 else
309 curproc->p_stats->p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431 /* remove page from anon */
432 anon->u.an_page = NULL;
433
434 /*
435 * remove the swap slot from the anon
436 * and mark the anon as having no real slot.
437 * don't free the swap slot, thus preventing
438 * it from being used again.
439 */
440
441 if (anon->an_swslot > 0)
442 uvm_swap_markbad(anon->an_swslot, 1);
443 anon->an_swslot = SWSLOT_BAD;
444
445 /*
446 * note: page was never !PG_BUSY, so it
447 * can't be mapped and thus no need to
448 * pmap_page_protect it...
449 */
450
451 uvm_lock_pageq();
452 uvm_pagefree(pg);
453 uvm_unlock_pageq();
454
455 if (locked)
456 uvmfault_unlockall(ufi, amap, NULL,
457 anon);
458 else
459 simple_unlock(&anon->an_lock);
460 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
461 return error;
462 }
463
464 /*
465 * we've successfully read the page, activate it.
466 */
467
468 uvm_lock_pageq();
469 uvm_pageactivate(pg);
470 uvm_unlock_pageq();
471 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
472 UVM_PAGE_OWN(pg, NULL);
473 if (!locked)
474 simple_unlock(&anon->an_lock);
475 }
476
477 /*
478 * we were not able to relock. restart fault.
479 */
480
481 if (!locked) {
482 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
483 return (ERESTART);
484 }
485
486 /*
487 * verify no one has touched the amap and moved the anon on us.
488 */
489
490 if (ufi != NULL &&
491 amap_lookup(&ufi->entry->aref,
492 ufi->orig_rvaddr - ufi->entry->start) != anon) {
493
494 uvmfault_unlockall(ufi, amap, NULL, anon);
495 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
496 return (ERESTART);
497 }
498
499 /*
500 * try it again!
501 */
502
503 uvmexp.fltanretry++;
504 continue;
505 }
506 /*NOTREACHED*/
507 }
508
509 /*
510 * F A U L T - m a i n e n t r y p o i n t
511 */
512
513 /*
514 * uvm_fault: page fault handler
515 *
516 * => called from MD code to resolve a page fault
517 * => VM data structures usually should be unlocked. however, it is
518 * possible to call here with the main map locked if the caller
519 * gets a write lock, sets it recusive, and then calls us (c.f.
520 * uvm_map_pageable). this should be avoided because it keeps
521 * the map locked off during I/O.
522 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
523 */
524
525 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
526 ~VM_PROT_WRITE : VM_PROT_ALL)
527
528 int
529 uvm_fault(orig_map, vaddr, fault_type, access_type)
530 struct vm_map *orig_map;
531 vaddr_t vaddr;
532 vm_fault_t fault_type;
533 vm_prot_t access_type;
534 {
535 struct uvm_faultinfo ufi;
536 vm_prot_t enter_prot, check_prot;
537 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
538 int npages, nback, nforw, centeridx, error, lcv, gotpages;
539 vaddr_t startva, objaddr, currva;
540 voff_t uoff;
541 paddr_t pa;
542 struct vm_amap *amap;
543 struct uvm_object *uobj;
544 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
545 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
546 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
547
548 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
549 orig_map, vaddr, fault_type, access_type);
550
551 anon = NULL;
552 pg = NULL;
553
554 uvmexp.faults++; /* XXX: locking? */
555
556 /*
557 * init the IN parameters in the ufi
558 */
559
560 ufi.orig_map = orig_map;
561 ufi.orig_rvaddr = trunc_page(vaddr);
562 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
563 wire_fault = fault_type == VM_FAULT_WIRE ||
564 fault_type == VM_FAULT_WIREMAX;
565 if (wire_fault)
566 narrow = TRUE; /* don't look for neighborhood
567 * pages on wire */
568 else
569 narrow = FALSE; /* normal fault */
570
571 /*
572 * "goto ReFault" means restart the page fault from ground zero.
573 */
574 ReFault:
575
576 /*
577 * lookup and lock the maps
578 */
579
580 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
581 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
582 return (EFAULT);
583 }
584 /* locked: maps(read) */
585
586 #ifdef DIAGNOSTIC
587 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
588 printf("Page fault on non-pageable map:\n");
589 printf("ufi.map = %p\n", ufi.map);
590 printf("ufi.orig_map = %p\n", ufi.orig_map);
591 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
592 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
593 }
594 #endif
595
596 /*
597 * check protection
598 */
599
600 check_prot = fault_type == VM_FAULT_WIREMAX ?
601 ufi.entry->max_protection : ufi.entry->protection;
602 if ((check_prot & access_type) != access_type) {
603 UVMHIST_LOG(maphist,
604 "<- protection failure (prot=0x%x, access=0x%x)",
605 ufi.entry->protection, access_type, 0, 0);
606 uvmfault_unlockmaps(&ufi, FALSE);
607 return EACCES;
608 }
609
610 /*
611 * "enter_prot" is the protection we want to enter the page in at.
