uvm_fault.c revision 1.95 1 /* $NetBSD: uvm_fault.c,v 1.95 2005/06/27 02:19:48 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.95 2005/06/27 02:19:48 thorpej Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 *
58 * a word on page faults:
59 *
60 * types of page faults we handle:
61 *
62 * CASE 1: upper layer faults CASE 2: lower layer faults
63 *
64 * CASE 1A CASE 1B CASE 2A CASE 2B
65 * read/write1 write>1 read/write +-cow_write/zero
66 * | | | |
67 * +--|--+ +--|--+ +-----+ + | + | +-----+
68 * amap | V | | ----------->new| | | | ^ |
69 * +-----+ +-----+ +-----+ + | + | +--|--+
70 * | | |
71 * +-----+ +-----+ +--|--+ | +--|--+
72 * uobj | d/c | | d/c | | V | +----| |
73 * +-----+ +-----+ +-----+ +-----+
74 *
75 * d/c = don't care
76 *
77 * case [0]: layerless fault
78 * no amap or uobj is present. this is an error.
79 *
80 * case [1]: upper layer fault [anon active]
81 * 1A: [read] or [write with anon->an_ref == 1]
82 * I/O takes place in top level anon and uobj is not touched.
83 * 1B: [write with anon->an_ref > 1]
84 * new anon is alloc'd and data is copied off ["COW"]
85 *
86 * case [2]: lower layer fault [uobj]
87 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
88 * I/O takes place directly in object.
89 * 2B: [write to copy_on_write] or [read on NULL uobj]
90 * data is "promoted" from uobj to a new anon.
91 * if uobj is null, then we zero fill.
92 *
93 * we follow the standard UVM locking protocol ordering:
94 *
95 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
96 * we hold a PG_BUSY page if we unlock for I/O
97 *
98 *
99 * the code is structured as follows:
100 *
101 * - init the "IN" params in the ufi structure
102 * ReFault:
103 * - do lookups [locks maps], check protection, handle needs_copy
104 * - check for case 0 fault (error)
105 * - establish "range" of fault
106 * - if we have an amap lock it and extract the anons
107 * - if sequential advice deactivate pages behind us
108 * - at the same time check pmap for unmapped areas and anon for pages
109 * that we could map in (and do map it if found)
110 * - check object for resident pages that we could map in
111 * - if (case 2) goto Case2
112 * - >>> handle case 1
113 * - ensure source anon is resident in RAM
114 * - if case 1B alloc new anon and copy from source
115 * - map the correct page in
116 * Case2:
117 * - >>> handle case 2
118 * - ensure source page is resident (if uobj)
119 * - if case 2B alloc new anon and copy from source (could be zero
120 * fill if uobj == NULL)
121 * - map the correct page in
122 * - done!
123 *
124 * note on paging:
125 * if we have to do I/O we place a PG_BUSY page in the correct object,
126 * unlock everything, and do the I/O. when I/O is done we must reverify
127 * the state of the world before assuming that our data structures are
128 * valid. [because mappings could change while the map is unlocked]
129 *
130 * alternative 1: unbusy the page in question and restart the page fault
131 * from the top (ReFault). this is easy but does not take advantage
132 * of the information that we already have from our previous lookup,
133 * although it is possible that the "hints" in the vm_map will help here.
134 *
135 * alternative 2: the system already keeps track of a "version" number of
136 * a map. [i.e. every time you write-lock a map (e.g. to change a
137 * mapping) you bump the version number up by one...] so, we can save
138 * the version number of the map before we release the lock and start I/O.
139 * then when I/O is done we can relock and check the version numbers
140 * to see if anything changed. this might save us some over 1 because
141 * we don't have to unbusy the page and may be less compares(?).
142 *
143 * alternative 3: put in backpointers or a way to "hold" part of a map
144 * in place while I/O is in progress. this could be complex to
145 * implement (especially with structures like amap that can be referenced
146 * by multiple map entries, and figuring out what should wait could be
147 * complex as well...).
148 *
149 * given that we are not currently multiprocessor or multithreaded we might
150 * as well choose alternative 2 now. maybe alternative 3 would be useful
151 * in the future. XXX keep in mind for future consideration//rechecking.
152 */
153
154 /*
155 * local data structures
156 */
157
158 struct uvm_advice {
159 int advice;
160 int nback;
161 int nforw;
162 };
163
164 /*
165 * page range array:
166 * note: index in array must match "advice" value
167 * XXX: borrowed numbers from freebsd. do they work well for us?
168 */
169
170 static const struct uvm_advice uvmadvice[] = {
171 { MADV_NORMAL, 3, 4 },
172 { MADV_RANDOM, 0, 0 },
173 { MADV_SEQUENTIAL, 8, 7},
174 };
175
176 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
177
178 /*
179 * private prototypes
180 */
181
182 /*
183 * inline functions
184 */
185
186 /*
187 * uvmfault_anonflush: try and deactivate pages in specified anons
188 *
189 * => does not have to deactivate page if it is busy
190 */
191
192 static __inline void
193 uvmfault_anonflush(struct vm_anon **anons, int n)
194 {
195 int lcv;
196 struct vm_page *pg;
197
198 for (lcv = 0 ; lcv < n ; lcv++) {
199 if (anons[lcv] == NULL)
200 continue;
201 simple_lock(&anons[lcv]->an_lock);
202 pg = anons[lcv]->an_page;
203 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
204 uvm_lock_pageq();
205 if (pg->wire_count == 0) {
206 pmap_clear_reference(pg);
207 uvm_pagedeactivate(pg);
208 }
209 uvm_unlock_pageq();
210 }
211 simple_unlock(&anons[lcv]->an_lock);
212 }
213 }
214
215 /*
216 * normal functions
217 */
218
219 /*
220 * uvmfault_amapcopy: clear "needs_copy" in a map.
221 *
222 * => called with VM data structures unlocked (usually, see below)
223 * => we get a write lock on the maps and clear needs_copy for a VA
224 * => if we are out of RAM we sleep (waiting for more)
225 */
226
227 static void
228 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
229 {
230 for (;;) {
231
232 /*
233 * no mapping? give up.
234 */
235
236 if (uvmfault_lookup(ufi, TRUE) == FALSE)
237 return;
238
239 /*
240 * copy if needed.
241 */
242
243 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
244 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
245 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
246
247 /*
248 * didn't work? must be out of RAM. unlock and sleep.
