uvm_fault.c revision 1.87.2.1.2.1 1 /* $NetBSD: uvm_fault.c,v 1.87.2.1.2.1 2005/05/11 19:15:41 riz Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.87.2.1.2.1 2005/05/11 19:15:41 riz Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 static void uvmfault_amapcopy(struct uvm_faultinfo *);
183 static __inline void uvmfault_anonflush(struct vm_anon **, int);
184
185 /*
186 * inline functions
187 */
188
189 /*
190 * uvmfault_anonflush: try and deactivate pages in specified anons
191 *
192 * => does not have to deactivate page if it is busy
193 */
194
195 static __inline void
196 uvmfault_anonflush(anons, n)
197 struct vm_anon **anons;
198 int n;
199 {
200 int lcv;
201 struct vm_page *pg;
202
203 for (lcv = 0 ; lcv < n ; lcv++) {
204 if (anons[lcv] == NULL)
205 continue;
206 simple_lock(&anons[lcv]->an_lock);
207 pg = anons[lcv]->u.an_page;
208 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
209 uvm_lock_pageq();
210 if (pg->wire_count == 0) {
211 pmap_clear_reference(pg);
212 uvm_pagedeactivate(pg);
213 }
214 uvm_unlock_pageq();
215 }
216 simple_unlock(&anons[lcv]->an_lock);
217 }
218 }
219
220 /*
221 * normal functions
222 */
223
224 /*
225 * uvmfault_amapcopy: clear "needs_copy" in a map.
226 *
227 * => called with VM data structures unlocked (usually, see below)
228 * => we get a write lock on the maps and clear needs_copy for a VA
229 * => if we are out of RAM we sleep (waiting for more)
230 */
231
232 static void
233 uvmfault_amapcopy(ufi)
234 struct uvm_faultinfo *ufi;
235 {
236 for (;;) {
237
238 /*
239 * no mapping? give up.
240 */
241
242 if (uvmfault_lookup(ufi, TRUE) == FALSE)
243 return;
244
245 /*
246 * copy if needed.
247 */
248
249 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
250 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
251 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
252
253 /*
254 * didn't work? must be out of RAM. unlock and sleep.
255 */
256
257 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
258 uvmfault_unlockmaps(ufi, TRUE);
259 uvm_wait("fltamapcopy");
260 continue;
261 }
262
263 /*
264 * got it! unlock and return.
265 */
266
267 uvmfault_unlockmaps(ufi, TRUE);
268 return;
269 }
270 /*NOTREACHED*/
271 }
272
273 /*
274 * uvmfault_anonget: get data in an anon into a non-busy, non-released
275 * page in that anon.
276 *
277 * => maps, amap, and anon locked by caller.
278 * => if we fail (result != 0) we unlock everything.
279 * => if we are successful, we return with everything still locked.
280 * => we don't move the page on the queues [gets moved later]
281 * => if we allocate a new page [we_own], it gets put on the queues.
282 * either way, the result is that the page is on the queues at return time
283 * => for pages which are on loan from a uvm_object (and thus are not
284 * owned by the anon): if successful, we return with the owning object
285 * locked. the caller must unlock this object when it unlocks everything
286 * else.
287 */
288
289 int
290 uvmfault_anonget(ufi, amap, anon)
291 struct uvm_faultinfo *ufi;
292 struct vm_amap *amap;
293 struct vm_anon *anon;
294 {
295 boolean_t we_own; /* we own anon's page? */
296 boolean_t locked; /* did we relock? */
297 struct vm_page *pg;
298 int error;
299 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
300
301 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
302
303 error = 0;
304 uvmexp.fltanget++;
305 /* bump rusage counters */
306 if (anon->u.an_page)
307 curproc->p_stats->p_ru.ru_minflt++;
308 else
309 curproc->p_stats->p_ru.ru_majflt++;
310
311 /*
312 * loop until we get it, or fail.
313 */
314
315 for (;;) {
316 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
317 pg = anon->u.an_page;
318
319 /*
320 * if there is a resident page and it is loaned, then anon
321 * may not own it. call out to uvm_anon_lockpage() to ensure
322 * the real owner of the page has been identified and locked.
323 */
324
325 if (pg && pg->loan_count)
326 pg = uvm_anon_lockloanpg(anon);
327
328 /*
329 * page there? make sure it is not busy/released.
330 */
331
332 if (pg) {
333
334 /*
335 * at this point, if the page has a uobject [meaning
336 * we have it on loan], then that uobject is locked
337 * by us! if the page is busy, we drop all the
338 * locks (including uobject) and try again.
339 */
340
341 if ((pg->flags & PG_BUSY) == 0) {
342 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
343 return (0);
344 }
345 pg->flags |= PG_WANTED;
346 uvmexp.fltpgwait++;
347
348 /*
349 * the last unlock must be an atomic unlock+wait on
350 * the owner of page
351 */
352
353 if (pg->uobject) { /* owner is uobject ? */
354 uvmfault_unlockall(ufi, amap, NULL, anon);
355 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,
358 &pg->uobject->vmobjlock,
359 FALSE, "anonget1",0);
360 } else {
361 /* anon owns page */
362 uvmfault_unlockall(ufi, amap, NULL, NULL);
363 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
364 0,0,0);
365 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
366 "anonget2",0);
367 }
368 } else {
369
370 /*
371 * no page, we must try and bring it in.
372 */
373
374 pg = uvm_pagealloc(NULL, 0, anon, 0);
375 if (pg == NULL) { /* out of RAM. */
376 uvmfault_unlockall(ufi, amap, NULL, anon);
377 uvmexp.fltnoram++;
378 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
379 0,0,0);
380 uvm_wait("flt_noram1");
381 } else {
382 /* we set the PG_BUSY bit */
383 we_own = TRUE;
384 uvmfault_unlockall(ufi, amap, NULL, anon);
385
386 /*
387 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
388 * page into the uvm_swap_get function with
389 * all data structures unlocked. note that
390 * it is ok to read an_swslot here because
391 * we hold PG_BUSY on the page.
