uvm_fault.c revision 1.96 1 /* $NetBSD: uvm_fault.c,v 1.96 2005/07/17 12:27:47 yamt Exp $ */
2
3 /*
4 *
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
35 */
36
37 /*
38 * uvm_fault.c: fault handler
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: uvm_fault.c,v 1.96 2005/07/17 12:27:47 yamt Exp $");
43
44 #include "opt_uvmhist.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/user.h>
53 #include <sys/vnode.h>
54
55 #include <uvm/uvm.h>
56
57 /*
58 *
59 * a word on page faults:
60 *
61 * types of page faults we handle:
62 *
63 * CASE 1: upper layer faults CASE 2: lower layer faults
64 *
65 * CASE 1A CASE 1B CASE 2A CASE 2B
66 * read/write1 write>1 read/write +-cow_write/zero
67 * | | | |
68 * +--|--+ +--|--+ +-----+ + | + | +-----+
69 * amap | V | | ----------->new| | | | ^ |
70 * +-----+ +-----+ +-----+ + | + | +--|--+
71 * | | |
72 * +-----+ +-----+ +--|--+ | +--|--+
73 * uobj | d/c | | d/c | | V | +----| |
74 * +-----+ +-----+ +-----+ +-----+
75 *
76 * d/c = don't care
77 *
78 * case [0]: layerless fault
79 * no amap or uobj is present. this is an error.
80 *
81 * case [1]: upper layer fault [anon active]
82 * 1A: [read] or [write with anon->an_ref == 1]
83 * I/O takes place in top level anon and uobj is not touched.
84 * 1B: [write with anon->an_ref > 1]
85 * new anon is alloc'd and data is copied off ["COW"]
86 *
87 * case [2]: lower layer fault [uobj]
88 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
89 * I/O takes place directly in object.
90 * 2B: [write to copy_on_write] or [read on NULL uobj]
91 * data is "promoted" from uobj to a new anon.
92 * if uobj is null, then we zero fill.
93 *
94 * we follow the standard UVM locking protocol ordering:
95 *
96 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
97 * we hold a PG_BUSY page if we unlock for I/O
98 *
99 *
100 * the code is structured as follows:
101 *
102 * - init the "IN" params in the ufi structure
103 * ReFault:
104 * - do lookups [locks maps], check protection, handle needs_copy
105 * - check for case 0 fault (error)
106 * - establish "range" of fault
107 * - if we have an amap lock it and extract the anons
108 * - if sequential advice deactivate pages behind us
109 * - at the same time check pmap for unmapped areas and anon for pages
110 * that we could map in (and do map it if found)
111 * - check object for resident pages that we could map in
112 * - if (case 2) goto Case2
113 * - >>> handle case 1
114 * - ensure source anon is resident in RAM
115 * - if case 1B alloc new anon and copy from source
116 * - map the correct page in
117 * Case2:
118 * - >>> handle case 2
119 * - ensure source page is resident (if uobj)
120 * - if case 2B alloc new anon and copy from source (could be zero
121 * fill if uobj == NULL)
122 * - map the correct page in
123 * - done!
124 *
125 * note on paging:
126 * if we have to do I/O we place a PG_BUSY page in the correct object,
127 * unlock everything, and do the I/O. when I/O is done we must reverify
128 * the state of the world before assuming that our data structures are
129 * valid. [because mappings could change while the map is unlocked]
130 *
131 * alternative 1: unbusy the page in question and restart the page fault
132 * from the top (ReFault). this is easy but does not take advantage
133 * of the information that we already have from our previous lookup,
134 * although it is possible that the "hints" in the vm_map will help here.
135 *
136 * alternative 2: the system already keeps track of a "version" number of
137 * a map. [i.e. every time you write-lock a map (e.g. to change a
138 * mapping) you bump the version number up by one...] so, we can save
139 * the version number of the map before we release the lock and start I/O.
140 * then when I/O is done we can relock and check the version numbers
141 * to see if anything changed. this might save us some over 1 because
142 * we don't have to unbusy the page and may be less compares(?).
143 *
144 * alternative 3: put in backpointers or a way to "hold" part of a map
145 * in place while I/O is in progress. this could be complex to
146 * implement (especially with structures like amap that can be referenced
147 * by multiple map entries, and figuring out what should wait could be
148 * complex as well...).
149 *
150 * given that we are not currently multiprocessor or multithreaded we might
151 * as well choose alternative 2 now. maybe alternative 3 would be useful
152 * in the future. XXX keep in mind for future consideration//rechecking.
153 */
154
155 /*
156 * local data structures
157 */
158
159 struct uvm_advice {
160 int advice;
161 int nback;
162 int nforw;
163 };
164
165 /*
166 * page range array:
167 * note: index in array must match "advice" value
168 * XXX: borrowed numbers from freebsd. do they work well for us?
169 */
170
171 static const struct uvm_advice uvmadvice[] = {
172 { MADV_NORMAL, 3, 4 },
173 { MADV_RANDOM, 0, 0 },
174 { MADV_SEQUENTIAL, 8, 7},
175 };
176
177 #define UVM_MAXRANGE 16 /* must be MAX() of nback+nforw+1 */
178
179 /*
180 * private prototypes
181 */
182
183 /*
184 * inline functions
185 */
186
187 /*
188 * uvmfault_anonflush: try and deactivate pages in specified anons
189 *
190 * => does not have to deactivate page if it is busy
191 */
192
193 static __inline void
194 uvmfault_anonflush(struct vm_anon **anons, int n)
195 {
196 int lcv;
197 struct vm_page *pg;
198
199 for (lcv = 0 ; lcv < n ; lcv++) {
200 if (anons[lcv] == NULL)
201 continue;
202 simple_lock(&anons[lcv]->an_lock);
203 pg = anons[lcv]->an_page;
204 if (pg && (pg->flags & PG_BUSY) == 0 && pg->loan_count == 0) {
205 uvm_lock_pageq();
206 if (pg->wire_count == 0) {
207 pmap_clear_reference(pg);
208 uvm_pagedeactivate(pg);
209 }
210 uvm_unlock_pageq();
211 }
212 simple_unlock(&anons[lcv]->an_lock);
213 }
214 }
215
216 /*
217 * normal functions
218 */
219
220 /*
221 * uvmfault_amapcopy: clear "needs_copy" in a map.
222 *
223 * => called with VM data structures unlocked (usually, see below)
224 * => we get a write lock on the maps and clear needs_copy for a VA
225 * => if we are out of RAM we sleep (waiting for more)
226 */
227
228 static void
229 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
230 {
231 for (;;) {
232
233 /*
234 * no mapping? give up.