249 */
250
251 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
252 uvmfault_unlockmaps(ufi, TRUE);
253 uvm_wait("fltamapcopy");
254 continue;
255 }
256
257 /*
258 * got it! unlock and return.
259 */
260
261 uvmfault_unlockmaps(ufi, TRUE);
262 return;
263 }
264 /*NOTREACHED*/
265 }
266
267 /*
268 * uvmfault_anonget: get data in an anon into a non-busy, non-released
269 * page in that anon.
270 *
271 * => maps, amap, and anon locked by caller.
272 * => if we fail (result != 0) we unlock everything.
273 * => if we are successful, we return with everything still locked.
274 * => we don't move the page on the queues [gets moved later]
275 * => if we allocate a new page [we_own], it gets put on the queues.
276 * either way, the result is that the page is on the queues at return time
277 * => for pages which are on loan from a uvm_object (and thus are not
278 * owned by the anon): if successful, we return with the owning object
279 * locked. the caller must unlock this object when it unlocks everything
280 * else.
281 */
282
283 int
284 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
285 struct vm_anon *anon)
286 {
287 boolean_t we_own; /* we own anon's page? */
288 boolean_t locked; /* did we relock? */
289 struct vm_page *pg;
290 int error;
291 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
292
293 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
294
295 error = 0;
296 uvmexp.fltanget++;
297 /* bump rusage counters */
298 if (anon->an_page)
299 curproc->p_stats->p_ru.ru_minflt++;
300 else
301 curproc->p_stats->p_ru.ru_majflt++;
302
303 /*
304 * loop until we get it, or fail.
305 */
306
307 for (;;) {
308 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
309 pg = anon->an_page;
310
311 /*
312 * if there is a resident page and it is loaned, then anon
313 * may not own it. call out to uvm_anon_lockpage() to ensure
314 * the real owner of the page has been identified and locked.
315 */
316
317 if (pg && pg->loan_count)
318 pg = uvm_anon_lockloanpg(anon);
319
320 /*
321 * page there? make sure it is not busy/released.
322 */
323
324 if (pg) {
325
326 /*
327 * at this point, if the page has a uobject [meaning
328 * we have it on loan], then that uobject is locked
329 * by us! if the page is busy, we drop all the
330 * locks (including uobject) and try again.
331 */
332
333 if ((pg->flags & PG_BUSY) == 0) {
334 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
335 return (0);
336 }
337 pg->flags |= PG_WANTED;
338 uvmexp.fltpgwait++;
339
340 /*
341 * the last unlock must be an atomic unlock+wait on
342 * the owner of page
343 */
344
345 if (pg->uobject) { /* owner is uobject ? */
346 uvmfault_unlockall(ufi, amap, NULL, anon);
347 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
348 0,0,0);
349 UVM_UNLOCK_AND_WAIT(pg,
350 &pg->uobject->vmobjlock,
351 FALSE, "anonget1",0);
352 } else {
353 /* anon owns page */
354 uvmfault_unlockall(ufi, amap, NULL, NULL);
355 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
356 0,0,0);
357 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
358 "anonget2",0);
359 }
360 } else {
361
362 /*
363 * no page, we must try and bring it in.
364 */
365
366 pg = uvm_pagealloc(NULL, 0, anon, 0);
367 if (pg == NULL) { /* out of RAM. */
368 uvmfault_unlockall(ufi, amap, NULL, anon);
369 uvmexp.fltnoram++;
370 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
371 0,0,0);
372 if (!uvm_reclaimable()) {
373 return ENOMEM;
374 }
375 uvm_wait("flt_noram1");
376 } else {
377 /* we set the PG_BUSY bit */
378 we_own = TRUE;
379 uvmfault_unlockall(ufi, amap, NULL, anon);
380
381 /*
382 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
383 * page into the uvm_swap_get function with
384 * all data structures unlocked. note that
385 * it is ok to read an_swslot here because
386 * we hold PG_BUSY on the page.
387 */
388 uvmexp.pageins++;
389 error = uvm_swap_get(pg, anon->an_swslot,
390 PGO_SYNCIO);
391
392 /*
393 * we clean up after the i/o below in the
394 * "we_own" case
395 */
396 }
397 }
398
399 /*
400 * now relock and try again
401 */
402
403 locked = uvmfault_relock(ufi);
404 if (locked && amap != NULL) {
405 amap_lock(amap);
406 }
407 if (locked || we_own)
408 simple_lock(&anon->an_lock);
409
410 /*
411 * if we own the page (i.e. we set PG_BUSY), then we need
412 * to clean up after the I/O. there are three cases to
413 * consider:
414 * [1] page released during I/O: free anon and ReFault.
415 * [2] I/O not OK. free the page and cause the fault
416 * to fail.
417 * [3] I/O OK! activate the page and sync with the
418 * non-we_own case (i.e. drop anon lock if not locked).
419 */
420
421 if (we_own) {
422 if (pg->flags & PG_WANTED) {
423 wakeup(pg);
424 }
425 if (error) {
426
427 /*
428 * remove the swap slot from the anon
429 * and mark the anon as having no real slot.
430 * don't free the swap slot, thus preventing
431 * it from being used again.
432 */
433
434 if (anon->an_swslot > 0)
435 uvm_swap_markbad(anon->an_swslot, 1);
436 anon->an_swslot = SWSLOT_BAD;
437
438 if ((pg->flags & PG_RELEASED) != 0)
439 goto released;
440
441 /*
442 * note: page was never !PG_BUSY, so it
443 * can't be mapped and thus no need to
444 * pmap_page_protect it...
445 */
446
447 uvm_lock_pageq();
448 uvm_pagefree(pg);
449 uvm_unlock_pageq();
450
451 if (locked)
452 uvmfault_unlockall(ufi, amap, NULL,
453 anon);
454 else
455 simple_unlock(&anon->an_lock);
456 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
457 return error;
458 }
459
460 if ((pg->flags & PG_RELEASED) != 0) {
461 released:
462 KASSERT(anon->an_ref == 0);
463
464 /*
465 * released while we unlocked amap.
466 */
467
468 if (locked)
469 uvmfault_unlockall(ufi, amap, NULL,
470 NULL);
471
472 uvm_anon_release(anon);
473
474 if (error) {
475 UVMHIST_LOG(maphist,
476 "<- ERROR/RELEASED", 0,0,0,0);
477 return error;
478 }
479
480 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
481 return ERESTART;
482 }
483
484 /*
485 * we've successfully read the page, activate it.