392 */
393 uvmexp.pageins++;
394 error = uvm_swap_get(pg, anon->an_swslot,
395 PGO_SYNCIO);
396
397 /*
398 * we clean up after the i/o below in the
399 * "we_own" case
400 */
401 }
402 }
403
404 /*
405 * now relock and try again
406 */
407
408 locked = uvmfault_relock(ufi);
409 if (locked && amap != NULL) {
410 amap_lock(amap);
411 }
412 if (locked || we_own)
413 simple_lock(&anon->an_lock);
414
415 /*
416 * if we own the page (i.e. we set PG_BUSY), then we need
417 * to clean up after the I/O. there are three cases to
418 * consider:
419 * [1] page released during I/O: free anon and ReFault.
420 * [2] I/O not OK. free the page and cause the fault
421 * to fail.
422 * [3] I/O OK! activate the page and sync with the
423 * non-we_own case (i.e. drop anon lock if not locked).
424 */
425
426 if (we_own) {
427 if (pg->flags & PG_WANTED) {
428 wakeup(pg);
429 }
430 if (error) {
431
432 /*
433 * remove the swap slot from the anon
434 * and mark the anon as having no real slot.
435 * don't free the swap slot, thus preventing
436 * it from being used again.
437 */
438
439 if (anon->an_swslot > 0)
440 uvm_swap_markbad(anon->an_swslot, 1);
441 anon->an_swslot = SWSLOT_BAD;
442
443 if ((pg->flags & PG_RELEASED) != 0)
444 goto released;
445
446 /*
447 * note: page was never !PG_BUSY, so it
448 * can't be mapped and thus no need to
449 * pmap_page_protect it...
450 */
451
452 uvm_lock_pageq();
453 uvm_pagefree(pg);
454 uvm_unlock_pageq();
455
456 if (locked)
457 uvmfault_unlockall(ufi, amap, NULL,
458 anon);
459 else
460 simple_unlock(&anon->an_lock);
461 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
462 return error;
463 }
464
465 if ((pg->flags & PG_RELEASED) != 0) {
466 released:
467 KASSERT(anon->an_ref == 0);
468
469 /*
470 * released while we unlocked amap.
471 */
472
473 if (locked)
474 uvmfault_unlockall(ufi, amap, NULL,
475 NULL);
476
477 uvm_anon_release(anon);
478
479 if (error) {
480 UVMHIST_LOG(maphist,
481 "<- ERROR/RELEASED", 0,0,0,0);
482 return error;
483 }
484
485 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
486 return ERESTART;
487 }
488
489 /*
490 * we've successfully read the page, activate it.
491 */
492
493 uvm_lock_pageq();
494 uvm_pageactivate(pg);
495 uvm_unlock_pageq();
496 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
497 UVM_PAGE_OWN(pg, NULL);
498 if (!locked)
499 simple_unlock(&anon->an_lock);
500 }
501
502 /*
503 * we were not able to relock. restart fault.
504 */
505
506 if (!locked) {
507 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
508 return (ERESTART);
509 }
510
511 /*
512 * verify no one has touched the amap and moved the anon on us.
513 */
514
515 if (ufi != NULL &&
516 amap_lookup(&ufi->entry->aref,
517 ufi->orig_rvaddr - ufi->entry->start) != anon) {
518
519 uvmfault_unlockall(ufi, amap, NULL, anon);
520 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
521 return (ERESTART);
522 }
523
524 /*
525 * try it again!
526 */
527
528 uvmexp.fltanretry++;
529 continue;
530 }
531 /*NOTREACHED*/
532 }
533
534 /*
535 * F A U L T - m a i n e n t r y p o i n t
536 */
537
538 /*
539 * uvm_fault: page fault handler
540 *
541 * => called from MD code to resolve a page fault
542 * => VM data structures usually should be unlocked. however, it is
543 * possible to call here with the main map locked if the caller
544 * gets a write lock, sets it recusive, and then calls us (c.f.
545 * uvm_map_pageable). this should be avoided because it keeps
546 * the map locked off during I/O.
547 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
548 */
549
550 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
551 ~VM_PROT_WRITE : VM_PROT_ALL)
552
553 int
554 uvm_fault(orig_map, vaddr, fault_type, access_type)
555 struct vm_map *orig_map;
556 vaddr_t vaddr;
557 vm_fault_t fault_type;
558 vm_prot_t access_type;
559 {
560 struct uvm_faultinfo ufi;
561 vm_prot_t enter_prot, check_prot;
562 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
563 int npages, nback, nforw, centeridx, error, lcv, gotpages;
564 vaddr_t startva, currva;
565 voff_t uoff;
566 paddr_t pa;
567 struct vm_amap *amap;
568 struct uvm_object *uobj;
569 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
570 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
571 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
572
573 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
574 orig_map, vaddr, fault_type, access_type);
575
576 anon = NULL;
577 pg = NULL;
578
579 uvmexp.faults++; /* XXX: locking? */
580
581 /*
582 * init the IN parameters in the ufi
583 */
584
585 ufi.orig_map = orig_map;
586 ufi.orig_rvaddr = trunc_page(vaddr);
587 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
588 wire_fault = fault_type == VM_FAULT_WIRE ||
589 fault_type == VM_FAULT_WIREMAX;
590 if (wire_fault)
591 narrow = TRUE; /* don't look for neighborhood
592 * pages on wire */
593 else
594 narrow = FALSE; /* normal fault */
595
596 /*
597 * "goto ReFault" means restart the page fault from ground zero.
598 */
599 ReFault:
600
601 /*
602 * lookup and lock the maps
603 */
604
605 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
606 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
607 return (EFAULT);
608 }
609 /* locked: maps(read) */
610
611 #ifdef DIAGNOSTIC
612 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
613 printf("Page fault on non-pageable map:\n");
614 printf("ufi.map = %p\n", ufi.map);
615 printf("ufi.orig_map = %p\n", ufi.orig_map);
616 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
617 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
618 }
619 #endif
620
621 /*
622 * check protection
623 */
624
625 check_prot = fault_type == VM_FAULT_WIREMAX ?