235 */
236
237 if (uvmfault_lookup(ufi, TRUE) == FALSE)
238 return;
239
240 /*
241 * copy if needed.
242 */
243
244 if (UVM_ET_ISNEEDSCOPY(ufi->entry))
245 amap_copy(ufi->map, ufi->entry, M_NOWAIT, TRUE,
246 ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
247
248 /*
249 * didn't work? must be out of RAM. unlock and sleep.
250 */
251
252 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
253 uvmfault_unlockmaps(ufi, TRUE);
254 uvm_wait("fltamapcopy");
255 continue;
256 }
257
258 /*
259 * got it! unlock and return.
260 */
261
262 uvmfault_unlockmaps(ufi, TRUE);
263 return;
264 }
265 /*NOTREACHED*/
266 }
267
268 /*
269 * uvmfault_anonget: get data in an anon into a non-busy, non-released
270 * page in that anon.
271 *
272 * => maps, amap, and anon locked by caller.
273 * => if we fail (result != 0) we unlock everything.
274 * => if we are successful, we return with everything still locked.
275 * => we don't move the page on the queues [gets moved later]
276 * => if we allocate a new page [we_own], it gets put on the queues.
277 * either way, the result is that the page is on the queues at return time
278 * => for pages which are on loan from a uvm_object (and thus are not
279 * owned by the anon): if successful, we return with the owning object
280 * locked. the caller must unlock this object when it unlocks everything
281 * else.
282 */
283
284 int
285 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
286 struct vm_anon *anon)
287 {
288 boolean_t we_own; /* we own anon's page? */
289 boolean_t locked; /* did we relock? */
290 struct vm_page *pg;
291 int error;
292 UVMHIST_FUNC("uvmfault_anonget"); UVMHIST_CALLED(maphist);
293
294 LOCK_ASSERT(simple_lock_held(&anon->an_lock));
295
296 error = 0;
297 uvmexp.fltanget++;
298 /* bump rusage counters */
299 if (anon->an_page)
300 curproc->p_stats->p_ru.ru_minflt++;
301 else
302 curproc->p_stats->p_ru.ru_majflt++;
303
304 /*
305 * loop until we get it, or fail.
306 */
307
308 for (;;) {
309 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */
310 pg = anon->an_page;
311
312 /*
313 * if there is a resident page and it is loaned, then anon
314 * may not own it. call out to uvm_anon_lockpage() to ensure
315 * the real owner of the page has been identified and locked.
316 */
317
318 if (pg && pg->loan_count)
319 pg = uvm_anon_lockloanpg(anon);
320
321 /*
322 * page there? make sure it is not busy/released.
323 */
324
325 if (pg) {
326
327 /*
328 * at this point, if the page has a uobject [meaning
329 * we have it on loan], then that uobject is locked
330 * by us! if the page is busy, we drop all the
331 * locks (including uobject) and try again.
332 */
333
334 if ((pg->flags & PG_BUSY) == 0) {
335 UVMHIST_LOG(maphist, "<- OK",0,0,0,0);
336 return (0);
337 }
338 pg->flags |= PG_WANTED;
339 uvmexp.fltpgwait++;
340
341 /*
342 * the last unlock must be an atomic unlock+wait on
343 * the owner of page
344 */
345
346 if (pg->uobject) { /* owner is uobject ? */
347 uvmfault_unlockall(ufi, amap, NULL, anon);
348 UVMHIST_LOG(maphist, " unlock+wait on uobj",0,
349 0,0,0);
350 UVM_UNLOCK_AND_WAIT(pg,
351 &pg->uobject->vmobjlock,
352 FALSE, "anonget1",0);
353 } else {
354 /* anon owns page */
355 uvmfault_unlockall(ufi, amap, NULL, NULL);
356 UVMHIST_LOG(maphist, " unlock+wait on anon",0,
357 0,0,0);
358 UVM_UNLOCK_AND_WAIT(pg,&anon->an_lock,0,
359 "anonget2",0);
360 }
361 } else {
362
363 /*
364 * no page, we must try and bring it in.
365 */
366
367 pg = uvm_pagealloc(NULL, 0, anon, 0);
368 if (pg == NULL) { /* out of RAM. */
369 uvmfault_unlockall(ufi, amap, NULL, anon);
370 uvmexp.fltnoram++;
371 UVMHIST_LOG(maphist, " noram -- UVM_WAIT",0,
372 0,0,0);
373 if (!uvm_reclaimable()) {
374 return ENOMEM;
375 }
376 uvm_wait("flt_noram1");
377 } else {
378 /* we set the PG_BUSY bit */
379 we_own = TRUE;
380 uvmfault_unlockall(ufi, amap, NULL, anon);
381
382 /*
383 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
384 * page into the uvm_swap_get function with
385 * all data structures unlocked. note that
386 * it is ok to read an_swslot here because
387 * we hold PG_BUSY on the page.
388 */
389 uvmexp.pageins++;
390 error = uvm_swap_get(pg, anon->an_swslot,
391 PGO_SYNCIO);
392
393 /*
394 * we clean up after the i/o below in the
395 * "we_own" case
396 */
397 }
398 }
399
400 /*
401 * now relock and try again
402 */
403
404 locked = uvmfault_relock(ufi);
405 if (locked && amap != NULL) {
406 amap_lock(amap);
407 }
408 if (locked || we_own)
409 simple_lock(&anon->an_lock);
410
411 /*
412 * if we own the page (i.e. we set PG_BUSY), then we need
413 * to clean up after the I/O. there are three cases to
414 * consider:
415 * [1] page released during I/O: free anon and ReFault.
416 * [2] I/O not OK. free the page and cause the fault
417 * to fail.
418 * [3] I/O OK! activate the page and sync with the
419 * non-we_own case (i.e. drop anon lock if not locked).
420 */
421
422 if (we_own) {
423 if (pg->flags & PG_WANTED) {
424 wakeup(pg);
425 }
426 if (error) {
427
428 /*
429 * remove the swap slot from the anon
430 * and mark the anon as having no real slot.
431 * don't free the swap slot, thus preventing
432 * it from being used again.
433 */
434
435 if (anon->an_swslot > 0)
436 uvm_swap_markbad(anon->an_swslot, 1);
437 anon->an_swslot = SWSLOT_BAD;
438
439 if ((pg->flags & PG_RELEASED) != 0)
440 goto released;
441
442 /*
443 * note: page was never !PG_BUSY, so it
444 * can't be mapped and thus no need to
445 * pmap_page_protect it...