612 * for certain pages (e.g. copy-on-write pages) this protection can
613 * be more strict than ufi.entry->protection. "wired" means either
614 * the entry is wired or we are fault-wiring the pg.
615 */
616
617 enter_prot = ufi.entry->protection;
618 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
619 if (wired) {
620 access_type = enter_prot; /* full access for wired */
621 cow_now = (check_prot & VM_PROT_WRITE) != 0;
622 } else {
623 cow_now = (access_type & VM_PROT_WRITE) != 0;
624 }
625
626 /*
627 * handle "needs_copy" case. if we need to copy the amap we will
628 * have to drop our readlock and relock it with a write lock. (we
629 * need a write lock to change anything in a map entry [e.g.
630 * needs_copy]).
631 */
632
633 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
634 KASSERT(fault_type != VM_FAULT_WIREMAX);
635 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
636 /* need to clear */
637 UVMHIST_LOG(maphist,
638 " need to clear needs_copy and refault",0,0,0,0);
639 uvmfault_unlockmaps(&ufi, FALSE);
640 uvmfault_amapcopy(&ufi);
641 uvmexp.fltamcopy++;
642 goto ReFault;
643
644 } else {
645
646 /*
647 * ensure that we pmap_enter page R/O since
648 * needs_copy is still true
649 */
650
651 enter_prot &= ~VM_PROT_WRITE;
652 }
653 }
654
655 /*
656 * identify the players
657 */
658
659 amap = ufi.entry->aref.ar_amap; /* top layer */
660 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
661
662 /*
663 * check for a case 0 fault. if nothing backing the entry then
664 * error now.
665 */
666
667 if (amap == NULL && uobj == NULL) {
668 uvmfault_unlockmaps(&ufi, FALSE);
669 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
670 return (EFAULT);
671 }
672
673 /*
674 * establish range of interest based on advice from mapper
675 * and then clip to fit map entry. note that we only want
676 * to do this the first time through the fault. if we
677 * ReFault we will disable this by setting "narrow" to true.
678 */
679
680 if (narrow == FALSE) {
681
682 /* wide fault (!narrow) */
683 KASSERT(uvmadvice[ufi.entry->advice].advice ==
684 ufi.entry->advice);
685 nback = MIN(uvmadvice[ufi.entry->advice].nback,
686 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
687 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
688 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
689 ((ufi.entry->end - ufi.orig_rvaddr) >>
690 PAGE_SHIFT) - 1);
691 /*
692 * note: "-1" because we don't want to count the
693 * faulting page as forw
694 */
695 npages = nback + nforw + 1;
696 centeridx = nback;
697
698 narrow = TRUE; /* ensure only once per-fault */
699
700 } else {
701
702 /* narrow fault! */
703 nback = nforw = 0;
704 startva = ufi.orig_rvaddr;
705 npages = 1;
706 centeridx = 0;
707
708 }
709
710 /* locked: maps(read) */
711 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
712 narrow, nback, nforw, startva);
713 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
714 amap, uobj, 0);
715
716 /*
717 * if we've got an amap, lock it and extract current anons.
718 */
719
720 if (amap) {
721 amap_lock(amap);
722 anons = anons_store;
723 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
724 anons, npages);
725 } else {
726 anons = NULL; /* to be safe */
727 }
728
729 /* locked: maps(read), amap(if there) */
730
731 /*
732 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
733 * now and then forget about them (for the rest of the fault).
734 */
735
736 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
737
738 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
739 0,0,0,0);
740 /* flush back-page anons? */
741 if (amap)
742 uvmfault_anonflush(anons, nback);
743
744 /* flush object? */
745 if (uobj) {
746 objaddr =
747 (startva - ufi.entry->start) + ufi.entry->offset;
748 simple_lock(&uobj->vmobjlock);
749 (void) (uobj->pgops->pgo_put)(uobj, objaddr, objaddr +
750 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
751 }
752
753 /* now forget about the backpages */
754 if (amap)
755 anons += nback;
756 startva += (nback << PAGE_SHIFT);
757 npages -= nback;
758 nback = centeridx = 0;
759 }
760
761 /* locked: maps(read), amap(if there) */
762
763 /*
764 * map in the backpages and frontpages we found in the amap in hopes
765 * of preventing future faults. we also init the pages[] array as
766 * we go.
767 */
768
769 currva = startva;
770 shadowed = FALSE;
771 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
772
773 /*
774 * dont play with VAs that are already mapped
775 * except for center)
776 */
777 if (lcv != centeridx &&
778 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
779 pages[lcv] = PGO_DONTCARE;
780 continue;
781 }
782
783 /*
784 * unmapped or center page. check if any anon at this level.
785 */
786 if (amap == NULL || anons[lcv] == NULL) {
787 pages[lcv] = NULL;
788 continue;
789 }
790
791 /*
792 * check for present page and map if possible. re-activate it.