626 ufi.entry->max_protection : ufi.entry->protection;
627 if ((check_prot & access_type) != access_type) {
628 UVMHIST_LOG(maphist,
629 "<- protection failure (prot=0x%x, access=0x%x)",
630 ufi.entry->protection, access_type, 0, 0);
631 uvmfault_unlockmaps(&ufi, FALSE);
632 return EACCES;
633 }
634
635 /*
636 * "enter_prot" is the protection we want to enter the page in at.
637 * for certain pages (e.g. copy-on-write pages) this protection can
638 * be more strict than ufi.entry->protection. "wired" means either
639 * the entry is wired or we are fault-wiring the pg.
640 */
641
642 enter_prot = ufi.entry->protection;
643 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
644 if (wired) {
645 access_type = enter_prot; /* full access for wired */
646 cow_now = (check_prot & VM_PROT_WRITE) != 0;
647 } else {
648 cow_now = (access_type & VM_PROT_WRITE) != 0;
649 }
650
651 /*
652 * handle "needs_copy" case. if we need to copy the amap we will
653 * have to drop our readlock and relock it with a write lock. (we
654 * need a write lock to change anything in a map entry [e.g.
655 * needs_copy]).
656 */
657
658 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
659 KASSERT(fault_type != VM_FAULT_WIREMAX);
660 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
661 /* need to clear */
662 UVMHIST_LOG(maphist,
663 " need to clear needs_copy and refault",0,0,0,0);
664 uvmfault_unlockmaps(&ufi, FALSE);
665 uvmfault_amapcopy(&ufi);
666 uvmexp.fltamcopy++;
667 goto ReFault;
668
669 } else {
670
671 /*
672 * ensure that we pmap_enter page R/O since
673 * needs_copy is still true
674 */
675
676 enter_prot &= ~VM_PROT_WRITE;
677 }
678 }
679
680 /*
681 * identify the players
682 */
683
684 amap = ufi.entry->aref.ar_amap; /* top layer */
685 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
686
687 /*
688 * check for a case 0 fault. if nothing backing the entry then
689 * error now.
690 */
691
692 if (amap == NULL && uobj == NULL) {
693 uvmfault_unlockmaps(&ufi, FALSE);
694 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
695 return (EFAULT);
696 }
697
698 /*
699 * establish range of interest based on advice from mapper
700 * and then clip to fit map entry. note that we only want
701 * to do this the first time through the fault. if we
702 * ReFault we will disable this by setting "narrow" to true.
703 */
704
705 if (narrow == FALSE) {
706
707 /* wide fault (!narrow) */
708 KASSERT(uvmadvice[ufi.entry->advice].advice ==
709 ufi.entry->advice);
710 nback = MIN(uvmadvice[ufi.entry->advice].nback,
711 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
712 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
713 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
714 ((ufi.entry->end - ufi.orig_rvaddr) >>
715 PAGE_SHIFT) - 1);
716 /*
717 * note: "-1" because we don't want to count the
718 * faulting page as forw
719 */
720 npages = nback + nforw + 1;
721 centeridx = nback;
722
723 narrow = TRUE; /* ensure only once per-fault */
724
725 } else {
726
727 /* narrow fault! */
728 nback = nforw = 0;
729 startva = ufi.orig_rvaddr;
730 npages = 1;
731 centeridx = 0;
732
733 }
734
735 /* locked: maps(read) */
736 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
737 narrow, nback, nforw, startva);
738 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
739 amap, uobj, 0);
740
741 /*
742 * if we've got an amap, lock it and extract current anons.
743 */
744
745 if (amap) {
746 amap_lock(amap);
747 anons = anons_store;
748 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
749 anons, npages);
750 } else {
751 anons = NULL; /* to be safe */
752 }
753
754 /* locked: maps(read), amap(if there) */
755
756 /*
757 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
758 * now and then forget about them (for the rest of the fault).
759 */
760
761 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
762
763 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
764 0,0,0,0);
765 /* flush back-page anons? */
766 if (amap)
767 uvmfault_anonflush(anons, nback);
768
769 /* flush object? */
770 if (uobj) {
771 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
772 simple_lock(&uobj->vmobjlock);
773 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
774 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
775 }
776
777 /* now forget about the backpages */
778 if (amap)
779 anons += nback;
780 startva += (nback << PAGE_SHIFT);
781 npages -= nback;
782 nback = centeridx = 0;
783 }
784
785 /* locked: maps(read), amap(if there) */
786
787 /*
788 * map in the backpages and frontpages we found in the amap in hopes
789 * of preventing future faults. we also init the pages[] array as
790 * we go.
791 */
792
793 currva = startva;
794 shadowed = FALSE;
795 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
796
797 /*
798 * dont play with VAs that are already mapped
799 * except for center)
800 */
801 if (lcv != centeridx &&
802 pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
803 pages[lcv] = PGO_DONTCARE;
804 continue;
805 }
806
807 /*
808 * unmapped or center page. check if any anon at this level.
809 */
810 if (amap == NULL || anons[lcv] == NULL) {
811 pages[lcv] = NULL;
812 continue;
813 }
814
815 /*
816 * check for present page and map if possible. re-activate it.
817 */
818
819 pages[lcv] = PGO_DONTCARE;
820 if (lcv == centeridx) { /* save center for later! */
821 shadowed = TRUE;
822 continue;
823 }
824 anon = anons[lcv];
825 simple_lock(&anon->an_lock);
826 /* ignore loaned pages */
827 if (anon->u.an_page && anon->u.an_page->loan_count == 0 &&
828 (anon->u.an_page->flags & PG_BUSY) == 0) {
829 uvm_lock_pageq();
830 uvm_pageactivate(anon->u.an_page);
831 uvm_unlock_pageq();
832 UVMHIST_LOG(maphist,
833 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
834 ufi.orig_map->pmap, currva, anon->u.an_page, 0);
835 uvmexp.fltnamap++;
836
837 /*
838 * Since this isn't the page that's actually faulting,
839 * ignore pmap_enter() failures; it's not critical
840 * that we enter these right now.