486 */
487
488 uvm_lock_pageq();
489 uvm_pageactivate(pg);
490 uvm_unlock_pageq();
491 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
492 UVM_PAGE_OWN(pg, NULL);
493 if (!locked)
494 simple_unlock(&anon->an_lock);
495 }
496
497 /*
498 * we were not able to relock. restart fault.
499 */
500
501 if (!locked) {
502 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
503 return (ERESTART);
504 }
505
506 /*
507 * verify no one has touched the amap and moved the anon on us.
508 */
509
510 if (ufi != NULL &&
511 amap_lookup(&ufi->entry->aref,
512 ufi->orig_rvaddr - ufi->entry->start) != anon) {
513
514 uvmfault_unlockall(ufi, amap, NULL, anon);
515 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
516 return (ERESTART);
517 }
518
519 /*
520 * try it again!
521 */
522
523 uvmexp.fltanretry++;
524 continue;
525 }
526 /*NOTREACHED*/
527 }
528
529 /*
530 * F A U L T - m a i n e n t r y p o i n t
531 */
532
533 /*
534 * uvm_fault: page fault handler
535 *
536 * => called from MD code to resolve a page fault
537 * => VM data structures usually should be unlocked. however, it is
538 * possible to call here with the main map locked if the caller
539 * gets a write lock, sets it recusive, and then calls us (c.f.
540 * uvm_map_pageable). this should be avoided because it keeps
541 * the map locked off during I/O.
542 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
543 */
544
545 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
546 ~VM_PROT_WRITE : VM_PROT_ALL)
547
548 int
549 uvm_fault(struct vm_map *orig_map, vaddr_t vaddr, vm_fault_t fault_type,
550 vm_prot_t access_type)
551 {
552 struct uvm_faultinfo ufi;
553 vm_prot_t enter_prot, check_prot;
554 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
555 int npages, nback, nforw, centeridx, error, lcv, gotpages;
556 vaddr_t startva, currva;
557 voff_t uoff;
558 struct vm_amap *amap;
559 struct uvm_object *uobj;
560 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
561 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
562 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
563
564 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
565 orig_map, vaddr, fault_type, access_type);
566
567 anon = NULL;
568 pg = NULL;
569
570 uvmexp.faults++; /* XXX: locking? */
571
572 /*
573 * init the IN parameters in the ufi
574 */
575
576 ufi.orig_map = orig_map;
577 ufi.orig_rvaddr = trunc_page(vaddr);
578 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
579 wire_fault = fault_type == VM_FAULT_WIRE ||
580 fault_type == VM_FAULT_WIREMAX;
581 if (wire_fault)
582 narrow = TRUE; /* don't look for neighborhood
583 * pages on wire */
584 else
585 narrow = FALSE; /* normal fault */
586
587 /*
588 * "goto ReFault" means restart the page fault from ground zero.
589 */
590 ReFault:
591
592 /*
593 * lookup and lock the maps
594 */
595
596 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
597 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
598 return (EFAULT);
599 }
600 /* locked: maps(read) */
601
602 #ifdef DIAGNOSTIC
603 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
604 printf("Page fault on non-pageable map:\n");
605 printf("ufi.map = %p\n", ufi.map);
606 printf("ufi.orig_map = %p\n", ufi.orig_map);
607 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
608 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
609 }
610 #endif
611
612 /*
613 * check protection
614 */
615
616 check_prot = fault_type == VM_FAULT_WIREMAX ?
617 ufi.entry->max_protection : ufi.entry->protection;
618 if ((check_prot & access_type) != access_type) {
619 UVMHIST_LOG(maphist,
620 "<- protection failure (prot=0x%x, access=0x%x)",
621 ufi.entry->protection, access_type, 0, 0);
622 uvmfault_unlockmaps(&ufi, FALSE);
623 return EACCES;
624 }
625
626 /*
627 * "enter_prot" is the protection we want to enter the page in at.
628 * for certain pages (e.g. copy-on-write pages) this protection can
629 * be more strict than ufi.entry->protection. "wired" means either
630 * the entry is wired or we are fault-wiring the pg.
631 */
632
633 enter_prot = ufi.entry->protection;
634 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
635 if (wired) {
636 access_type = enter_prot; /* full access for wired */
637 cow_now = (check_prot & VM_PROT_WRITE) != 0;
638 } else {
639 cow_now = (access_type & VM_PROT_WRITE) != 0;
640 }
641
642 /*
643 * handle "needs_copy" case. if we need to copy the amap we will
644 * have to drop our readlock and relock it with a write lock. (we
645 * need a write lock to change anything in a map entry [e.g.
646 * needs_copy]).
647 */
648
649 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
650 KASSERT(fault_type != VM_FAULT_WIREMAX);
651 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
652 /* need to clear */
653 UVMHIST_LOG(maphist,
654 " need to clear needs_copy and refault",0,0,0,0);
655 uvmfault_unlockmaps(&ufi, FALSE);
656 uvmfault_amapcopy(&ufi);
657 uvmexp.fltamcopy++;
658 goto ReFault;
659
660 } else {
661
662 /*
663 * ensure that we pmap_enter page R/O since
664 * needs_copy is still true
665 */
666
667 enter_prot &= ~VM_PROT_WRITE;
668 }
669 }
670
671 /*
672 * identify the players
673 */
674
675 amap = ufi.entry->aref.ar_amap; /* top layer */
676 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
677
678 /*
679 * check for a case 0 fault. if nothing backing the entry then
680 * error now.
681 */
682
683 if (amap == NULL && uobj == NULL) {
684 uvmfault_unlockmaps(&ufi, FALSE);
685 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
686 return (EFAULT);
687 }
688
689 /*
690 * establish range of interest based on advice from mapper
691 * and then clip to fit map entry. note that we only want
692 * to do this the first time through the fault. if we
693 * ReFault we will disable this by setting "narrow" to true.
694 */
695
696 if (narrow == FALSE) {
697
698 /* wide fault (!narrow) */
699 KASSERT(uvmadvice[ufi.entry->advice].advice ==
700 ufi.entry->advice);
701 nback = MIN(uvmadvice[ufi.entry->advice].nback,
702 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
703 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
704 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
705 ((ufi.entry->end - ufi.orig_rvaddr) >>
706 PAGE_SHIFT) - 1);
707 /*
708 * note: "-1" because we don't want to count the
709 * faulting page as forw
710 */
711 npages = nback + nforw + 1;
712 centeridx = nback;
713
714 narrow = TRUE; /* ensure only once per-fault */
715
716 } else {
717
718 /* narrow fault! */
719 nback = nforw = 0;
720 startva = ufi.orig_rvaddr;
721 npages = 1;
722 centeridx = 0;
723
724 }
725
726 /* locked: maps(read) */
727 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
728 narrow, nback, nforw, startva);
729 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
730 amap, uobj, 0);
731
732 /*
733 * if we've got an amap, lock it and extract current anons.