793 */
794
795 pages[lcv] = PGO_DONTCARE;
796 if (lcv == centeridx) { /* save center for later! */
797 shadowed = TRUE;
798 continue;
799 }
800 anon = anons[lcv];
801 simple_lock(&anon->an_lock);
802 /* ignore loaned pages */
803 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
804 (anon->u.an_page->flags & PG_BUSY) == 0) {
805 uvm_lock_pageq();
806 uvm_pageactivate(anon->u.an_page);
807 uvm_unlock_pageq();
808 UVMHIST_LOG(maphist,
809 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
810 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
811 uvmexp.fltnamap++;
812
813 /*
814 * Since this isn't the page that's actually faulting,
815 * ignore pmap_enter() failures; it's not critical
816 * that we enter these right now.
817 */
818
819 (void) pmap_enter(ufi.orig_map->pmap, currva,
820 VM_PAGE_TO_PHYS(anon->u.an_page),
821 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
822 enter_prot,
823 PMAP_CANFAIL |
824 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
825 }
826 simple_unlock(&anon->an_lock);
827 pmap_update(ufi.orig_map->pmap);
828 }
829
830 /* locked: maps(read), amap(if there) */
831 /* (shadowed == TRUE) if there is an anon at the faulting address */
832 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
833 (uobj && shadowed == FALSE),0,0);
834
835 /*
836 * note that if we are really short of RAM we could sleep in the above
837 * call to pmap_enter with everything locked. bad?
838 *
839 * XXX Actually, that is bad; pmap_enter() should just fail in that
840 * XXX case. --thorpej
841 */
842
843 /*
844 * if the desired page is not shadowed by the amap and we have a
845 * backing object, then we check to see if the backing object would
846 * prefer to handle the fault itself (rather than letting us do it
847 * with the usual pgo_get hook). the backing object signals this by
848 * providing a pgo_fault routine.
849 */
850
851 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
852 simple_lock(&uobj->vmobjlock);
853
854 /* locked: maps(read), amap (if there), uobj */
855 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
856 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
857
858 /* locked: nothing, pgo_fault has unlocked everything */
859
860 if (error == ERESTART)
861 goto ReFault; /* try again! */
862 /*
863 * object fault routine responsible for pmap_update().
864 */
865 return error;
866 }
867
868 /*
869 * now, if the desired page is not shadowed by the amap and we have
870 * a backing object that does not have a special fault routine, then
871 * we ask (with pgo_get) the object for resident pages that we care
872 * about and attempt to map them in. we do not let pgo_get block
873 * (PGO_LOCKED).
874 */
875
876 if (uobj && shadowed == FALSE) {
877 simple_lock(&uobj->vmobjlock);
878
879 /* locked (!shadowed): maps(read), amap (if there), uobj */
880 /*
881 * the following call to pgo_get does _not_ change locking state
882 */
883
884 uvmexp.fltlget++;
885 gotpages = npages;
886 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
887 (startva - ufi.entry->start),
888 pages, &gotpages, centeridx,
889 access_type & MASK(ufi.entry),
890 ufi.entry->advice, PGO_LOCKED);
891
892 /*
893 * check for pages to map, if we got any
894 */
895
896 uobjpage = NULL;
897
898 if (gotpages) {
899 currva = startva;
900 for (lcv = 0; lcv < npages;
901 lcv++, currva += PAGE_SIZE) {
902 if (pages[lcv] == NULL ||
903 pages[lcv] == PGO_DONTCARE) {
904 continue;
905 }
906
907 /*
908 * if center page is resident and not
909 * PG_BUSY|PG_RELEASED then pgo_get
910 * made it PG_BUSY for us and gave
911 * us a handle to it. remember this
912 * page as "uobjpage." (for later use).
913 */
914
915 if (lcv == centeridx) {
916 uobjpage = pages[lcv];
917 UVMHIST_LOG(maphist, " got uobjpage "
918 "(0x%x) with locked get",
919 uobjpage, 0,0,0);
920 continue;
921 }
922
923 /*
924 * calling pgo_get with PGO_LOCKED returns us
925 * pages which are neither busy nor released,
926 * so we don't need to check for this.
927 * we can just directly enter the pages.
928 */
929
930 uvm_lock_pageq();
931 uvm_pageactivate(pages[lcv]);
932 uvm_unlock_pageq();
933 UVMHIST_LOG(maphist,
934 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
935 ufi.orig_map->pmap, currva, pages[lcv], 0);
936 uvmexp.fltnomap++;
937
938 /*
939 * Since this page isn't the page that's
940 * actually faulting, ignore pmap_enter()
941 * failures; it's not critical that we
942 * enter these right now.
943 */
944
945 (void) pmap_enter(ufi.orig_map->pmap, currva,
946 VM_PAGE_TO_PHYS(pages[lcv]),
947 pages[lcv]->flags & PG_RDONLY ?
948 enter_prot & ~VM_PROT_WRITE :
949 enter_prot & MASK(ufi.entry),
950 PMAP_CANFAIL |
951 (wired ? PMAP_WIRED : 0));
952
953 /*
954 * NOTE: page can't be PG_WANTED or PG_RELEASED
955 * because we've held the lock the whole time
956 * we've had the handle.