841 */
842
843 (void) pmap_enter(ufi.orig_map->pmap, currva,
844 VM_PAGE_TO_PHYS(anon->u.an_page),
845 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
846 enter_prot,
847 PMAP_CANFAIL |
848 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
849 }
850 simple_unlock(&anon->an_lock);
851 pmap_update(ufi.orig_map->pmap);
852 }
853
854 /* locked: maps(read), amap(if there) */
855 /* (shadowed == TRUE) if there is an anon at the faulting address */
856 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
857 (uobj && shadowed == FALSE),0,0);
858
859 /*
860 * note that if we are really short of RAM we could sleep in the above
861 * call to pmap_enter with everything locked. bad?
862 *
863 * XXX Actually, that is bad; pmap_enter() should just fail in that
864 * XXX case. --thorpej
865 */
866
867 /*
868 * if the desired page is not shadowed by the amap and we have a
869 * backing object, then we check to see if the backing object would
870 * prefer to handle the fault itself (rather than letting us do it
871 * with the usual pgo_get hook). the backing object signals this by
872 * providing a pgo_fault routine.
873 */
874
875 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
876 simple_lock(&uobj->vmobjlock);
877
878 /* locked: maps(read), amap (if there), uobj */
879 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
880 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
881
882 /* locked: nothing, pgo_fault has unlocked everything */
883
884 if (error == ERESTART)
885 goto ReFault; /* try again! */
886 /*
887 * object fault routine responsible for pmap_update().
888 */
889 return error;
890 }
891
892 /*
893 * now, if the desired page is not shadowed by the amap and we have
894 * a backing object that does not have a special fault routine, then
895 * we ask (with pgo_get) the object for resident pages that we care
896 * about and attempt to map them in. we do not let pgo_get block
897 * (PGO_LOCKED).
898 */
899
900 if (uobj && shadowed == FALSE) {
901 simple_lock(&uobj->vmobjlock);
902
903 /* locked (!shadowed): maps(read), amap (if there), uobj */
904 /*
905 * the following call to pgo_get does _not_ change locking state
906 */
907
908 uvmexp.fltlget++;
909 gotpages = npages;
910 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
911 (startva - ufi.entry->start),
912 pages, &gotpages, centeridx,
913 access_type & MASK(ufi.entry),
914 ufi.entry->advice, PGO_LOCKED);
915
916 /*
917 * check for pages to map, if we got any
918 */
919
920 uobjpage = NULL;
921
922 if (gotpages) {
923 currva = startva;
924 for (lcv = 0; lcv < npages;
925 lcv++, currva += PAGE_SIZE) {
926 struct vm_page *curpg;
927 boolean_t readonly;
928
929 curpg = pages[lcv];
930 if (curpg == NULL || curpg == PGO_DONTCARE) {
931 continue;
932 }
933
934 /*
935 * if center page is resident and not
936 * PG_BUSY|PG_RELEASED then pgo_get
937 * made it PG_BUSY for us and gave
938 * us a handle to it. remember this
939 * page as "uobjpage." (for later use).
940 */
941
942 if (lcv == centeridx) {
943 uobjpage = curpg;
944 UVMHIST_LOG(maphist, " got uobjpage "
945 "(0x%x) with locked get",
946 uobjpage, 0,0,0);
947 continue;
948 }
949
950 /*
951 * calling pgo_get with PGO_LOCKED returns us
952 * pages which are neither busy nor released,
953 * so we don't need to check for this.
954 * we can just directly enter the pages.
955 */
956
957 uvm_lock_pageq();
958 uvm_pageactivate(curpg);
959 uvm_unlock_pageq();
960 UVMHIST_LOG(maphist,
961 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
962 ufi.orig_map->pmap, currva, curpg, 0);
963 uvmexp.fltnomap++;
964
965 /*
966 * Since this page isn't the page that's
967 * actually faulting, ignore pmap_enter()
968 * failures; it's not critical that we
969 * enter these right now.
970 */
971 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
972 KASSERT((curpg->flags & PG_RELEASED) == 0);
973 readonly = (curpg->flags & PG_RDONLY)
974 || (curpg->loan_count > 0);
975
976 (void) pmap_enter(ufi.orig_map->pmap, currva,
977 VM_PAGE_TO_PHYS(curpg),
978 readonly ?
979 enter_prot & ~VM_PROT_WRITE :
980 enter_prot & MASK(ufi.entry),
981 PMAP_CANFAIL |
982 (wired ? PMAP_WIRED : 0));
983
984 /*
985 * NOTE: page can't be PG_WANTED or PG_RELEASED
986 * because we've held the lock the whole time
987 * we've had the handle.
988 */
989
990 curpg->flags &= ~(PG_BUSY);
991 UVM_PAGE_OWN(curpg, NULL);
992 }
993 pmap_update(ufi.orig_map->pmap);
994 }
995 } else {
996 uobjpage = NULL;
997 }
998
999 /* locked (shadowed): maps(read), amap */
1000 /* locked (!shadowed): maps(read), amap(if there),
1001 uobj(if !null), uobjpage(if !null) */
1002
1003 /*
1004 * note that at this point we are done with any front or back pages.
1005 * we are now going to focus on the center page (i.e. the one we've
1006 * faulted on). if we have faulted on the top (anon) layer
1007 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1008 * not touched it yet). if we have faulted on the bottom (uobj)
1009 * layer [i.e. case 2] and the page was both present and available,
1010 * then we've got a pointer to it as "uobjpage" and we've already
1011 * made it BUSY.
1012 */
1013
1014 /*
1015 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1016 */
1017
1018 /*
1019 * redirect case 2: if we are not shadowed, go to case 2.