446 */
447
448 uvm_lock_pageq();
449 uvm_pagefree(pg);
450 uvm_unlock_pageq();
451
452 if (locked)
453 uvmfault_unlockall(ufi, amap, NULL,
454 anon);
455 else
456 simple_unlock(&anon->an_lock);
457 UVMHIST_LOG(maphist, "<- ERROR", 0,0,0,0);
458 return error;
459 }
460
461 if ((pg->flags & PG_RELEASED) != 0) {
462 released:
463 KASSERT(anon->an_ref == 0);
464
465 /*
466 * released while we unlocked amap.
467 */
468
469 if (locked)
470 uvmfault_unlockall(ufi, amap, NULL,
471 NULL);
472
473 uvm_anon_release(anon);
474
475 if (error) {
476 UVMHIST_LOG(maphist,
477 "<- ERROR/RELEASED", 0,0,0,0);
478 return error;
479 }
480
481 UVMHIST_LOG(maphist, "<- RELEASED", 0,0,0,0);
482 return ERESTART;
483 }
484
485 /*
486 * we've successfully read the page, activate it.
487 */
488
489 uvm_lock_pageq();
490 uvm_pageactivate(pg);
491 uvm_unlock_pageq();
492 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
493 UVM_PAGE_OWN(pg, NULL);
494 if (!locked)
495 simple_unlock(&anon->an_lock);
496 }
497
498 /*
499 * we were not able to relock. restart fault.
500 */
501
502 if (!locked) {
503 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
504 return (ERESTART);
505 }
506
507 /*
508 * verify no one has touched the amap and moved the anon on us.
509 */
510
511 if (ufi != NULL &&
512 amap_lookup(&ufi->entry->aref,
513 ufi->orig_rvaddr - ufi->entry->start) != anon) {
514
515 uvmfault_unlockall(ufi, amap, NULL, anon);
516 UVMHIST_LOG(maphist, "<- REFAULT", 0,0,0,0);
517 return (ERESTART);
518 }
519
520 /*
521 * try it again!
522 */
523
524 uvmexp.fltanretry++;
525 continue;
526 }
527 /*NOTREACHED*/
528 }
529
530 /*
531 * F A U L T - m a i n e n t r y p o i n t
532 */
533
534 /*
535 * uvm_fault: page fault handler
536 *
537 * => called from MD code to resolve a page fault
538 * => VM data structures usually should be unlocked. however, it is
539 * possible to call here with the main map locked if the caller
540 * gets a write lock, sets it recusive, and then calls us (c.f.
541 * uvm_map_pageable). this should be avoided because it keeps
542 * the map locked off during I/O.
543 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
544 */
545
546 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \
547 ~VM_PROT_WRITE : VM_PROT_ALL)
548
549 int
550 uvm_fault(struct vm_map *orig_map, vaddr_t vaddr, vm_fault_t fault_type,
551 vm_prot_t access_type)
552 {
553 struct uvm_faultinfo ufi;
554 vm_prot_t enter_prot, check_prot;
555 boolean_t wired, narrow, promote, locked, shadowed, wire_fault, cow_now;
556 int npages, nback, nforw, centeridx, error, lcv, gotpages;
557 vaddr_t startva, currva;
558 voff_t uoff;
559 struct vm_amap *amap;
560 struct uvm_object *uobj;
561 struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
562 struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
563 UVMHIST_FUNC("uvm_fault"); UVMHIST_CALLED(maphist);
564
565 UVMHIST_LOG(maphist, "(map=0x%x, vaddr=0x%x, ft=%d, at=%d)",
566 orig_map, vaddr, fault_type, access_type);
567
568 anon = NULL;
569 pg = NULL;
570
571 uvmexp.faults++; /* XXX: locking? */
572
573 /*
574 * init the IN parameters in the ufi
575 */
576
577 ufi.orig_map = orig_map;
578 ufi.orig_rvaddr = trunc_page(vaddr);
579 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */
580 wire_fault = fault_type == VM_FAULT_WIRE ||
581 fault_type == VM_FAULT_WIREMAX;
582 if (wire_fault)
583 narrow = TRUE; /* don't look for neighborhood
584 * pages on wire */
585 else
586 narrow = FALSE; /* normal fault */
587
588 /*
589 * "goto ReFault" means restart the page fault from ground zero.
590 */
591 ReFault:
592
593 /*
594 * lookup and lock the maps
595 */
596
597 if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
598 UVMHIST_LOG(maphist, "<- no mapping @ 0x%x", vaddr, 0,0,0);
599 return (EFAULT);
600 }
601 /* locked: maps(read) */
602
603 #ifdef DIAGNOSTIC
604 if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0) {
605 printf("Page fault on non-pageable map:\n");
606 printf("ufi.map = %p\n", ufi.map);
607 printf("ufi.orig_map = %p\n", ufi.orig_map);
608 printf("ufi.orig_rvaddr = 0x%lx\n", (u_long) ufi.orig_rvaddr);
609 panic("uvm_fault: (ufi.map->flags & VM_MAP_PAGEABLE) == 0");
610 }
611 #endif
612
613 /*
614 * check protection
615 */
616
617 check_prot = fault_type == VM_FAULT_WIREMAX ?
618 ufi.entry->max_protection : ufi.entry->protection;
619 if ((check_prot & access_type) != access_type) {
620 UVMHIST_LOG(maphist,
621 "<- protection failure (prot=0x%x, access=0x%x)",
622 ufi.entry->protection, access_type, 0, 0);
623 uvmfault_unlockmaps(&ufi, FALSE);
624 return EACCES;
625 }
626
627 /*
628 * "enter_prot" is the protection we want to enter the page in at.
629 * for certain pages (e.g. copy-on-write pages) this protection can
630 * be more strict than ufi.entry->protection. "wired" means either
631 * the entry is wired or we are fault-wiring the pg.
632 */
633
634 enter_prot = ufi.entry->protection;
635 wired = VM_MAPENT_ISWIRED(ufi.entry) || wire_fault;
636 if (wired) {
637 access_type = enter_prot; /* full access for wired */
638 cow_now = (check_prot & VM_PROT_WRITE) != 0;
639 } else {
640 cow_now = (access_type & VM_PROT_WRITE) != 0;
641 }
642
643 /*
644 * handle "needs_copy" case. if we need to copy the amap we will
645 * have to drop our readlock and relock it with a write lock. (we
646 * need a write lock to change anything in a map entry [e.g.
647 * needs_copy]).