957 */
958
959 pages[lcv]->flags &= ~(PG_BUSY);
960 UVM_PAGE_OWN(pages[lcv], NULL);
961 }
962 pmap_update(ufi.orig_map->pmap);
963 }
964 } else {
965 uobjpage = NULL;
966 }
967
968 /* locked (shadowed): maps(read), amap */
969 /* locked (!shadowed): maps(read), amap(if there),
970 uobj(if !null), uobjpage(if !null) */
971
972 /*
973 * note that at this point we are done with any front or back pages.
974 * we are now going to focus on the center page (i.e. the one we've
975 * faulted on). if we have faulted on the top (anon) layer
976 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
977 * not touched it yet). if we have faulted on the bottom (uobj)
978 * layer [i.e. case 2] and the page was both present and available,
979 * then we've got a pointer to it as "uobjpage" and we've already
980 * made it BUSY.
981 */
982
983 /*
984 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
985 */
986
987 /*
988 * redirect case 2: if we are not shadowed, go to case 2.
989 */
990
991 if (shadowed == FALSE)
992 goto Case2;
993
994 /* locked: maps(read), amap */
995
996 /*
997 * handle case 1: fault on an anon in our amap
998 */
999
1000 anon = anons[centeridx];
1001 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1002 simple_lock(&anon->an_lock);
1003
1004 /* locked: maps(read), amap, anon */
1005
1006 /*
1007 * no matter if we have case 1A or case 1B we are going to need to
1008 * have the anon's memory resident. ensure that now.
1009 */
1010
1011 /*
1012 * let uvmfault_anonget do the dirty work.
1013 * if it fails (!OK) it will unlock everything for us.
1014 * if it succeeds, locks are still valid and locked.
1015 * also, if it is OK, then the anon's page is on the queues.
1016 * if the page is on loan from a uvm_object, then anonget will
1017 * lock that object for us if it does not fail.
1018 */
1019
1020 error = uvmfault_anonget(&ufi, amap, anon);
1021 switch (error) {
1022 case 0:
1023 break;
1024
1025 case ERESTART:
1026 goto ReFault;
1027
1028 case EAGAIN:
1029 tsleep(&lbolt, PVM, "fltagain1", 0);
1030 goto ReFault;
1031
1032 default:
1033 return error;
1034 }
1035
1036 /*
1037 * uobj is non null if the page is on loan from an object (i.e. uobj)
1038 */
1039
1040 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1041
1042 /* locked: maps(read), amap, anon, uobj(if one) */
1043
1044 /*
1045 * special handling for loaned pages
1046 */
1047
1048 if (anon->u.an_page->loan_count) {
1049
1050 if (!cow_now) {
1051
1052 /*
1053 * for read faults on loaned pages we just cap the
1054 * protection at read-only.
1055 */
1056
1057 enter_prot = enter_prot & ~VM_PROT_WRITE;
1058
1059 } else {
1060 /*
1061 * note that we can't allow writes into a loaned page!
1062 *
1063 * if we have a write fault on a loaned page in an
1064 * anon then we need to look at the anon's ref count.
1065 * if it is greater than one then we are going to do
1066 * a normal copy-on-write fault into a new anon (this
1067 * is not a problem). however, if the reference count
1068 * is one (a case where we would normally allow a
1069 * write directly to the page) then we need to kill
1070 * the loan before we continue.
1071 */
1072
1073 /* >1 case is already ok */
1074 if (anon->an_ref == 1) {
1075
1076 /* get new un-owned replacement page */
1077 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1078 if (pg == NULL) {
1079 uvmfault_unlockall(&ufi, amap, uobj,
1080 anon);
1081 uvm_wait("flt_noram2");
1082 goto ReFault;
1083 }
1084
1085 /*
1086 * copy data, kill loan, and drop uobj lock
1087 * (if any)
1088 */
1089 /* copy old -> new */
1090 uvm_pagecopy(anon->u.an_page, pg);
1091
1092 /* force reload */
1093 pmap_page_protect(anon->u.an_page,
1094 VM_PROT_NONE);
1095 uvm_lock_pageq(); /* KILL loan */
1096
1097 anon->u.an_page->uanon = NULL;
1098 /* in case we owned */
1099 anon->u.an_page->pqflags &= ~PQ_ANON;
1100
1101 if (uobj) {
1102 /* if we were receiver of loan */
1103 anon->u.an_page->loan_count--;
1104 } else {
1105 /*
1106 * we were the lender (A->K); need
1107 * to remove the page from pageq's.
1108 */
1109 uvm_pagedequeue(anon->u.an_page);
1110 }
1111
1112 uvm_pageactivate(pg);
1113 uvm_unlock_pageq();
1114 if (uobj) {
1115 simple_unlock(&uobj->vmobjlock);
1116 uobj = NULL;
1117 }
1118
1119 /* install new page in anon */
1120 anon->u.an_page = pg;
1121 pg->uanon = anon;
1122 pg->pqflags |= PQ_ANON;
1123 pg->flags &= ~(PG_BUSY|PG_FAKE);
1124 UVM_PAGE_OWN(pg, NULL);
1125
1126 /* done! */
1127 } /* ref == 1 */
1128 } /* write fault */
1129 } /* loan count */
1130
1131 /*
1132 * if we are case 1B then we will need to allocate a new blank
1133 * anon to transfer the data into. note that we have a lock
1134 * on anon, so no one can busy or release the page until we are done.