1020 */
1021
1022 if (shadowed == FALSE)
1023 goto Case2;
1024
1025 /* locked: maps(read), amap */
1026
1027 /*
1028 * handle case 1: fault on an anon in our amap
1029 */
1030
1031 anon = anons[centeridx];
1032 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1033 simple_lock(&anon->an_lock);
1034
1035 /* locked: maps(read), amap, anon */
1036
1037 /*
1038 * no matter if we have case 1A or case 1B we are going to need to
1039 * have the anon's memory resident. ensure that now.
1040 */
1041
1042 /*
1043 * let uvmfault_anonget do the dirty work.
1044 * if it fails (!OK) it will unlock everything for us.
1045 * if it succeeds, locks are still valid and locked.
1046 * also, if it is OK, then the anon's page is on the queues.
1047 * if the page is on loan from a uvm_object, then anonget will
1048 * lock that object for us if it does not fail.
1049 */
1050
1051 error = uvmfault_anonget(&ufi, amap, anon);
1052 switch (error) {
1053 case 0:
1054 break;
1055
1056 case ERESTART:
1057 goto ReFault;
1058
1059 case EAGAIN:
1060 tsleep(&lbolt, PVM, "fltagain1", 0);
1061 goto ReFault;
1062
1063 default:
1064 return error;
1065 }
1066
1067 /*
1068 * uobj is non null if the page is on loan from an object (i.e. uobj)
1069 */
1070
1071 uobj = anon->u.an_page->uobject; /* locked by anonget if !NULL */
1072
1073 /* locked: maps(read), amap, anon, uobj(if one) */
1074
1075 /*
1076 * special handling for loaned pages
1077 */
1078
1079 if (anon->u.an_page->loan_count) {
1080
1081 if (!cow_now) {
1082
1083 /*
1084 * for read faults on loaned pages we just cap the
1085 * protection at read-only.
1086 */
1087
1088 enter_prot = enter_prot & ~VM_PROT_WRITE;
1089
1090 } else {
1091 /*
1092 * note that we can't allow writes into a loaned page!
1093 *
1094 * if we have a write fault on a loaned page in an
1095 * anon then we need to look at the anon's ref count.
1096 * if it is greater than one then we are going to do
1097 * a normal copy-on-write fault into a new anon (this
1098 * is not a problem). however, if the reference count
1099 * is one (a case where we would normally allow a
1100 * write directly to the page) then we need to kill
1101 * the loan before we continue.
1102 */
1103
1104 /* >1 case is already ok */
1105 if (anon->an_ref == 1) {
1106
1107 /* get new un-owned replacement page */
1108 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1109 if (pg == NULL) {
1110 uvmfault_unlockall(&ufi, amap, uobj,
1111 anon);
1112 uvm_wait("flt_noram2");
1113 goto ReFault;
1114 }
1115
1116 /*
1117 * copy data, kill loan, and drop uobj lock
1118 * (if any)
1119 */
1120 /* copy old -> new */
1121 uvm_pagecopy(anon->u.an_page, pg);
1122
1123 /* force reload */
1124 pmap_page_protect(anon->u.an_page,
1125 VM_PROT_NONE);
1126 uvm_lock_pageq(); /* KILL loan */
1127
1128 anon->u.an_page->uanon = NULL;
1129 /* in case we owned */
1130 anon->u.an_page->pqflags &= ~PQ_ANON;
1131
1132 if (uobj) {
1133 /* if we were receiver of loan */
1134 anon->u.an_page->loan_count--;
1135 } else {
1136 /*
1137 * we were the lender (A->K); need
1138 * to remove the page from pageq's.
1139 */
1140 uvm_pagedequeue(anon->u.an_page);
1141 }
1142
1143 uvm_pageactivate(pg);
1144 uvm_unlock_pageq();
1145 if (uobj) {
1146 simple_unlock(&uobj->vmobjlock);
1147 uobj = NULL;
1148 }
1149
1150 /* install new page in anon */
1151 anon->u.an_page = pg;
1152 pg->uanon = anon;
1153 pg->pqflags |= PQ_ANON;
1154 pg->flags &= ~(PG_BUSY|PG_FAKE);
1155 UVM_PAGE_OWN(pg, NULL);
1156
1157 /* done! */
1158 } /* ref == 1 */
1159 } /* write fault */
1160 } /* loan count */
1161
1162 /*
1163 * if we are case 1B then we will need to allocate a new blank
1164 * anon to transfer the data into. note that we have a lock
1165 * on anon, so no one can busy or release the page until we are done.
1166 * also note that the ref count can't drop to zero here because
1167 * it is > 1 and we are only dropping one ref.
1168 *
1169 * in the (hopefully very rare) case that we are out of RAM we
1170 * will unlock, wait for more RAM, and refault.
1171 *
1172 * if we are out of anon VM we kill the process (XXX: could wait?).
1173 */
1174
1175 if (cow_now && anon->an_ref > 1) {
1176
1177 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1178 uvmexp.flt_acow++;
1179 oanon = anon; /* oanon = old, locked anon */
1180 anon = uvm_analloc();
1181 if (anon) {
1182 /* new anon is locked! */
1183 pg = uvm_pagealloc(NULL, 0, anon, 0);
1184 }
1185
1186 /* check for out of RAM */
1187 if (anon == NULL || pg == NULL) {
1188 if (anon) {
1189 anon->an_ref--;
1190 simple_unlock(&anon->an_lock);
1191 uvm_anfree(anon);
1192 }
1193 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1194 if (anon == NULL || uvm_swapisfull()) {
1195 UVMHIST_LOG(maphist,
1196 "<- failed. out of VM",0,0,0,0);
1197 uvmexp.fltnoanon++;
1198 return ENOMEM;
1199 }
1200
1201 uvmexp.fltnoram++;
1202 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1203 goto ReFault;
1204 }
1205
1206 /* got all resources, replace anon with nanon */
1207 uvm_pagecopy(oanon->u.an_page, pg);
1208 uvm_lock_pageq();
1209 uvm_pageactivate(pg);
1210 pg->flags &= ~(PG_BUSY|PG_FAKE);
1211 uvm_unlock_pageq();
1212 UVM_PAGE_OWN(pg, NULL);
1213 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1214 anon, 1);
1215
1216 /* deref: can not drop to zero here by defn! */
1217 oanon->an_ref--;
1218
1219 /*
1220 * note: oanon is still locked, as is the new anon. we
1221 * need to check for this later when we unlock oanon; if
1222 * oanon != anon, we'll have to unlock anon, too.