734 */
735
736 if (amap) {
737 amap_lock(amap);
738 anons = anons_store;
739 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
740 anons, npages);
741 } else {
742 anons = NULL; /* to be safe */
743 }
744
745 /* locked: maps(read), amap(if there) */
746
747 /*
748 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
749 * now and then forget about them (for the rest of the fault).
750 */
751
752 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
753
754 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
755 0,0,0,0);
756 /* flush back-page anons? */
757 if (amap)
758 uvmfault_anonflush(anons, nback);
759
760 /* flush object? */
761 if (uobj) {
762 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
763 simple_lock(&uobj->vmobjlock);
764 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
765 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
766 }
767
768 /* now forget about the backpages */
769 if (amap)
770 anons += nback;
771 startva += (nback << PAGE_SHIFT);
772 npages -= nback;
773 nback = centeridx = 0;
774 }
775
776 /* locked: maps(read), amap(if there) */
777
778 /*
779 * map in the backpages and frontpages we found in the amap in hopes
780 * of preventing future faults. we also init the pages[] array as
781 * we go.
782 */
783
784 currva = startva;
785 shadowed = FALSE;
786 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
787
788 /*
789 * dont play with VAs that are already mapped
790 * except for center)
791 */
792 if (lcv != centeridx &&
793 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
794 pages[lcv] = PGO_DONTCARE;
795 continue;
796 }
797
798 /*
799 * unmapped or center page. check if any anon at this level.
800 */
801 if (amap == NULL || anons[lcv] == NULL) {
802 pages[lcv] = NULL;
803 continue;
804 }
805
806 /*
807 * check for present page and map if possible. re-activate it.
808 */
809
810 pages[lcv] = PGO_DONTCARE;
811 if (lcv == centeridx) { /* save center for later! */
812 shadowed = TRUE;
813 continue;
814 }
815 anon = anons[lcv];
816 simple_lock(&anon->an_lock);
817 /* ignore loaned pages */
818 if (anon->an_page && anon->an_page->loan_count == 0 &&
819 (anon->an_page->flags & PG_BUSY) == 0) {
820 uvm_lock_pageq();
821 uvm_pageactivate(anon->an_page);
822 uvm_unlock_pageq();
823 UVMHIST_LOG(maphist,
824 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
825 ufi.orig_map->pmap, currva, anon->an_page, 0);
826 uvmexp.fltnamap++;
827
828 /*
829 * Since this isn't the page that's actually faulting,
830 * ignore pmap_enter() failures; it's not critical
831 * that we enter these right now.
832 */
833
834 (void) pmap_enter(ufi.orig_map->pmap, currva,
835 VM_PAGE_TO_PHYS(anon->an_page),
836 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
837 enter_prot,
838 PMAP_CANFAIL |
839 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
840 }
841 simple_unlock(&anon->an_lock);
842 pmap_update(ufi.orig_map->pmap);
843 }
844
845 /* locked: maps(read), amap(if there) */
846 /* (shadowed == TRUE) if there is an anon at the faulting address */
847 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
848 (uobj && shadowed == FALSE),0,0);
849
850 /*
851 * note that if we are really short of RAM we could sleep in the above
852 * call to pmap_enter with everything locked. bad?
853 *
854 * XXX Actually, that is bad; pmap_enter() should just fail in that
855 * XXX case. --thorpej
856 */
857
858 /*
859 * if the desired page is not shadowed by the amap and we have a
860 * backing object, then we check to see if the backing object would
861 * prefer to handle the fault itself (rather than letting us do it
862 * with the usual pgo_get hook). the backing object signals this by
863 * providing a pgo_fault routine.
864 */
865
866 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
867 simple_lock(&uobj->vmobjlock);
868
869 /* locked: maps(read), amap (if there), uobj */
870 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
871 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
872
873 /* locked: nothing, pgo_fault has unlocked everything */
874
875 if (error == ERESTART)
876 goto ReFault; /* try again! */
877 /*
878 * object fault routine responsible for pmap_update().
879 */
880 return error;
881 }
882
883 /*
884 * now, if the desired page is not shadowed by the amap and we have
885 * a backing object that does not have a special fault routine, then
886 * we ask (with pgo_get) the object for resident pages that we care
887 * about and attempt to map them in. we do not let pgo_get block
888 * (PGO_LOCKED).
889 */
890
891 if (uobj && shadowed == FALSE) {
892 simple_lock(&uobj->vmobjlock);
893
894 /* locked (!shadowed): maps(read), amap (if there), uobj */
895 /*
896 * the following call to pgo_get does _not_ change locking state
897 */
898
899 uvmexp.fltlget++;
900 gotpages = npages;
901 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
902 (startva - ufi.entry->start),
903 pages, &gotpages, centeridx,
904 access_type & MASK(ufi.entry),
905 ufi.entry->advice, PGO_LOCKED);
906
907 /*
908 * check for pages to map, if we got any
909 */
910
911 uobjpage = NULL;
912
913 if (gotpages) {
914 currva = startva;
915 for (lcv = 0; lcv < npages;
916 lcv++, currva += PAGE_SIZE) {
917 struct vm_page *curpg;
918 boolean_t readonly;
919
920 curpg = pages[lcv];
921 if (curpg == NULL || curpg == PGO_DONTCARE) {
922 continue;
923 }
924
925 /*
926 * if center page is resident and not
927 * PG_BUSY|PG_RELEASED then pgo_get
928 * made it PG_BUSY for us and gave
929 * us a handle to it. remember this
930 * page as "uobjpage." (for later use).
931 */
932
933 if (lcv == centeridx) {
934 uobjpage = curpg;
935 UVMHIST_LOG(maphist, " got uobjpage "
936 "(0x%x) with locked get",
937 uobjpage, 0,0,0);
938 continue;
939 }
940
941 /*
942 * calling pgo_get with PGO_LOCKED returns us
943 * pages which are neither busy nor released,
944 * so we don't need to check for this.
945 * we can just directly enter the pages.