1135 * also note that the ref count can't drop to zero here because
1136 * it is > 1 and we are only dropping one ref.
1137 *
1138 * in the (hopefully very rare) case that we are out of RAM we
1139 * will unlock, wait for more RAM, and refault.
1140 *
1141 * if we are out of anon VM we kill the process (XXX: could wait?).
1142 */
1143
1144 if (cow_now && anon->an_ref > 1) {
1145
1146 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1147 uvmexp.flt_acow++;
1148 oanon = anon; /* oanon = old, locked anon */
1149 anon = uvm_analloc();
1150 if (anon) {
1151 /* new anon is locked! */
1152 pg = uvm_pagealloc(NULL, 0, anon, 0);
1153 }
1154
1155 /* check for out of RAM */
1156 if (anon == NULL || pg == NULL) {
1157 if (anon) {
1158 anon->an_ref--;
1159 simple_unlock(&anon->an_lock);
1160 uvm_anfree(anon);
1161 }
1162 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1163 if (anon == NULL || uvm_swapisfull()) {
1164 UVMHIST_LOG(maphist,
1165 "<- failed. out of VM",0,0,0,0);
1166 uvmexp.fltnoanon++;
1167 return ENOMEM;
1168 }
1169
1170 uvmexp.fltnoram++;
1171 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1172 goto ReFault;
1173 }
1174
1175 /* got all resources, replace anon with nanon */
1176 uvm_pagecopy(oanon->u.an_page, pg);
1177 uvm_lock_pageq();
1178 uvm_pageactivate(pg);
1179 pg->flags &= ~(PG_BUSY|PG_FAKE);
1180 uvm_unlock_pageq();
1181 UVM_PAGE_OWN(pg, NULL);
1182 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1183 anon, 1);
1184
1185 /* deref: can not drop to zero here by defn! */
1186 oanon->an_ref--;
1187
1188 /*
1189 * note: oanon is still locked, as is the new anon. we
1190 * need to check for this later when we unlock oanon; if
1191 * oanon != anon, we'll have to unlock anon, too.
1192 */
1193
1194 } else {
1195
1196 uvmexp.flt_anon++;
1197 oanon = anon; /* old, locked anon is same as anon */
1198 pg = anon->u.an_page;
1199 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1200 enter_prot = enter_prot & ~VM_PROT_WRITE;
1201
1202 }
1203
1204 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1205
1206 /*
1207 * now map the page in.
1208 */
1209
1210 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1211 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1212 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1213 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1214 != 0) {
1215
1216 /*
1217 * No need to undo what we did; we can simply think of
1218 * this as the pmap throwing away the mapping information.
1219 *
1220 * We do, however, have to go through the ReFault path,
1221 * as the map may change while we're asleep.
1222 */
1223
1224 if (anon != oanon)
1225 simple_unlock(&anon->an_lock);
1226 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1227 if (uvm_swapisfull()) {
1228 UVMHIST_LOG(maphist,
1229 "<- failed. out of VM",0,0,0,0);
1230 /* XXX instrumentation */
1231 return ENOMEM;
1232 }
1233 /* XXX instrumentation */
1234 uvm_wait("flt_pmfail1");
1235 goto ReFault;
1236 }
1237
1238 /*
1239 * ... update the page queues.
1240 */
1241
1242 uvm_lock_pageq();
1243 if (wire_fault) {
1244 uvm_pagewire(pg);
1245
1246 /*
1247 * since the now-wired page cannot be paged out,
1248 * release its swap resources for others to use.
1249 * since an anon with no swap cannot be PG_CLEAN,
1250 * clear its clean flag now.
1251 */
1252
1253 pg->flags &= ~(PG_CLEAN);
1254 uvm_anon_dropswap(anon);
1255 } else {
1256 uvm_pageactivate(pg);
1257 }
1258 uvm_unlock_pageq();
1259
1260 /*
1261 * done case 1! finish up by unlocking everything and returning success
1262 */
1263
1264 if (anon != oanon)
1265 simple_unlock(&anon->an_lock);
1266 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1267 pmap_update(ufi.orig_map->pmap);
1268 return 0;
1269
1270 Case2:
1271 /*
1272 * handle case 2: faulting on backing object or zero fill
1273 */
1274
1275 /*
1276 * locked:
1277 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1278 */
1279
1280 /*
1281 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1282 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1283 * have a backing object, check and see if we are going to promote
1284 * the data up to an anon during the fault.
1285 */
1286
1287 if (uobj == NULL) {
1288 uobjpage = PGO_DONTCARE;
1289 promote = TRUE; /* always need anon here */
1290 } else {
1291 KASSERT(uobjpage != PGO_DONTCARE);
1292 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1293 }
1294 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1295 promote, (uobj == NULL), 0,0);
1296
1297 /*
1298 * if uobjpage is not null then we do not need to do I/O to get the
1299 * uobjpage.