1223 */
1224
1225 } else {
1226
1227 uvmexp.flt_anon++;
1228 oanon = anon; /* old, locked anon is same as anon */
1229 pg = anon->u.an_page;
1230 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1231 enter_prot = enter_prot & ~VM_PROT_WRITE;
1232
1233 }
1234
1235 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1236
1237 /*
1238 * now map the page in.
1239 */
1240
1241 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1242 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1243 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1244 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1245 != 0) {
1246
1247 /*
1248 * No need to undo what we did; we can simply think of
1249 * this as the pmap throwing away the mapping information.
1250 *
1251 * We do, however, have to go through the ReFault path,
1252 * as the map may change while we're asleep.
1253 */
1254
1255 if (anon != oanon)
1256 simple_unlock(&anon->an_lock);
1257 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1258 if (uvm_swapisfull()) {
1259 UVMHIST_LOG(maphist,
1260 "<- failed. out of VM",0,0,0,0);
1261 /* XXX instrumentation */
1262 return ENOMEM;
1263 }
1264 /* XXX instrumentation */
1265 uvm_wait("flt_pmfail1");
1266 goto ReFault;
1267 }
1268
1269 /*
1270 * ... update the page queues.
1271 */
1272
1273 uvm_lock_pageq();
1274 if (wire_fault) {
1275 uvm_pagewire(pg);
1276
1277 /*
1278 * since the now-wired page cannot be paged out,
1279 * release its swap resources for others to use.
1280 * since an anon with no swap cannot be PG_CLEAN,
1281 * clear its clean flag now.
1282 */
1283
1284 pg->flags &= ~(PG_CLEAN);
1285 uvm_anon_dropswap(anon);
1286 } else {
1287 uvm_pageactivate(pg);
1288 }
1289 uvm_unlock_pageq();
1290
1291 /*
1292 * done case 1! finish up by unlocking everything and returning success
1293 */
1294
1295 if (anon != oanon)
1296 simple_unlock(&anon->an_lock);
1297 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1298 pmap_update(ufi.orig_map->pmap);
1299 return 0;
1300
1301 Case2:
1302 /*
1303 * handle case 2: faulting on backing object or zero fill
1304 */
1305
1306 /*
1307 * locked:
1308 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1309 */
1310
1311 /*
1312 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1313 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1314 * have a backing object, check and see if we are going to promote
1315 * the data up to an anon during the fault.
1316 */
1317
1318 if (uobj == NULL) {
1319 uobjpage = PGO_DONTCARE;
1320 promote = TRUE; /* always need anon here */
1321 } else {
1322 KASSERT(uobjpage != PGO_DONTCARE);
1323 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1324 }
1325 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1326 promote, (uobj == NULL), 0,0);
1327
1328 /*
1329 * if uobjpage is not null then we do not need to do I/O to get the
1330 * uobjpage.
1331 *
1332 * if uobjpage is null, then we need to unlock and ask the pager to
1333 * get the data for us. once we have the data, we need to reverify
1334 * the state the world. we are currently not holding any resources.
1335 */
1336
1337 if (uobjpage) {
1338 /* update rusage counters */
1339 curproc->p_stats->p_ru.ru_minflt++;
1340 } else {
1341 /* update rusage counters */
1342 curproc->p_stats->p_ru.ru_majflt++;
1343
1344 /* locked: maps(read), amap(if there), uobj */
1345 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1346 /* locked: uobj */
1347
1348 uvmexp.fltget++;
1349 gotpages = 1;
1350 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1351 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1352 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1353 PGO_SYNCIO);
1354 /* locked: uobjpage(if no error) */
1355
1356 /*
1357 * recover from I/O
1358 */
1359
1360 if (error) {
1361 if (error == EAGAIN) {
1362 UVMHIST_LOG(maphist,
1363 " pgo_get says TRY AGAIN!",0,0,0,0);
1364 tsleep(&lbolt, PVM, "fltagain2", 0);
1365 goto ReFault;
1366 }
1367
1368 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1369 error, 0,0,0);
1370 return error;
1371 }
1372
1373 /* locked: uobjpage */
1374
1375 uvm_lock_pageq();
1376 uvm_pageactivate(uobjpage);
1377 uvm_unlock_pageq();
1378
1379 /*
1380 * re-verify the state of the world by first trying to relock
1381 * the maps. always relock the object.
1382 */
1383
1384 locked = uvmfault_relock(&ufi);
1385 if (locked && amap)
1386 amap_lock(amap);
1387 simple_lock(&uobj->vmobjlock);
1388
1389 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1390 /* locked(!locked): uobj, uobjpage */
1391
1392 /*
1393 * verify that the page has not be released and re-verify
1394 * that amap slot is still free. if there is a problem,
1395 * we unlock and clean up.
1396 */
1397
1398 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1399 (locked && amap &&
1400 amap_lookup(&ufi.entry->aref,
1401 ufi.orig_rvaddr - ufi.entry->start))) {
1402 if (locked)
1403 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1404 locked = FALSE;
1405 }
1406
1407 /*
1408 * didn't get the lock? release the page and retry.
1409 */
1410
1411 if (locked == FALSE) {
1412 UVMHIST_LOG(maphist,
1413 " wasn't able to relock after fault: retry",
1414 0,0,0,0);
1415 if (uobjpage->flags & PG_WANTED)
1416 wakeup(uobjpage);
1417 if (uobjpage->flags & PG_RELEASED) {
1418 uvmexp.fltpgrele++;
1419 uvm_pagefree(uobjpage);
1420 goto ReFault;
1421 }
1422 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1423 UVM_PAGE_OWN(uobjpage, NULL);
1424 simple_unlock(&uobj->vmobjlock);
1425 goto ReFault;
1426 }
1427
1428 /*
1429 * we have the data in uobjpage which is busy and
1430 * not released. we are holding object lock (so the page
1431 * can't be released on us).