946 */
947
948 uvm_lock_pageq();
949 uvm_pageactivate(curpg);
950 uvm_unlock_pageq();
951 UVMHIST_LOG(maphist,
952 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
953 ufi.orig_map->pmap, currva, curpg, 0);
954 uvmexp.fltnomap++;
955
956 /*
957 * Since this page isn't the page that's
958 * actually faulting, ignore pmap_enter()
959 * failures; it's not critical that we
960 * enter these right now.
961 */
962 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
963 KASSERT((curpg->flags & PG_RELEASED) == 0);
964 readonly = (curpg->flags & PG_RDONLY)
965 || (curpg->loan_count > 0);
966
967 (void) pmap_enter(ufi.orig_map->pmap, currva,
968 VM_PAGE_TO_PHYS(curpg),
969 readonly ?
970 enter_prot & ~VM_PROT_WRITE :
971 enter_prot & MASK(ufi.entry),
972 PMAP_CANFAIL |
973 (wired ? PMAP_WIRED : 0));
974
975 /*
976 * NOTE: page can't be PG_WANTED or PG_RELEASED
977 * because we've held the lock the whole time
978 * we've had the handle.
979 */
980
981 curpg->flags &= ~(PG_BUSY);
982 UVM_PAGE_OWN(curpg, NULL);
983 }
984 pmap_update(ufi.orig_map->pmap);
985 }
986 } else {
987 uobjpage = NULL;
988 }
989
990 /* locked (shadowed): maps(read), amap */
991 /* locked (!shadowed): maps(read), amap(if there),
992 uobj(if !null), uobjpage(if !null) */
993
994 /*
995 * note that at this point we are done with any front or back pages.
996 * we are now going to focus on the center page (i.e. the one we've
997 * faulted on). if we have faulted on the top (anon) layer
998 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
999 * not touched it yet). if we have faulted on the bottom (uobj)
1000 * layer [i.e. case 2] and the page was both present and available,
1001 * then we've got a pointer to it as "uobjpage" and we've already
1002 * made it BUSY.
1003 */
1004
1005 /*
1006 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1007 */
1008
1009 /*
1010 * redirect case 2: if we are not shadowed, go to case 2.
1011 */
1012
1013 if (shadowed == FALSE)
1014 goto Case2;
1015
1016 /* locked: maps(read), amap */
1017
1018 /*
1019 * handle case 1: fault on an anon in our amap
1020 */
1021
1022 anon = anons[centeridx];
1023 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1024 simple_lock(&anon->an_lock);
1025
1026 /* locked: maps(read), amap, anon */
1027
1028 /*
1029 * no matter if we have case 1A or case 1B we are going to need to
1030 * have the anon's memory resident. ensure that now.
1031 */
1032
1033 /*
1034 * let uvmfault_anonget do the dirty work.
1035 * if it fails (!OK) it will unlock everything for us.
1036 * if it succeeds, locks are still valid and locked.
1037 * also, if it is OK, then the anon's page is on the queues.
1038 * if the page is on loan from a uvm_object, then anonget will
1039 * lock that object for us if it does not fail.
1040 */
1041
1042 error = uvmfault_anonget(&ufi, amap, anon);
1043 switch (error) {
1044 case 0:
1045 break;
1046
1047 case ERESTART:
1048 goto ReFault;
1049
1050 case EAGAIN:
1051 tsleep(&lbolt, PVM, "fltagain1", 0);
1052 goto ReFault;
1053
1054 default:
1055 return error;
1056 }
1057
1058 /*
1059 * uobj is non null if the page is on loan from an object (i.e. uobj)
1060 */
1061
1062 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1063
1064 /* locked: maps(read), amap, anon, uobj(if one) */
1065
1066 /*
1067 * special handling for loaned pages
1068 */
1069
1070 if (anon->an_page->loan_count) {
1071
1072 if (!cow_now) {
1073
1074 /*
1075 * for read faults on loaned pages we just cap the
1076 * protection at read-only.
1077 */
1078
1079 enter_prot = enter_prot & ~VM_PROT_WRITE;
1080
1081 } else {
1082 /*
1083 * note that we can't allow writes into a loaned page!
1084 *
1085 * if we have a write fault on a loaned page in an
1086 * anon then we need to look at the anon's ref count.
1087 * if it is greater than one then we are going to do
1088 * a normal copy-on-write fault into a new anon (this
1089 * is not a problem). however, if the reference count
1090 * is one (a case where we would normally allow a
1091 * write directly to the page) then we need to kill
1092 * the loan before we continue.
1093 */
1094
1095 /* >1 case is already ok */
1096 if (anon->an_ref == 1) {
1097
1098 /* get new un-owned replacement page */
1099 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1100 if (pg == NULL) {
1101 uvmfault_unlockall(&ufi, amap, uobj,
1102 anon);
1103 uvm_wait("flt_noram2");
1104 goto ReFault;
1105 }
1106
1107 /*
1108 * copy data, kill loan, and drop uobj lock
1109 * (if any)
1110 */
1111 /* copy old -> new */
1112 uvm_pagecopy(anon->an_page, pg);
1113
1114 /* force reload */
1115 pmap_page_protect(anon->an_page,
1116 VM_PROT_NONE);
1117 uvm_lock_pageq(); /* KILL loan */
1118
1119 anon->an_page->uanon = NULL;
1120 /* in case we owned */
1121 anon->an_page->pqflags &= ~PQ_ANON;
1122
1123 if (uobj) {
1124 /* if we were receiver of loan */
1125 anon->an_page->loan_count--;
1126 } else {
1127 /*
1128 * we were the lender (A->K); need
1129 * to remove the page from pageq's.
1130 */
1131 uvm_pagedequeue(anon->an_page);
1132 }
1133
1134 uvm_pageactivate(pg);
1135 uvm_unlock_pageq();
1136 if (uobj) {
1137 simple_unlock(&uobj->vmobjlock);
1138 uobj = NULL;
1139 }
1140
1141 /* install new page in anon */
1142 anon->an_page = pg;
1143 pg->uanon = anon;
1144 pg->pqflags |= PQ_ANON;
1145 pg->flags &= ~(PG_BUSY|PG_FAKE);
1146 UVM_PAGE_OWN(pg, NULL);
1147
1148 /* done! */
1149 } /* ref == 1 */
1150 } /* write fault */
1151 } /* loan count */
1152
1153 /*
1154 * if we are case 1B then we will need to allocate a new blank
1155 * anon to transfer the data into. note that we have a lock
1156 * on anon, so no one can busy or release the page until we are done.