648 */
649
650 if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
651 KASSERT(fault_type != VM_FAULT_WIREMAX);
652 if (cow_now || (ufi.entry->object.uvm_obj == NULL)) {
653 /* need to clear */
654 UVMHIST_LOG(maphist,
655 " need to clear needs_copy and refault",0,0,0,0);
656 uvmfault_unlockmaps(&ufi, FALSE);
657 uvmfault_amapcopy(&ufi);
658 uvmexp.fltamcopy++;
659 goto ReFault;
660
661 } else {
662
663 /*
664 * ensure that we pmap_enter page R/O since
665 * needs_copy is still true
666 */
667
668 enter_prot &= ~VM_PROT_WRITE;
669 }
670 }
671
672 /*
673 * identify the players
674 */
675
676 amap = ufi.entry->aref.ar_amap; /* top layer */
677 uobj = ufi.entry->object.uvm_obj; /* bottom layer */
678
679 /*
680 * check for a case 0 fault. if nothing backing the entry then
681 * error now.
682 */
683
684 if (amap == NULL && uobj == NULL) {
685 uvmfault_unlockmaps(&ufi, FALSE);
686 UVMHIST_LOG(maphist,"<- no backing store, no overlay",0,0,0,0);
687 return (EFAULT);
688 }
689
690 /*
691 * establish range of interest based on advice from mapper
692 * and then clip to fit map entry. note that we only want
693 * to do this the first time through the fault. if we
694 * ReFault we will disable this by setting "narrow" to true.
695 */
696
697 if (narrow == FALSE) {
698
699 /* wide fault (!narrow) */
700 KASSERT(uvmadvice[ufi.entry->advice].advice ==
701 ufi.entry->advice);
702 nback = MIN(uvmadvice[ufi.entry->advice].nback,
703 (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
704 startva = ufi.orig_rvaddr - (nback << PAGE_SHIFT);
705 nforw = MIN(uvmadvice[ufi.entry->advice].nforw,
706 ((ufi.entry->end - ufi.orig_rvaddr) >>
707 PAGE_SHIFT) - 1);
708 /*
709 * note: "-1" because we don't want to count the
710 * faulting page as forw
711 */
712 npages = nback + nforw + 1;
713 centeridx = nback;
714
715 narrow = TRUE; /* ensure only once per-fault */
716
717 } else {
718
719 /* narrow fault! */
720 nback = nforw = 0;
721 startva = ufi.orig_rvaddr;
722 npages = 1;
723 centeridx = 0;
724
725 }
726
727 /* locked: maps(read) */
728 UVMHIST_LOG(maphist, " narrow=%d, back=%d, forw=%d, startva=0x%x",
729 narrow, nback, nforw, startva);
730 UVMHIST_LOG(maphist, " entry=0x%x, amap=0x%x, obj=0x%x", ufi.entry,
731 amap, uobj, 0);
732
733 /*
734 * if we've got an amap, lock it and extract current anons.
735 */
736
737 if (amap) {
738 amap_lock(amap);
739 anons = anons_store;
740 amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
741 anons, npages);
742 } else {
743 anons = NULL; /* to be safe */
744 }
745
746 /* locked: maps(read), amap(if there) */
747
748 /*
749 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
750 * now and then forget about them (for the rest of the fault).
751 */
752
753 if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
754
755 UVMHIST_LOG(maphist, " MADV_SEQUENTIAL: flushing backpages",
756 0,0,0,0);
757 /* flush back-page anons? */
758 if (amap)
759 uvmfault_anonflush(anons, nback);
760
761 /* flush object? */
762 if (uobj) {
763 uoff = (startva - ufi.entry->start) + ufi.entry->offset;
764 simple_lock(&uobj->vmobjlock);
765 (void) (uobj->pgops->pgo_put)(uobj, uoff, uoff +
766 (nback << PAGE_SHIFT), PGO_DEACTIVATE);
767 }
768
769 /* now forget about the backpages */
770 if (amap)
771 anons += nback;
772 startva += (nback << PAGE_SHIFT);
773 npages -= nback;
774 nback = centeridx = 0;
775 }
776
777 /* locked: maps(read), amap(if there) */
778
779 /*
780 * map in the backpages and frontpages we found in the amap in hopes
781 * of preventing future faults. we also init the pages[] array as
782 * we go.
783 */
784
785 currva = startva;
786 shadowed = FALSE;
787 for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
788
789 /*
790 * dont play with VAs that are already mapped
791 * except for center)
792 */
793 if (lcv != centeridx &&
794 pmap_extract(ufi.orig_map->pmap, currva, NULL)) {
795 pages[lcv] = PGO_DONTCARE;
796 continue;
797 }
798
799 /*
800 * unmapped or center page. check if any anon at this level.
801 */
802 if (amap == NULL || anons[lcv] == NULL) {
803 pages[lcv] = NULL;
804 continue;
805 }
806
807 /*
808 * check for present page and map if possible. re-activate it.
809 */
810
811 pages[lcv] = PGO_DONTCARE;
812 if (lcv == centeridx) { /* save center for later! */
813 shadowed = TRUE;
814 continue;
815 }
816 anon = anons[lcv];
817 simple_lock(&anon->an_lock);
818 /* ignore loaned pages */
819 if (anon->an_page && anon->an_page->loan_count == 0 &&
820 (anon->an_page->flags & PG_BUSY) == 0) {
821 uvm_lock_pageq();
822 uvm_pageactivate(anon->an_page);
823 uvm_unlock_pageq();
824 UVMHIST_LOG(maphist,
825 " MAPPING: n anon: pm=0x%x, va=0x%x, pg=0x%x",
826 ufi.orig_map->pmap, currva, anon->an_page, 0);
827 uvmexp.fltnamap++;
828
829 /*
830 * Since this isn't the page that's actually faulting,
831 * ignore pmap_enter() failures; it's not critical
832 * that we enter these right now.
833 */
834
835 (void) pmap_enter(ufi.orig_map->pmap, currva,
836 VM_PAGE_TO_PHYS(anon->an_page),
837 (anon->an_ref > 1) ? (enter_prot & ~VM_PROT_WRITE) :
838 enter_prot,
839 PMAP_CANFAIL |
840 (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
841 }
842 simple_unlock(&anon->an_lock);
843 pmap_update(ufi.orig_map->pmap);
844 }
845
846 /* locked: maps(read), amap(if there) */
847 /* (shadowed == TRUE) if there is an anon at the faulting address */
848 UVMHIST_LOG(maphist, " shadowed=%d, will_get=%d", shadowed,
849 (uobj && shadowed == FALSE),0,0);
850
851 /*
852 * note that if we are really short of RAM we could sleep in the above
853 * call to pmap_enter with everything locked. bad?
854 *
855 * XXX Actually, that is bad; pmap_enter() should just fail in that
856 * XXX case. --thorpej
857 */
858
859 /*
860 * if the desired page is not shadowed by the amap and we have a
861 * backing object, then we check to see if the backing object would
862 * prefer to handle the fault itself (rather than letting us do it
863 * with the usual pgo_get hook). the backing object signals this by
864 * providing a pgo_fault routine.