1432 */
1433
1434 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1435 }
1436
1437 /*
1438 * locked:
1439 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1440 */
1441
1442 /*
1443 * notes:
1444 * - at this point uobjpage can not be NULL
1445 * - at this point uobjpage can not be PG_RELEASED (since we checked
1446 * for it above)
1447 * - at this point uobjpage could be PG_WANTED (handle later)
1448 */
1449
1450 if (promote == FALSE) {
1451
1452 /*
1453 * we are not promoting. if the mapping is COW ensure that we
1454 * don't give more access than we should (e.g. when doing a read
1455 * fault on a COPYONWRITE mapping we want to map the COW page in
1456 * R/O even though the entry protection could be R/W).
1457 *
1458 * set "pg" to the page we want to map in (uobjpage, usually)
1459 */
1460
1461 /* no anon in this case. */
1462 anon = NULL;
1463
1464 uvmexp.flt_obj++;
1465 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1466 enter_prot &= ~VM_PROT_WRITE;
1467 pg = uobjpage; /* map in the actual object */
1468
1469 /* assert(uobjpage != PGO_DONTCARE) */
1470
1471 /*
1472 * we are faulting directly on the page. be careful
1473 * about writing to loaned pages...
1474 */
1475
1476 if (uobjpage->loan_count) {
1477 if (!cow_now) {
1478 /* read fault: cap the protection at readonly */
1479 /* cap! */
1480 enter_prot = enter_prot & ~VM_PROT_WRITE;
1481 } else {
1482 /* write fault: must break the loan here */
1483
1484 pg = uvm_loanbreak(uobjpage);
1485 if (pg == NULL) {
1486
1487 /*
1488 * drop ownership of page, it can't
1489 * be released
1490 */
1491
1492 if (uobjpage->flags & PG_WANTED)
1493 wakeup(uobjpage);
1494 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1495 UVM_PAGE_OWN(uobjpage, NULL);
1496
1497 uvmfault_unlockall(&ufi, amap, uobj,
1498 NULL);
1499 UVMHIST_LOG(maphist,
1500 " out of RAM breaking loan, waiting",
1501 0,0,0,0);
1502 uvmexp.fltnoram++;
1503 uvm_wait("flt_noram4");
1504 goto ReFault;
1505 }
1506 uobjpage = pg;
1507 }
1508 }
1509 } else {
1510
1511 /*
1512 * if we are going to promote the data to an anon we
1513 * allocate a blank anon here and plug it into our amap.
1514 */
1515 #if DIAGNOSTIC
1516 if (amap == NULL)
1517 panic("uvm_fault: want to promote data, but no anon");
1518 #endif
1519
1520 anon = uvm_analloc();
1521 if (anon) {
1522
1523 /*
1524 * The new anon is locked.
1525 *
1526 * In `Fill in data...' below, if
1527 * uobjpage == PGO_DONTCARE, we want
1528 * a zero'd, dirty page, so have
1529 * uvm_pagealloc() do that for us.
1530 */
1531
1532 pg = uvm_pagealloc(NULL, 0, anon,
1533 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1534 }
1535
1536 /*
1537 * out of memory resources?
1538 */
1539
1540 if (anon == NULL || pg == NULL) {
1541 if (anon != NULL) {
1542 anon->an_ref--;
1543 simple_unlock(&anon->an_lock);
1544 uvm_anfree(anon);
1545 }
1546
1547 /*
1548 * arg! must unbusy our page and fail or sleep.
1549 */
1550
1551 if (uobjpage != PGO_DONTCARE) {
1552 if (uobjpage->flags & PG_WANTED)
1553 /* still holding object lock */
1554 wakeup(uobjpage);
1555
1556 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1557 UVM_PAGE_OWN(uobjpage, NULL);
1558 }
1559
1560 /* unlock and fail ... */
1561 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1562 if (anon == NULL || uvm_swapisfull()) {
1563 UVMHIST_LOG(maphist, " promote: out of VM",
1564 0,0,0,0);
1565 uvmexp.fltnoanon++;
1566 return ENOMEM;
1567 }
1568
1569 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1570 0,0,0,0);
1571 uvmexp.fltnoram++;
1572 uvm_wait("flt_noram5");
1573 goto ReFault;
1574 }
1575
1576 /*
1577 * fill in the data
1578 */
1579
1580 if (uobjpage != PGO_DONTCARE) {
1581 uvmexp.flt_prcopy++;
1582 /* copy page [pg now dirty] */
1583 uvm_pagecopy(uobjpage, pg);
1584
1585 /*
1586 * promote to shared amap? make sure all sharing
1587 * procs see it
1588 */
1589
1590 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1591 pmap_page_protect(uobjpage, VM_PROT_NONE);
1592 /*
1593 * XXX: PAGE MIGHT BE WIRED!
1594 */
1595 }
1596
1597 /*
1598 * dispose of uobjpage. it can't be PG_RELEASED
1599 * since we still hold the object lock.
1600 * drop handle to uobj as well.
1601 */
1602
1603 if (uobjpage->flags & PG_WANTED)
1604 /* still have the obj lock */
1605 wakeup(uobjpage);
1606 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1607 UVM_PAGE_OWN(uobjpage, NULL);
1608 simple_unlock(&uobj->vmobjlock);
1609 uobj = NULL;
1610
1611 UVMHIST_LOG(maphist,
1612 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1613 uobjpage, anon, pg, 0);
1614
1615 } else {
1616 uvmexp.flt_przero++;
1617
1618 /*
1619 * Page is zero'd and marked dirty by uvm_pagealloc()
1620 * above.