1300 *
1301 * if uobjpage is null, then we need to unlock and ask the pager to
1302 * get the data for us. once we have the data, we need to reverify
1303 * the state the world. we are currently not holding any resources.
1304 */
1305
1306 if (uobjpage) {
1307 /* update rusage counters */
1308 curproc->p_stats->p_ru.ru_minflt++;
1309 } else {
1310 /* update rusage counters */
1311 curproc->p_stats->p_ru.ru_majflt++;
1312
1313 /* locked: maps(read), amap(if there), uobj */
1314 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1315 /* locked: uobj */
1316
1317 uvmexp.fltget++;
1318 gotpages = 1;
1319 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1320 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1321 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1322 PGO_SYNCIO);
1323 /* locked: uobjpage(if no error) */
1324
1325 /*
1326 * recover from I/O
1327 */
1328
1329 if (error) {
1330 if (error == EAGAIN) {
1331 UVMHIST_LOG(maphist,
1332 " pgo_get says TRY AGAIN!",0,0,0,0);
1333 tsleep(&lbolt, PVM, "fltagain2", 0);
1334 goto ReFault;
1335 }
1336
1337 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1338 error, 0,0,0);
1339 return error;
1340 }
1341
1342 /* locked: uobjpage */
1343
1344 uvm_lock_pageq();
1345 uvm_pageactivate(uobjpage);
1346 uvm_unlock_pageq();
1347
1348 /*
1349 * re-verify the state of the world by first trying to relock
1350 * the maps. always relock the object.
1351 */
1352
1353 locked = uvmfault_relock(&ufi);
1354 if (locked && amap)
1355 amap_lock(amap);
1356 simple_lock(&uobj->vmobjlock);
1357
1358 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1359 /* locked(!locked): uobj, uobjpage */
1360
1361 /*
1362 * verify that the page has not be released and re-verify
1363 * that amap slot is still free. if there is a problem,
1364 * we unlock and clean up.
1365 */
1366
1367 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1368 (locked && amap &&
1369 amap_lookup(&ufi.entry->aref,
1370 ufi.orig_rvaddr - ufi.entry->start))) {
1371 if (locked)
1372 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1373 locked = FALSE;
1374 }
1375
1376 /*
1377 * didn't get the lock? release the page and retry.
1378 */
1379
1380 if (locked == FALSE) {
1381 UVMHIST_LOG(maphist,
1382 " wasn't able to relock after fault: retry",
1383 0,0,0,0);
1384 if (uobjpage->flags & PG_WANTED)
1385 wakeup(uobjpage);
1386 if (uobjpage->flags & PG_RELEASED) {
1387 uvmexp.fltpgrele++;
1388 uvm_pagefree(uobjpage);
1389 goto ReFault;
1390 }
1391 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1392 UVM_PAGE_OWN(uobjpage, NULL);
1393 simple_unlock(&uobj->vmobjlock);
1394 goto ReFault;
1395 }
1396
1397 /*
1398 * we have the data in uobjpage which is busy and
1399 * not released. we are holding object lock (so the page
1400 * can't be released on us).
1401 */
1402
1403 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1404 }
1405
1406 /*
1407 * locked:
1408 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1409 */
1410
1411 /*
1412 * notes:
1413 * - at this point uobjpage can not be NULL
1414 * - at this point uobjpage can not be PG_RELEASED (since we checked
1415 * for it above)
1416 * - at this point uobjpage could be PG_WANTED (handle later)
1417 */
1418
1419 if (promote == FALSE) {
1420
1421 /*
1422 * we are not promoting. if the mapping is COW ensure that we
1423 * don't give more access than we should (e.g. when doing a read
1424 * fault on a COPYONWRITE mapping we want to map the COW page in
1425 * R/O even though the entry protection could be R/W).
1426 *
1427 * set "pg" to the page we want to map in (uobjpage, usually)
1428 */
1429
1430 /* no anon in this case. */
1431 anon = NULL;
1432
1433 uvmexp.flt_obj++;
1434 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1435 enter_prot &= ~VM_PROT_WRITE;
1436 pg = uobjpage; /* map in the actual object */
1437
1438 /* assert(uobjpage != PGO_DONTCARE) */
1439
1440 /*
1441 * we are faulting directly on the page. be careful
1442 * about writing to loaned pages...