865 */
866
867 if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
868 simple_lock(&uobj->vmobjlock);
869
870 /* locked: maps(read), amap (if there), uobj */
871 error = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
872 centeridx, fault_type, access_type, PGO_LOCKED|PGO_SYNCIO);
873
874 /* locked: nothing, pgo_fault has unlocked everything */
875
876 if (error == ERESTART)
877 goto ReFault; /* try again! */
878 /*
879 * object fault routine responsible for pmap_update().
880 */
881 return error;
882 }
883
884 /*
885 * now, if the desired page is not shadowed by the amap and we have
886 * a backing object that does not have a special fault routine, then
887 * we ask (with pgo_get) the object for resident pages that we care
888 * about and attempt to map them in. we do not let pgo_get block
889 * (PGO_LOCKED).
890 */
891
892 if (uobj && shadowed == FALSE) {
893 simple_lock(&uobj->vmobjlock);
894
895 /* locked (!shadowed): maps(read), amap (if there), uobj */
896 /*
897 * the following call to pgo_get does _not_ change locking state
898 */
899
900 uvmexp.fltlget++;
901 gotpages = npages;
902 (void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
903 (startva - ufi.entry->start),
904 pages, &gotpages, centeridx,
905 access_type & MASK(ufi.entry),
906 ufi.entry->advice, PGO_LOCKED);
907
908 /*
909 * check for pages to map, if we got any
910 */
911
912 uobjpage = NULL;
913
914 if (gotpages) {
915 currva = startva;
916 for (lcv = 0; lcv < npages;
917 lcv++, currva += PAGE_SIZE) {
918 struct vm_page *curpg;
919 boolean_t readonly;
920
921 curpg = pages[lcv];
922 if (curpg == NULL || curpg == PGO_DONTCARE) {
923 continue;
924 }
925
926 /*
927 * if center page is resident and not
928 * PG_BUSY|PG_RELEASED then pgo_get
929 * made it PG_BUSY for us and gave
930 * us a handle to it. remember this
931 * page as "uobjpage." (for later use).
932 */
933
934 if (lcv == centeridx) {
935 uobjpage = curpg;
936 UVMHIST_LOG(maphist, " got uobjpage "
937 "(0x%x) with locked get",
938 uobjpage, 0,0,0);
939 continue;
940 }
941
942 /*
943 * calling pgo_get with PGO_LOCKED returns us
944 * pages which are neither busy nor released,
945 * so we don't need to check for this.
946 * we can just directly enter the pages.
947 */
948
949 uvm_lock_pageq();
950 uvm_pageactivate(curpg);
951 uvm_unlock_pageq();
952 UVMHIST_LOG(maphist,
953 " MAPPING: n obj: pm=0x%x, va=0x%x, pg=0x%x",
954 ufi.orig_map->pmap, currva, curpg, 0);
955 uvmexp.fltnomap++;
956
957 /*
958 * Since this page isn't the page that's
959 * actually faulting, ignore pmap_enter()
960 * failures; it's not critical that we
961 * enter these right now.
962 */
963 KASSERT((curpg->flags & PG_PAGEOUT) == 0);
964 KASSERT((curpg->flags & PG_RELEASED) == 0);
965 KASSERT(!UVM_OBJ_IS_CLEAN(uobj) ||
966 (curpg->flags & PG_CLEAN) != 0);
967 readonly = (curpg->flags & PG_RDONLY)
968 || (curpg->loan_count > 0)
969 || UVM_OBJ_IS_CLEAN(uobj);
970
971 (void) pmap_enter(ufi.orig_map->pmap, currva,
972 VM_PAGE_TO_PHYS(curpg),
973 readonly ?
974 enter_prot & ~VM_PROT_WRITE :
975 enter_prot & MASK(ufi.entry),
976 PMAP_CANFAIL |
977 (wired ? PMAP_WIRED : 0));
978
979 /*
980 * NOTE: page can't be PG_WANTED or PG_RELEASED
981 * because we've held the lock the whole time
982 * we've had the handle.
983 */
984
985 curpg->flags &= ~(PG_BUSY);
986 UVM_PAGE_OWN(curpg, NULL);
987 }
988 pmap_update(ufi.orig_map->pmap);
989 }
990 } else {
991 uobjpage = NULL;
992 }
993
994 /* locked (shadowed): maps(read), amap */
995 /* locked (!shadowed): maps(read), amap(if there),
996 uobj(if !null), uobjpage(if !null) */
997
998 /*
999 * note that at this point we are done with any front or back pages.
1000 * we are now going to focus on the center page (i.e. the one we've
1001 * faulted on). if we have faulted on the top (anon) layer
1002 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
1003 * not touched it yet). if we have faulted on the bottom (uobj)
1004 * layer [i.e. case 2] and the page was both present and available,
1005 * then we've got a pointer to it as "uobjpage" and we've already
1006 * made it BUSY.
1007 */
1008
1009 /*
1010 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
1011 */
1012
1013 /*
1014 * redirect case 2: if we are not shadowed, go to case 2.
1015 */
1016
1017 if (shadowed == FALSE)
1018 goto Case2;
1019
1020 /* locked: maps(read), amap */
1021
1022 /*
1023 * handle case 1: fault on an anon in our amap
1024 */
1025
1026 anon = anons[centeridx];
1027 UVMHIST_LOG(maphist, " case 1 fault: anon=0x%x", anon, 0,0,0);
1028 simple_lock(&anon->an_lock);
1029
1030 /* locked: maps(read), amap, anon */
1031
1032 /*
1033 * no matter if we have case 1A or case 1B we are going to need to
1034 * have the anon's memory resident. ensure that now.
1035 */
1036
1037 /*
1038 * let uvmfault_anonget do the dirty work.
1039 * if it fails (!OK) it will unlock everything for us.
1040 * if it succeeds, locks are still valid and locked.
1041 * also, if it is OK, then the anon's page is on the queues.
1042 * if the page is on loan from a uvm_object, then anonget will
1043 * lock that object for us if it does not fail.
1044 */
1045
1046 error = uvmfault_anonget(&ufi, amap, anon);
1047 switch (error) {
1048 case 0:
1049 break;
1050
1051 case ERESTART:
1052 goto ReFault;
1053
1054 case EAGAIN:
1055 tsleep(&lbolt, PVM, "fltagain1", 0);
1056 goto ReFault;
1057
1058 default:
1059 return error;
1060 }
1061
1062 /*
1063 * uobj is non null if the page is on loan from an object (i.e. uobj)
1064 */
1065
1066 uobj = anon->an_page->uobject; /* locked by anonget if !NULL */
1067
1068 /* locked: maps(read), amap, anon, uobj(if one) */
1069
1070 /*
1071 * special handling for loaned pages
1072 */
1073
1074 if (anon->an_page->loan_count) {
1075
1076 if (!cow_now) {
1077
1078 /*
1079 * for read faults on loaned pages we just cap the
1080 * protection at read-only.