1157 * also note that the ref count can't drop to zero here because
1158 * it is > 1 and we are only dropping one ref.
1159 *
1160 * in the (hopefully very rare) case that we are out of RAM we
1161 * will unlock, wait for more RAM, and refault.
1162 *
1163 * if we are out of anon VM we kill the process (XXX: could wait?).
1164 */
1165
1166 if (cow_now && anon->an_ref > 1) {
1167
1168 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1169 uvmexp.flt_acow++;
1170 oanon = anon; /* oanon = old, locked anon */
1171 anon = uvm_analloc();
1172 if (anon) {
1173 /* new anon is locked! */
1174 pg = uvm_pagealloc(NULL, 0, anon, 0);
1175 }
1176
1177 /* check for out of RAM */
1178 if (anon == NULL || pg == NULL) {
1179 if (anon) {
1180 anon->an_ref--;
1181 simple_unlock(&anon->an_lock);
1182 uvm_anfree(anon);
1183 }
1184 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1185 if (!uvm_reclaimable()) {
1186 UVMHIST_LOG(maphist,
1187 "<- failed. out of VM",0,0,0,0);
1188 uvmexp.fltnoanon++;
1189 return ENOMEM;
1190 }
1191
1192 uvmexp.fltnoram++;
1193 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1194 goto ReFault;
1195 }
1196
1197 /* got all resources, replace anon with nanon */
1198 uvm_pagecopy(oanon->an_page, pg);
1199 uvm_lock_pageq();
1200 uvm_pageactivate(pg);
1201 pg->flags &= ~(PG_BUSY|PG_FAKE);
1202 uvm_unlock_pageq();
1203 UVM_PAGE_OWN(pg, NULL);
1204 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1205 anon, TRUE);
1206
1207 /* deref: can not drop to zero here by defn! */
1208 oanon->an_ref--;
1209
1210 /*
1211 * note: oanon is still locked, as is the new anon. we
1212 * need to check for this later when we unlock oanon; if
1213 * oanon != anon, we'll have to unlock anon, too.
1214 */
1215
1216 } else {
1217
1218 uvmexp.flt_anon++;
1219 oanon = anon; /* old, locked anon is same as anon */
1220 pg = anon->an_page;
1221 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1222 enter_prot = enter_prot & ~VM_PROT_WRITE;
1223
1224 }
1225
1226 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1227
1228 /*
1229 * now map the page in.
1230 */
1231
1232 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1233 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1234 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1235 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1236 != 0) {
1237
1238 /*
1239 * No need to undo what we did; we can simply think of
1240 * this as the pmap throwing away the mapping information.
1241 *
1242 * We do, however, have to go through the ReFault path,
1243 * as the map may change while we're asleep.
1244 */
1245
1246 if (anon != oanon)
1247 simple_unlock(&anon->an_lock);
1248 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1249 if (!uvm_reclaimable()) {
1250 UVMHIST_LOG(maphist,
1251 "<- failed. out of VM",0,0,0,0);
1252 /* XXX instrumentation */
1253 return ENOMEM;
1254 }
1255 /* XXX instrumentation */
1256 uvm_wait("flt_pmfail1");
1257 goto ReFault;
1258 }
1259
1260 /*
1261 * ... update the page queues.
1262 */
1263
1264 uvm_lock_pageq();
1265 if (wire_fault) {
1266 uvm_pagewire(pg);
1267
1268 /*
1269 * since the now-wired page cannot be paged out,
1270 * release its swap resources for others to use.
1271 * since an anon with no swap cannot be PG_CLEAN,
1272 * clear its clean flag now.
1273 */
1274
1275 pg->flags &= ~(PG_CLEAN);
1276 uvm_anon_dropswap(anon);
1277 } else {
1278 uvm_pageactivate(pg);
1279 }
1280 uvm_unlock_pageq();
1281
1282 /*
1283 * done case 1! finish up by unlocking everything and returning success
1284 */
1285
1286 if (anon != oanon)
1287 simple_unlock(&anon->an_lock);
1288 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1289 pmap_update(ufi.orig_map->pmap);
1290 return 0;
1291
1292 Case2:
1293 /*
1294 * handle case 2: faulting on backing object or zero fill
1295 */
1296
1297 /*
1298 * locked:
1299 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1300 */
1301
1302 /*
1303 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1304 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1305 * have a backing object, check and see if we are going to promote
1306 * the data up to an anon during the fault.
1307 */
1308
1309 if (uobj == NULL) {
1310 uobjpage = PGO_DONTCARE;
1311 promote = TRUE; /* always need anon here */
1312 } else {
1313 KASSERT(uobjpage != PGO_DONTCARE);
1314 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1315 }
1316 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1317 promote, (uobj == NULL), 0,0);
1318
1319 /*
1320 * if uobjpage is not null then we do not need to do I/O to get the
1321 * uobjpage.
1322 *
1323 * if uobjpage is null, then we need to unlock and ask the pager to
1324 * get the data for us. once we have the data, we need to reverify
1325 * the state the world. we are currently not holding any resources.
1326 */
1327
1328 if (uobjpage) {
1329 /* update rusage counters */
1330 curproc->p_stats->p_ru.ru_minflt++;
1331 } else {
1332 /* update rusage counters */
1333 curproc->p_stats->p_ru.ru_majflt++;
1334
1335 /* locked: maps(read), amap(if there), uobj */
1336 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1337 /* locked: uobj */
1338
1339 uvmexp.fltget++;
1340 gotpages = 1;
1341 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1342 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1343 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1344 PGO_SYNCIO);
1345 /* locked: uobjpage(if no error) */
1346
1347 /*
1348 * recover from I/O
1349 */
1350
1351 if (error) {
1352 if (error == EAGAIN) {
1353 UVMHIST_LOG(maphist,
1354 " pgo_get says TRY AGAIN!",0,0,0,0);
1355 tsleep(&lbolt, PVM, "fltagain2", 0);
1356 goto ReFault;
1357 }
1358
1359 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1360 error, 0,0,0);
1361 return error;
1362 }
1363
1364 /* locked: uobjpage */
1365
1366 uvm_lock_pageq();
1367 uvm_pageactivate(uobjpage);
1368 uvm_unlock_pageq();
1369
1370 /*
1371 * re-verify the state of the world by first trying to relock
1372 * the maps. always relock the object.