1621 */
1622
1623 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1624 anon, pg, 0, 0);
1625 }
1626 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1627 anon, 0);
1628 }
1629
1630 /*
1631 * locked:
1632 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1633 * anon(if !null), pg(if anon)
1634 *
1635 * note: pg is either the uobjpage or the new page in the new anon
1636 */
1637
1638 /*
1639 * all resources are present. we can now map it in and free our
1640 * resources.
1641 */
1642
1643 UVMHIST_LOG(maphist,
1644 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1645 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1646 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1647 (pg->flags & PG_RDONLY) == 0);
1648 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1649 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1650 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1651
1652 /*
1653 * No need to undo what we did; we can simply think of
1654 * this as the pmap throwing away the mapping information.
1655 *
1656 * We do, however, have to go through the ReFault path,
1657 * as the map may change while we're asleep.
1658 */
1659
1660 if (pg->flags & PG_WANTED)
1661 wakeup(pg);
1662
1663 /*
1664 * note that pg can't be PG_RELEASED since we did not drop
1665 * the object lock since the last time we checked.
1666 */
1667
1668 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1669 UVM_PAGE_OWN(pg, NULL);
1670 uvmfault_unlockall(&ufi, amap, uobj, anon);
1671 if (uvm_swapisfull()) {
1672 UVMHIST_LOG(maphist,
1673 "<- failed. out of VM",0,0,0,0);
1674 /* XXX instrumentation */
1675 return ENOMEM;
1676 }
1677 /* XXX instrumentation */
1678 uvm_wait("flt_pmfail2");
1679 goto ReFault;
1680 }
1681
1682 uvm_lock_pageq();
1683 if (wire_fault) {
1684 uvm_pagewire(pg);
1685 if (pg->pqflags & PQ_AOBJ) {
1686
1687 /*
1688 * since the now-wired page cannot be paged out,
1689 * release its swap resources for others to use.
1690 * since an aobj page with no swap cannot be PG_CLEAN,
1691 * clear its clean flag now.
1692 */
1693
1694 pg->flags &= ~(PG_CLEAN);
1695 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1696 }
1697 } else {
1698 uvm_pageactivate(pg);
1699 }
1700 uvm_unlock_pageq();
1701 if (pg->flags & PG_WANTED)
1702 wakeup(pg);
1703
1704 /*
1705 * note that pg can't be PG_RELEASED since we did not drop the object
1706 * lock since the last time we checked.
1707 */
1708
1709 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1710 UVM_PAGE_OWN(pg, NULL);
1711 uvmfault_unlockall(&ufi, amap, uobj, anon);
1712 pmap_update(ufi.orig_map->pmap);
1713 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1714 return 0;
1715 }
1716
1717 /*
1718 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1719 *
1720 * => map may be read-locked by caller, but MUST NOT be write-locked.
1721 * => if map is read-locked, any operations which may cause map to
1722 * be write-locked in uvm_fault() must be taken care of by
1723 * the caller. See uvm_map_pageable().
1724 */
1725
1726 int
1727 uvm_fault_wire(map, start, end, fault_type, access_type)
1728 struct vm_map *map;
1729 vaddr_t start, end;
1730 vm_fault_t fault_type;
1731 vm_prot_t access_type;
1732 {
1733 vaddr_t va;
1734 int error;
1735
1736 /*
1737 * now fault it in a page at a time. if the fault fails then we have
1738 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1739 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1740 */
1741
1742 /*
1743 * XXX work around overflowing a vaddr_t. this prevents us from
1744 * wiring the last page in the address space, though.
1745 */
1746 if (start > end) {
1747 return EFAULT;
1748 }
1749
1750 for (va = start ; va < end ; va += PAGE_SIZE) {
1751 error = uvm_fault(map, va, fault_type, access_type);
1752 if (error) {
1753 if (va != start) {
1754 uvm_fault_unwire(map, start, va);
1755 }
1756 return error;
1757 }
1758 }
1759 return 0;
1760 }
1761
1762 /*
1763 * uvm_fault_unwire(): unwire range of virtual space.
1764 */
1765
1766 void
1767 uvm_fault_unwire(map, start, end)
1768 struct vm_map *map;
1769 vaddr_t start, end;
1770 {
1771 vm_map_lock_read(map);
1772 uvm_fault_unwire_locked(map, start, end);
1773 vm_map_unlock_read(map);
1774 }
1775
1776 /*
1777 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1778 *
1779 * => map must be at least read-locked.
1780 */
1781
1782 void
1783 uvm_fault_unwire_locked(map, start, end)
1784 struct vm_map *map;
1785 vaddr_t start, end;
1786 {
1787 struct vm_map_entry *entry;
1788 pmap_t pmap = vm_map_pmap(map);
1789 vaddr_t va;
1790 paddr_t pa;
1791 struct vm_page *pg;
1792
1793 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1794
1795 /*
1796 * we assume that the area we are unwiring has actually been wired
1797 * in the first place. this means that we should be able to extract
1798 * the PAs from the pmap. we also lock out the page daemon so that
1799 * we can call uvm_pageunwire.
1800 */
1801
1802 uvm_lock_pageq();
1803
1804 /*
1805 * find the beginning map entry for the region.
1806 */
1807
1808 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1809 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1810 panic("uvm_fault_unwire_locked: address not in map");
1811
1812 for (va = start; va < end; va += PAGE_SIZE) {
1813 if (pmap_extract(pmap, va, &pa) == FALSE)
1814 continue;
1815
1816 /*
1817 * find the map entry for the current address.
1818 */
1819
1820 KASSERT(va >= entry->start);
1821 while (va >= entry->end) {
1822 KASSERT(entry->next != &map->header &&
1823 entry->next->start <= entry->end);
1824 entry = entry->next;
1825 }
1826
1827 /*
1828 * if the entry is no longer wired, tell the pmap.
1829 */
1830
1831 if (VM_MAPENT_ISWIRED(entry) == 0)
1832 pmap_unwire(pmap, va);
1833
1834 pg = PHYS_TO_VM_PAGE(pa);
1835 if (pg)
1836 uvm_pageunwire(pg);
1837 }
1838
1839 uvm_unlock_pageq();
1840 }
1841