1081 */
1082
1083 enter_prot = enter_prot & ~VM_PROT_WRITE;
1084
1085 } else {
1086 /*
1087 * note that we can't allow writes into a loaned page!
1088 *
1089 * if we have a write fault on a loaned page in an
1090 * anon then we need to look at the anon's ref count.
1091 * if it is greater than one then we are going to do
1092 * a normal copy-on-write fault into a new anon (this
1093 * is not a problem). however, if the reference count
1094 * is one (a case where we would normally allow a
1095 * write directly to the page) then we need to kill
1096 * the loan before we continue.
1097 */
1098
1099 /* >1 case is already ok */
1100 if (anon->an_ref == 1) {
1101
1102 /* get new un-owned replacement page */
1103 pg = uvm_pagealloc(NULL, 0, NULL, 0);
1104 if (pg == NULL) {
1105 uvmfault_unlockall(&ufi, amap, uobj,
1106 anon);
1107 uvm_wait("flt_noram2");
1108 goto ReFault;
1109 }
1110
1111 /*
1112 * copy data, kill loan, and drop uobj lock
1113 * (if any)
1114 */
1115 /* copy old -> new */
1116 uvm_pagecopy(anon->an_page, pg);
1117
1118 /* force reload */
1119 pmap_page_protect(anon->an_page,
1120 VM_PROT_NONE);
1121 uvm_lock_pageq(); /* KILL loan */
1122
1123 anon->an_page->uanon = NULL;
1124 /* in case we owned */
1125 anon->an_page->pqflags &= ~PQ_ANON;
1126
1127 if (uobj) {
1128 /* if we were receiver of loan */
1129 anon->an_page->loan_count--;
1130 } else {
1131 /*
1132 * we were the lender (A->K); need
1133 * to remove the page from pageq's.
1134 */
1135 uvm_pagedequeue(anon->an_page);
1136 }
1137
1138 uvm_pageactivate(pg);
1139 uvm_unlock_pageq();
1140 if (uobj) {
1141 simple_unlock(&uobj->vmobjlock);
1142 uobj = NULL;
1143 }
1144
1145 /* install new page in anon */
1146 anon->an_page = pg;
1147 pg->uanon = anon;
1148 pg->pqflags |= PQ_ANON;
1149 pg->flags &= ~(PG_BUSY|PG_FAKE);
1150 UVM_PAGE_OWN(pg, NULL);
1151
1152 /* done! */
1153 } /* ref == 1 */
1154 } /* write fault */
1155 } /* loan count */
1156
1157 /*
1158 * if we are case 1B then we will need to allocate a new blank
1159 * anon to transfer the data into. note that we have a lock
1160 * on anon, so no one can busy or release the page until we are done.
1161 * also note that the ref count can't drop to zero here because
1162 * it is > 1 and we are only dropping one ref.
1163 *
1164 * in the (hopefully very rare) case that we are out of RAM we
1165 * will unlock, wait for more RAM, and refault.
1166 *
1167 * if we are out of anon VM we kill the process (XXX: could wait?).
1168 */
1169
1170 if (cow_now && anon->an_ref > 1) {
1171
1172 UVMHIST_LOG(maphist, " case 1B: COW fault",0,0,0,0);
1173 uvmexp.flt_acow++;
1174 oanon = anon; /* oanon = old, locked anon */
1175 anon = uvm_analloc();
1176 if (anon) {
1177 /* new anon is locked! */
1178 pg = uvm_pagealloc(NULL, 0, anon, 0);
1179 }
1180
1181 /* check for out of RAM */
1182 if (anon == NULL || pg == NULL) {
1183 if (anon) {
1184 anon->an_ref--;
1185 simple_unlock(&anon->an_lock);
1186 uvm_anfree(anon);
1187 }
1188 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1189 if (!uvm_reclaimable()) {
1190 UVMHIST_LOG(maphist,
1191 "<- failed. out of VM",0,0,0,0);
1192 uvmexp.fltnoanon++;
1193 return ENOMEM;
1194 }
1195
1196 uvmexp.fltnoram++;
1197 uvm_wait("flt_noram3"); /* out of RAM, wait for more */
1198 goto ReFault;
1199 }
1200
1201 /* got all resources, replace anon with nanon */
1202 uvm_pagecopy(oanon->an_page, pg);
1203 uvm_lock_pageq();
1204 uvm_pageactivate(pg);
1205 pg->flags &= ~(PG_BUSY|PG_FAKE);
1206 uvm_unlock_pageq();
1207 UVM_PAGE_OWN(pg, NULL);
1208 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1209 anon, TRUE);
1210
1211 /* deref: can not drop to zero here by defn! */
1212 oanon->an_ref--;
1213
1214 /*
1215 * note: oanon is still locked, as is the new anon. we
1216 * need to check for this later when we unlock oanon; if
1217 * oanon != anon, we'll have to unlock anon, too.
1218 */
1219
1220 } else {
1221
1222 uvmexp.flt_anon++;
1223 oanon = anon; /* old, locked anon is same as anon */
1224 pg = anon->an_page;
1225 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */
1226 enter_prot = enter_prot & ~VM_PROT_WRITE;
1227
1228 }
1229
1230 /* locked: maps(read), amap, oanon, anon (if different from oanon) */
1231
1232 /*
1233 * now map the page in.
1234 */
1235
1236 UVMHIST_LOG(maphist, " MAPPING: anon: pm=0x%x, va=0x%x, pg=0x%x",
1237 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, 0);
1238 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1239 enter_prot, access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0))
1240 != 0) {
1241
1242 /*
1243 * No need to undo what we did; we can simply think of
1244 * this as the pmap throwing away the mapping information.
1245 *
1246 * We do, however, have to go through the ReFault path,
1247 * as the map may change while we're asleep.
1248 */
1249
1250 if (anon != oanon)
1251 simple_unlock(&anon->an_lock);
1252 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1253 if (!uvm_reclaimable()) {
1254 UVMHIST_LOG(maphist,
1255 "<- failed. out of VM",0,0,0,0);
1256 /* XXX instrumentation */
1257 return ENOMEM;
1258 }
1259 /* XXX instrumentation */
1260 uvm_wait("flt_pmfail1");
1261 goto ReFault;
1262 }
1263
1264 /*
1265 * ... update the page queues.