1373 */
1374
1375 locked = uvmfault_relock(&ufi);
1376 if (locked && amap)
1377 amap_lock(amap);
1378 simple_lock(&uobj->vmobjlock);
1379
1380 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1381 /* locked(!locked): uobj, uobjpage */
1382
1383 /*
1384 * verify that the page has not be released and re-verify
1385 * that amap slot is still free. if there is a problem,
1386 * we unlock and clean up.
1387 */
1388
1389 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1390 (locked && amap &&
1391 amap_lookup(&ufi.entry->aref,
1392 ufi.orig_rvaddr - ufi.entry->start))) {
1393 if (locked)
1394 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1395 locked = FALSE;
1396 }
1397
1398 /*
1399 * didn't get the lock? release the page and retry.
1400 */
1401
1402 if (locked == FALSE) {
1403 UVMHIST_LOG(maphist,
1404 " wasn't able to relock after fault: retry",
1405 0,0,0,0);
1406 if (uobjpage->flags & PG_WANTED)
1407 wakeup(uobjpage);
1408 if (uobjpage->flags & PG_RELEASED) {
1409 uvmexp.fltpgrele++;
1410 uvm_pagefree(uobjpage);
1411 goto ReFault;
1412 }
1413 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1414 UVM_PAGE_OWN(uobjpage, NULL);
1415 simple_unlock(&uobj->vmobjlock);
1416 goto ReFault;
1417 }
1418
1419 /*
1420 * we have the data in uobjpage which is busy and
1421 * not released. we are holding object lock (so the page
1422 * can't be released on us).
1423 */
1424
1425 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1426 }
1427
1428 /*
1429 * locked:
1430 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1431 */
1432
1433 /*
1434 * notes:
1435 * - at this point uobjpage can not be NULL
1436 * - at this point uobjpage can not be PG_RELEASED (since we checked
1437 * for it above)
1438 * - at this point uobjpage could be PG_WANTED (handle later)
1439 */
1440
1441 if (promote == FALSE) {
1442
1443 /*
1444 * we are not promoting. if the mapping is COW ensure that we
1445 * don't give more access than we should (e.g. when doing a read
1446 * fault on a COPYONWRITE mapping we want to map the COW page in
1447 * R/O even though the entry protection could be R/W).
1448 *
1449 * set "pg" to the page we want to map in (uobjpage, usually)
1450 */
1451
1452 /* no anon in this case. */
1453 anon = NULL;
1454
1455 uvmexp.flt_obj++;
1456 if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1457 enter_prot &= ~VM_PROT_WRITE;
1458 pg = uobjpage; /* map in the actual object */
1459
1460 /* assert(uobjpage != PGO_DONTCARE) */
1461
1462 /*
1463 * we are faulting directly on the page. be careful
1464 * about writing to loaned pages...
1465 */
1466
1467 if (uobjpage->loan_count) {
1468 if (!cow_now) {
1469 /* read fault: cap the protection at readonly */
1470 /* cap! */
1471 enter_prot = enter_prot & ~VM_PROT_WRITE;
1472 } else {
1473 /* write fault: must break the loan here */
1474
1475 pg = uvm_loanbreak(uobjpage);
1476 if (pg == NULL) {
1477
1478 /*
1479 * drop ownership of page, it can't
1480 * be released
1481 */
1482
1483 if (uobjpage->flags & PG_WANTED)
1484 wakeup(uobjpage);
1485 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1486 UVM_PAGE_OWN(uobjpage, NULL);
1487
1488 uvmfault_unlockall(&ufi, amap, uobj,
1489 NULL);
1490 UVMHIST_LOG(maphist,
1491 " out of RAM breaking loan, waiting",
1492 0,0,0,0);
1493 uvmexp.fltnoram++;
1494 uvm_wait("flt_noram4");
1495 goto ReFault;
1496 }
1497 uobjpage = pg;
1498 }
1499 }
1500 } else {
1501
1502 /*
1503 * if we are going to promote the data to an anon we
1504 * allocate a blank anon here and plug it into our amap.
1505 */
1506 #if DIAGNOSTIC
1507 if (amap == NULL)
1508 panic("uvm_fault: want to promote data, but no anon");
1509 #endif
1510
1511 anon = uvm_analloc();
1512 if (anon) {
1513
1514 /*
1515 * The new anon is locked.
1516 *
1517 * In `Fill in data...' below, if
1518 * uobjpage == PGO_DONTCARE, we want
1519 * a zero'd, dirty page, so have
1520 * uvm_pagealloc() do that for us.
1521 */
1522
1523 pg = uvm_pagealloc(NULL, 0, anon,
1524 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1525 }
1526
1527 /*
1528 * out of memory resources?
1529 */
1530
1531 if (anon == NULL || pg == NULL) {
1532 if (anon != NULL) {
1533 anon->an_ref--;
1534 simple_unlock(&anon->an_lock);
1535 uvm_anfree(anon);
1536 }
1537
1538 /*
1539 * arg! must unbusy our page and fail or sleep.
1540 */
1541
1542 if (uobjpage != PGO_DONTCARE) {
1543 if (uobjpage->flags & PG_WANTED)
1544 /* still holding object lock */
1545 wakeup(uobjpage);
1546
1547 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1548 UVM_PAGE_OWN(uobjpage, NULL);
1549 }
1550
1551 /* unlock and fail ... */
1552 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1553 if (!uvm_reclaimable()) {
1554 UVMHIST_LOG(maphist, " promote: out of VM",
1555 0,0,0,0);
1556 uvmexp.fltnoanon++;
1557 return ENOMEM;
1558 }
1559
1560 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1561 0,0,0,0);
1562 uvmexp.fltnoram++;
1563 uvm_wait("flt_noram5");
1564 goto ReFault;
1565 }
1566
1567 /*
1568 * fill in the data
1569 */
1570
1571 if (uobjpage != PGO_DONTCARE) {
1572 uvmexp.flt_prcopy++;
1573 /* copy page [pg now dirty] */
1574 uvm_pagecopy(uobjpage, pg);
1575
1576 /*
1577 * promote to shared amap? make sure all sharing
1578 * procs see it
1579 */
1580
1581 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1582 pmap_page_protect(uobjpage, VM_PROT_NONE);
1583 /*
1584 * XXX: PAGE MIGHT BE WIRED!
1585 */
1586 }
1587
1588 /*
1589 * dispose of uobjpage. it can't be PG_RELEASED
1590 * since we still hold the object lock.
1591 * drop handle to uobj as well.