1443 */
1444
1445 if (uobjpage->loan_count) {
1446 if (!cow_now) {
1447 /* read fault: cap the protection at readonly */
1448 /* cap! */
1449 enter_prot = enter_prot & ~VM_PROT_WRITE;
1450 } else {
1451 /* write fault: must break the loan here */
1452
1453 pg = uvm_loanbreak(uobjpage);
1454 if (pg == NULL) {
1455
1456 /*
1457 * drop ownership of page, it can't
1458 * be released
1459 */
1460
1461 if (uobjpage->flags & PG_WANTED)
1462 wakeup(uobjpage);
1463 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1464 UVM_PAGE_OWN(uobjpage, NULL);
1465
1466 uvmfault_unlockall(&ufi, amap, uobj,
1467 NULL);
1468 UVMHIST_LOG(maphist,
1469 " out of RAM breaking loan, waiting",
1470 0,0,0,0);
1471 uvmexp.fltnoram++;
1472 uvm_wait("flt_noram4");
1473 goto ReFault;
1474 }
1475 uobjpage = pg;
1476 }
1477 }
1478 } else {
1479
1480 /*
1481 * if we are going to promote the data to an anon we
1482 * allocate a blank anon here and plug it into our amap.
1483 */
1484 #if DIAGNOSTIC
1485 if (amap == NULL)
1486 panic("uvm_fault: want to promote data, but no anon");
1487 #endif
1488
1489 anon = uvm_analloc();
1490 if (anon) {
1491
1492 /*
1493 * The new anon is locked.
1494 *
1495 * In `Fill in data...' below, if
1496 * uobjpage == PGO_DONTCARE, we want
1497 * a zero'd, dirty page, so have
1498 * uvm_pagealloc() do that for us.
1499 */
1500
1501 pg = uvm_pagealloc(NULL, 0, anon,
1502 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1503 }
1504
1505 /*
1506 * out of memory resources?
1507 */
1508
1509 if (anon == NULL || pg == NULL) {
1510 if (anon != NULL) {
1511 anon->an_ref--;
1512 simple_unlock(&anon->an_lock);
1513 uvm_anfree(anon);
1514 }
1515
1516 /*
1517 * arg! must unbusy our page and fail or sleep.
1518 */
1519
1520 if (uobjpage != PGO_DONTCARE) {
1521 if (uobjpage->flags & PG_WANTED)
1522 /* still holding object lock */
1523 wakeup(uobjpage);
1524
1525 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1526 UVM_PAGE_OWN(uobjpage, NULL);
1527 }
1528
1529 /* unlock and fail ... */
1530 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1531 if (anon == NULL || uvm_swapisfull()) {
1532 UVMHIST_LOG(maphist, " promote: out of VM",
1533 0,0,0,0);
1534 uvmexp.fltnoanon++;
1535 return ENOMEM;
1536 }
1537
1538 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1539 0,0,0,0);
1540 uvmexp.fltnoram++;
1541 uvm_wait("flt_noram5");
1542 goto ReFault;
1543 }
1544
1545 /*
1546 * fill in the data
1547 */
1548
1549 if (uobjpage != PGO_DONTCARE) {
1550 uvmexp.flt_prcopy++;
1551 /* copy page [pg now dirty] */
1552 uvm_pagecopy(uobjpage, pg);
1553
1554 /*
1555 * promote to shared amap? make sure all sharing
1556 * procs see it
1557 */
1558
1559 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1560 pmap_page_protect(uobjpage, VM_PROT_NONE);
1561 /*
1562 * XXX: PAGE MIGHT BE WIRED!
1563 */
1564 }
1565
1566 /*
1567 * dispose of uobjpage. it can't be PG_RELEASED
1568 * since we still hold the object lock.
1569 * drop handle to uobj as well.
1570 */
1571
1572 if (uobjpage->flags & PG_WANTED)
1573 /* still have the obj lock */
1574 wakeup(uobjpage);
1575 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1576 UVM_PAGE_OWN(uobjpage, NULL);
1577 simple_unlock(&uobj->vmobjlock);
1578 uobj = NULL;
1579
1580 UVMHIST_LOG(maphist,
1581 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1582 uobjpage, anon, pg, 0);
1583
1584 } else {
1585 uvmexp.flt_przero++;
1586
1587 /*
1588 * Page is zero'd and marked dirty by uvm_pagealloc()
1589 * above.
1590 */
1591
1592 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1593 anon, pg, 0, 0);
1594 }
1595 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1596 anon, 0);
1597 }
1598
1599 /*
1600 * locked:
1601 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1602 * anon(if !null), pg(if anon)
1603 *
1604 * note: pg is either the uobjpage or the new page in the new anon
1605 */
1606
1607 /*
1608 * all resources are present. we can now map it in and free our
1609 * resources.
1610 */
1611
1612 UVMHIST_LOG(maphist,
1613 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1614 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1615 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1616 (pg->flags & PG_RDONLY) == 0);
1617 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1618 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1619 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1620
1621 /*
1622 * No need to undo what we did; we can simply think of
1623 * this as the pmap throwing away the mapping information.
1624 *
1625 * We do, however, have to go through the ReFault path,
1626 * as the map may change while we're asleep.
1627 */
1628
1629 if (pg->flags & PG_WANTED)
1630 wakeup(pg);
1631
1632 /*
1633 * note that pg can't be PG_RELEASED since we did not drop
1634 * the object lock since the last time we checked.