1266 */
1267
1268 uvm_lock_pageq();
1269 if (wire_fault) {
1270 uvm_pagewire(pg);
1271
1272 /*
1273 * since the now-wired page cannot be paged out,
1274 * release its swap resources for others to use.
1275 * since an anon with no swap cannot be PG_CLEAN,
1276 * clear its clean flag now.
1277 */
1278
1279 pg->flags &= ~(PG_CLEAN);
1280 uvm_anon_dropswap(anon);
1281 } else {
1282 uvm_pageactivate(pg);
1283 }
1284 uvm_unlock_pageq();
1285
1286 /*
1287 * done case 1! finish up by unlocking everything and returning success
1288 */
1289
1290 if (anon != oanon)
1291 simple_unlock(&anon->an_lock);
1292 uvmfault_unlockall(&ufi, amap, uobj, oanon);
1293 pmap_update(ufi.orig_map->pmap);
1294 return 0;
1295
1296 Case2:
1297 /*
1298 * handle case 2: faulting on backing object or zero fill
1299 */
1300
1301 /*
1302 * locked:
1303 * maps(read), amap(if there), uobj(if !null), uobjpage(if !null)
1304 */
1305
1306 /*
1307 * note that uobjpage can not be PGO_DONTCARE at this point. we now
1308 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we
1309 * have a backing object, check and see if we are going to promote
1310 * the data up to an anon during the fault.
1311 */
1312
1313 if (uobj == NULL) {
1314 uobjpage = PGO_DONTCARE;
1315 promote = TRUE; /* always need anon here */
1316 } else {
1317 KASSERT(uobjpage != PGO_DONTCARE);
1318 promote = cow_now && UVM_ET_ISCOPYONWRITE(ufi.entry);
1319 }
1320 UVMHIST_LOG(maphist, " case 2 fault: promote=%d, zfill=%d",
1321 promote, (uobj == NULL), 0,0);
1322
1323 /*
1324 * if uobjpage is not null then we do not need to do I/O to get the
1325 * uobjpage.
1326 *
1327 * if uobjpage is null, then we need to unlock and ask the pager to
1328 * get the data for us. once we have the data, we need to reverify
1329 * the state the world. we are currently not holding any resources.
1330 */
1331
1332 if (uobjpage) {
1333 /* update rusage counters */
1334 curproc->p_stats->p_ru.ru_minflt++;
1335 } else {
1336 /* update rusage counters */
1337 curproc->p_stats->p_ru.ru_majflt++;
1338
1339 /* locked: maps(read), amap(if there), uobj */
1340 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1341 /* locked: uobj */
1342
1343 uvmexp.fltget++;
1344 gotpages = 1;
1345 uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1346 error = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1347 0, access_type & MASK(ufi.entry), ufi.entry->advice,
1348 PGO_SYNCIO);
1349 /* locked: uobjpage(if no error) */
1350
1351 /*
1352 * recover from I/O
1353 */
1354
1355 if (error) {
1356 if (error == EAGAIN) {
1357 UVMHIST_LOG(maphist,
1358 " pgo_get says TRY AGAIN!",0,0,0,0);
1359 tsleep(&lbolt, PVM, "fltagain2", 0);
1360 goto ReFault;
1361 }
1362
1363 UVMHIST_LOG(maphist, "<- pgo_get failed (code %d)",
1364 error, 0,0,0);
1365 return error;
1366 }
1367
1368 /* locked: uobjpage */
1369
1370 uvm_lock_pageq();
1371 uvm_pageactivate(uobjpage);
1372 uvm_unlock_pageq();
1373
1374 /*
1375 * re-verify the state of the world by first trying to relock
1376 * the maps. always relock the object.
1377 */
1378
1379 locked = uvmfault_relock(&ufi);
1380 if (locked && amap)
1381 amap_lock(amap);
1382 simple_lock(&uobj->vmobjlock);
1383
1384 /* locked(locked): maps(read), amap(if !null), uobj, uobjpage */
1385 /* locked(!locked): uobj, uobjpage */
1386
1387 /*
1388 * verify that the page has not be released and re-verify
1389 * that amap slot is still free. if there is a problem,
1390 * we unlock and clean up.
1391 */
1392
1393 if ((uobjpage->flags & PG_RELEASED) != 0 ||
1394 (locked && amap &&
1395 amap_lookup(&ufi.entry->aref,
1396 ufi.orig_rvaddr - ufi.entry->start))) {
1397 if (locked)
1398 uvmfault_unlockall(&ufi, amap, NULL, NULL);
1399 locked = FALSE;
1400 }
1401
1402 /*
1403 * didn't get the lock? release the page and retry.
1404 */
1405
1406 if (locked == FALSE) {
1407 UVMHIST_LOG(maphist,
1408 " wasn't able to relock after fault: retry",
1409 0,0,0,0);
1410 if (uobjpage->flags & PG_WANTED)
1411 wakeup(uobjpage);
1412 if (uobjpage->flags & PG_RELEASED) {
1413 uvmexp.fltpgrele++;
1414 uvm_pagefree(uobjpage);
1415 goto ReFault;
1416 }
1417 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1418 UVM_PAGE_OWN(uobjpage, NULL);
1419 simple_unlock(&uobj->vmobjlock);
1420 goto ReFault;
1421 }
1422
1423 /*
1424 * we have the data in uobjpage which is busy and
1425 * not released. we are holding object lock (so the page
1426 * can't be released on us).
1427 */
1428
1429 /* locked: maps(read), amap(if !null), uobj, uobjpage */
1430 }
1431
1432 /*
1433 * locked:
1434 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj)
1435 */
1436
1437 /*
1438 * notes:
1439 * - at this point uobjpage can not be NULL
1440 * - at this point uobjpage can not be PG_RELEASED (since we checked
1441 * for it above)
1442 * - at this point uobjpage could be PG_WANTED (handle later)
1443 */
1444
1445 KASSERT(uobj == NULL || !UVM_OBJ_IS_CLEAN(uobj) ||
1446 (uobjpage->flags & PG_CLEAN) != 0);
1447 if (promote == FALSE) {
1448
1449 /*
1450 * we are not promoting. if the mapping is COW ensure that we
1451 * don't give more access than we should (e.g. when doing a read
1452 * fault on a COPYONWRITE mapping we want to map the COW page in
1453 * R/O even though the entry protection could be R/W).