1592 */
1593
1594 if (uobjpage->flags & PG_WANTED)
1595 /* still have the obj lock */
1596 wakeup(uobjpage);
1597 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1598 UVM_PAGE_OWN(uobjpage, NULL);
1599 simple_unlock(&uobj->vmobjlock);
1600 uobj = NULL;
1601
1602 UVMHIST_LOG(maphist,
1603 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1604 uobjpage, anon, pg, 0);
1605
1606 } else {
1607 uvmexp.flt_przero++;
1608
1609 /*
1610 * Page is zero'd and marked dirty by uvm_pagealloc()
1611 * above.
1612 */
1613
1614 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1615 anon, pg, 0, 0);
1616 }
1617 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1618 anon, FALSE);
1619 }
1620
1621 /*
1622 * locked:
1623 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1624 * anon(if !null), pg(if anon)
1625 *
1626 * note: pg is either the uobjpage or the new page in the new anon
1627 */
1628
1629 /*
1630 * all resources are present. we can now map it in and free our
1631 * resources.
1632 */
1633
1634 UVMHIST_LOG(maphist,
1635 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1636 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1637 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1638 (pg->flags & PG_RDONLY) == 0);
1639 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1640 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1641 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1642
1643 /*
1644 * No need to undo what we did; we can simply think of
1645 * this as the pmap throwing away the mapping information.
1646 *
1647 * We do, however, have to go through the ReFault path,
1648 * as the map may change while we're asleep.
1649 */
1650
1651 if (pg->flags & PG_WANTED)
1652 wakeup(pg);
1653
1654 /*
1655 * note that pg can't be PG_RELEASED since we did not drop
1656 * the object lock since the last time we checked.
1657 */
1658
1659 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1660 UVM_PAGE_OWN(pg, NULL);
1661 uvmfault_unlockall(&ufi, amap, uobj, anon);
1662 if (!uvm_reclaimable()) {
1663 UVMHIST_LOG(maphist,
1664 "<- failed. out of VM",0,0,0,0);
1665 /* XXX instrumentation */
1666 return ENOMEM;
1667 }
1668 /* XXX instrumentation */
1669 uvm_wait("flt_pmfail2");
1670 goto ReFault;
1671 }
1672
1673 uvm_lock_pageq();
1674 if (wire_fault) {
1675 uvm_pagewire(pg);
1676 if (pg->pqflags & PQ_AOBJ) {
1677
1678 /*
1679 * since the now-wired page cannot be paged out,
1680 * release its swap resources for others to use.
1681 * since an aobj page with no swap cannot be PG_CLEAN,
1682 * clear its clean flag now.
1683 */
1684
1685 pg->flags &= ~(PG_CLEAN);
1686 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1687 }
1688 } else {
1689 uvm_pageactivate(pg);
1690 }
1691 uvm_unlock_pageq();
1692 if (pg->flags & PG_WANTED)
1693 wakeup(pg);
1694
1695 /*
1696 * note that pg can't be PG_RELEASED since we did not drop the object
1697 * lock since the last time we checked.
1698 */
1699
1700 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1701 UVM_PAGE_OWN(pg, NULL);
1702 uvmfault_unlockall(&ufi, amap, uobj, anon);
1703 pmap_update(ufi.orig_map->pmap);
1704 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1705 return 0;
1706 }
1707
1708 /*
1709 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1710 *
1711 * => map may be read-locked by caller, but MUST NOT be write-locked.
1712 * => if map is read-locked, any operations which may cause map to
1713 * be write-locked in uvm_fault() must be taken care of by
1714 * the caller. See uvm_map_pageable().
1715 */
1716
1717 int
1718 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1719 vm_fault_t fault_type, vm_prot_t access_type)
1720 {
1721 vaddr_t va;
1722 int error;
1723
1724 /*
1725 * now fault it in a page at a time. if the fault fails then we have
1726 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1727 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1728 */
1729
1730 /*
1731 * XXX work around overflowing a vaddr_t. this prevents us from
1732 * wiring the last page in the address space, though.
1733 */
1734 if (start > end) {
1735 return EFAULT;
1736 }
1737
1738 for (va = start ; va < end ; va += PAGE_SIZE) {
1739 error = uvm_fault(map, va, fault_type, access_type);
1740 if (error) {
1741 if (va != start) {
1742 uvm_fault_unwire(map, start, va);
1743 }
1744 return error;
1745 }
1746 }
1747 return 0;
1748 }
1749
1750 /*
1751 * uvm_fault_unwire(): unwire range of virtual space.
1752 */
1753
1754 void
1755 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1756 {
1757 vm_map_lock_read(map);
1758 uvm_fault_unwire_locked(map, start, end);
1759 vm_map_unlock_read(map);
1760 }
1761
1762 /*
1763 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1764 *
1765 * => map must be at least read-locked.
1766 */
1767
1768 void
1769 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1770 {
1771 struct vm_map_entry *entry;
1772 pmap_t pmap = vm_map_pmap(map);
1773 vaddr_t va;
1774 paddr_t pa;
1775 struct vm_page *pg;
1776
1777 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1778
1779 /*
1780 * we assume that the area we are unwiring has actually been wired
1781 * in the first place. this means that we should be able to extract
1782 * the PAs from the pmap. we also lock out the page daemon so that
1783 * we can call uvm_pageunwire.
1784 */
1785
1786 uvm_lock_pageq();
1787
1788 /*
1789 * find the beginning map entry for the region.
1790 */
1791
1792 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1793 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1794 panic("uvm_fault_unwire_locked: address not in map");
1795
1796 for (va = start; va < end; va += PAGE_SIZE) {
1797 if (pmap_extract(pmap, va, &pa) == FALSE)
1798 continue;
1799
1800 /*
1801 * find the map entry for the current address.
1802 */
1803
1804 KASSERT(va >= entry->start);
1805 while (va >= entry->end) {
1806 KASSERT(entry->next != &map->header &&
1807 entry->next->start <= entry->end);
1808 entry = entry->next;
1809 }
1810
1811 /*
1812 * if the entry is no longer wired, tell the pmap.
1813 */
1814
1815 if (VM_MAPENT_ISWIRED(entry) == 0)
1816 pmap_unwire(pmap, va);
1817
1818 pg = PHYS_TO_VM_PAGE(pa);
1819 if (pg)
1820 uvm_pageunwire(pg);
1821 }
1822
1823 uvm_unlock_pageq();
1824 }
1825