1635 */
1636
1637 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1638 UVM_PAGE_OWN(pg, NULL);
1639 uvmfault_unlockall(&ufi, amap, uobj, anon);
1640 if (uvm_swapisfull()) {
1641 UVMHIST_LOG(maphist,
1642 "<- failed. out of VM",0,0,0,0);
1643 /* XXX instrumentation */
1644 return ENOMEM;
1645 }
1646 /* XXX instrumentation */
1647 uvm_wait("flt_pmfail2");
1648 goto ReFault;
1649 }
1650
1651 uvm_lock_pageq();
1652 if (wire_fault) {
1653 uvm_pagewire(pg);
1654 if (pg->pqflags & PQ_AOBJ) {
1655
1656 /*
1657 * since the now-wired page cannot be paged out,
1658 * release its swap resources for others to use.
1659 * since an aobj page with no swap cannot be PG_CLEAN,
1660 * clear its clean flag now.
1661 */
1662
1663 pg->flags &= ~(PG_CLEAN);
1664 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1665 }
1666 } else {
1667 uvm_pageactivate(pg);
1668 }
1669 uvm_unlock_pageq();
1670 if (pg->flags & PG_WANTED)
1671 wakeup(pg);
1672
1673 /*
1674 * note that pg can't be PG_RELEASED since we did not drop the object
1675 * lock since the last time we checked.
1676 */
1677
1678 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1679 UVM_PAGE_OWN(pg, NULL);
1680 uvmfault_unlockall(&ufi, amap, uobj, anon);
1681 pmap_update(ufi.orig_map->pmap);
1682 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1683 return 0;
1684 }
1685
1686 /*
1687 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1688 *
1689 * => map may be read-locked by caller, but MUST NOT be write-locked.
1690 * => if map is read-locked, any operations which may cause map to
1691 * be write-locked in uvm_fault() must be taken care of by
1692 * the caller. See uvm_map_pageable().
1693 */
1694
1695 int
1696 uvm_fault_wire(map, start, end, fault_type, access_type)
1697 struct vm_map *map;
1698 vaddr_t start, end;
1699 vm_fault_t fault_type;
1700 vm_prot_t access_type;
1701 {
1702 vaddr_t va;
1703 int error;
1704
1705 /*
1706 * now fault it in a page at a time. if the fault fails then we have
1707 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1708 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1709 */
1710
1711 /*
1712 * XXX work around overflowing a vaddr_t. this prevents us from
1713 * wiring the last page in the address space, though.
1714 */
1715 if (start > end) {
1716 return EFAULT;
1717 }
1718
1719 for (va = start ; va < end ; va += PAGE_SIZE) {
1720 error = uvm_fault(map, va, fault_type, access_type);
1721 if (error) {
1722 if (va != start) {
1723 uvm_fault_unwire(map, start, va);
1724 }
1725 return error;
1726 }
1727 }
1728 return 0;
1729 }
1730
1731 /*
1732 * uvm_fault_unwire(): unwire range of virtual space.
1733 */
1734
1735 void
1736 uvm_fault_unwire(map, start, end)
1737 struct vm_map *map;
1738 vaddr_t start, end;
1739 {
1740 vm_map_lock_read(map);
1741 uvm_fault_unwire_locked(map, start, end);
1742 vm_map_unlock_read(map);
1743 }
1744
1745 /*
1746 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1747 *
1748 * => map must be at least read-locked.
1749 */
1750
1751 void
1752 uvm_fault_unwire_locked(map, start, end)
1753 struct vm_map *map;
1754 vaddr_t start, end;
1755 {
1756 struct vm_map_entry *entry;
1757 pmap_t pmap = vm_map_pmap(map);
1758 vaddr_t va;
1759 paddr_t pa;
1760 struct vm_page *pg;
1761
1762 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1763
1764 /*
1765 * we assume that the area we are unwiring has actually been wired
1766 * in the first place. this means that we should be able to extract
1767 * the PAs from the pmap. we also lock out the page daemon so that
1768 * we can call uvm_pageunwire.
1769 */
1770
1771 uvm_lock_pageq();
1772
1773 /*
1774 * find the beginning map entry for the region.
1775 */
1776
1777 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1778 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1779 panic("uvm_fault_unwire_locked: address not in map");
1780
1781 for (va = start; va < end; va += PAGE_SIZE) {
1782 if (pmap_extract(pmap, va, &pa) == FALSE)
1783 continue;
1784
1785 /*
1786 * find the map entry for the current address.
1787 */
1788
1789 KASSERT(va >= entry->start);
1790 while (va >= entry->end) {
1791 KASSERT(entry->next != &map->header &&
1792 entry->next->start <= entry->end);
1793 entry = entry->next;
1794 }
1795
1796 /*
1797 * if the entry is no longer wired, tell the pmap.
1798 */
1799
1800 if (VM_MAPENT_ISWIRED(entry) == 0)
1801 pmap_unwire(pmap, va);
1802
1803 pg = PHYS_TO_VM_PAGE(pa);
1804 if (pg)
1805 uvm_pageunwire(pg);
1806 }
1807
1808 uvm_unlock_pageq();
1809 }
1810