1454 *
1455 * set "pg" to the page we want to map in (uobjpage, usually)
1456 */
1457
1458 /* no anon in this case. */
1459 anon = NULL;
1460
1461 uvmexp.flt_obj++;
1462 if (UVM_ET_ISCOPYONWRITE(ufi.entry) ||
1463 UVM_OBJ_IS_CLEAN(uobj))
1464 enter_prot &= ~VM_PROT_WRITE;
1465 pg = uobjpage; /* map in the actual object */
1466
1467 /* assert(uobjpage != PGO_DONTCARE) */
1468
1469 /*
1470 * we are faulting directly on the page. be careful
1471 * about writing to loaned pages...
1472 */
1473
1474 if (uobjpage->loan_count) {
1475 if (!cow_now) {
1476 /* read fault: cap the protection at readonly */
1477 /* cap! */
1478 enter_prot = enter_prot & ~VM_PROT_WRITE;
1479 } else {
1480 /* write fault: must break the loan here */
1481
1482 pg = uvm_loanbreak(uobjpage);
1483 if (pg == NULL) {
1484
1485 /*
1486 * drop ownership of page, it can't
1487 * be released
1488 */
1489
1490 if (uobjpage->flags & PG_WANTED)
1491 wakeup(uobjpage);
1492 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1493 UVM_PAGE_OWN(uobjpage, NULL);
1494
1495 uvmfault_unlockall(&ufi, amap, uobj,
1496 NULL);
1497 UVMHIST_LOG(maphist,
1498 " out of RAM breaking loan, waiting",
1499 0,0,0,0);
1500 uvmexp.fltnoram++;
1501 uvm_wait("flt_noram4");
1502 goto ReFault;
1503 }
1504 uobjpage = pg;
1505 }
1506 }
1507 } else {
1508
1509 /*
1510 * if we are going to promote the data to an anon we
1511 * allocate a blank anon here and plug it into our amap.
1512 */
1513 #if DIAGNOSTIC
1514 if (amap == NULL)
1515 panic("uvm_fault: want to promote data, but no anon");
1516 #endif
1517
1518 anon = uvm_analloc();
1519 if (anon) {
1520
1521 /*
1522 * The new anon is locked.
1523 *
1524 * In `Fill in data...' below, if
1525 * uobjpage == PGO_DONTCARE, we want
1526 * a zero'd, dirty page, so have
1527 * uvm_pagealloc() do that for us.
1528 */
1529
1530 pg = uvm_pagealloc(NULL, 0, anon,
1531 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1532 }
1533
1534 /*
1535 * out of memory resources?
1536 */
1537
1538 if (anon == NULL || pg == NULL) {
1539 if (anon != NULL) {
1540 anon->an_ref--;
1541 simple_unlock(&anon->an_lock);
1542 uvm_anfree(anon);
1543 }
1544
1545 /*
1546 * arg! must unbusy our page and fail or sleep.
1547 */
1548
1549 if (uobjpage != PGO_DONTCARE) {
1550 if (uobjpage->flags & PG_WANTED)
1551 /* still holding object lock */
1552 wakeup(uobjpage);
1553
1554 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1555 UVM_PAGE_OWN(uobjpage, NULL);
1556 }
1557
1558 /* unlock and fail ... */
1559 uvmfault_unlockall(&ufi, amap, uobj, NULL);
1560 if (!uvm_reclaimable()) {
1561 UVMHIST_LOG(maphist, " promote: out of VM",
1562 0,0,0,0);
1563 uvmexp.fltnoanon++;
1564 return ENOMEM;
1565 }
1566
1567 UVMHIST_LOG(maphist, " out of RAM, waiting for more",
1568 0,0,0,0);
1569 uvmexp.fltnoram++;
1570 uvm_wait("flt_noram5");
1571 goto ReFault;
1572 }
1573
1574 /*
1575 * fill in the data
1576 */
1577
1578 if (uobjpage != PGO_DONTCARE) {
1579 uvmexp.flt_prcopy++;
1580 /* copy page [pg now dirty] */
1581 uvm_pagecopy(uobjpage, pg);
1582
1583 /*
1584 * promote to shared amap? make sure all sharing
1585 * procs see it
1586 */
1587
1588 if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1589 pmap_page_protect(uobjpage, VM_PROT_NONE);
1590 /*
1591 * XXX: PAGE MIGHT BE WIRED!
1592 */
1593 }
1594
1595 /*
1596 * dispose of uobjpage. it can't be PG_RELEASED
1597 * since we still hold the object lock.
1598 * drop handle to uobj as well.
1599 */
1600
1601 if (uobjpage->flags & PG_WANTED)
1602 /* still have the obj lock */
1603 wakeup(uobjpage);
1604 uobjpage->flags &= ~(PG_BUSY|PG_WANTED);
1605 UVM_PAGE_OWN(uobjpage, NULL);
1606 simple_unlock(&uobj->vmobjlock);
1607 uobj = NULL;
1608
1609 UVMHIST_LOG(maphist,
1610 " promote uobjpage 0x%x to anon/page 0x%x/0x%x",
1611 uobjpage, anon, pg, 0);
1612
1613 } else {
1614 uvmexp.flt_przero++;
1615
1616 /*
1617 * Page is zero'd and marked dirty by uvm_pagealloc()
1618 * above.
1619 */
1620
1621 UVMHIST_LOG(maphist," zero fill anon/page 0x%x/0%x",
1622 anon, pg, 0, 0);
1623 }
1624 amap_add(&ufi.entry->aref, ufi.orig_rvaddr - ufi.entry->start,
1625 anon, FALSE);
1626 }
1627
1628 /*
1629 * locked:
1630 * maps(read), amap(if !null), uobj(if !null), uobjpage(if uobj),
1631 * anon(if !null), pg(if anon)
1632 *
1633 * note: pg is either the uobjpage or the new page in the new anon
1634 */
1635
1636 /*
1637 * all resources are present. we can now map it in and free our
1638 * resources.
1639 */
1640
1641 UVMHIST_LOG(maphist,
1642 " MAPPING: case2: pm=0x%x, va=0x%x, pg=0x%x, promote=%d",
1643 ufi.orig_map->pmap, ufi.orig_rvaddr, pg, promote);
1644 KASSERT((access_type & VM_PROT_WRITE) == 0 ||
1645 (pg->flags & PG_RDONLY) == 0);
1646 if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr, VM_PAGE_TO_PHYS(pg),
1647 pg->flags & PG_RDONLY ? enter_prot & ~VM_PROT_WRITE : enter_prot,
1648 access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1649
1650 /*
1651 * No need to undo what we did; we can simply think of
1652 * this as the pmap throwing away the mapping information.
1653 *
1654 * We do, however, have to go through the ReFault path,
1655 * as the map may change while we're asleep.
1656 */
1657
1658 if (pg->flags & PG_WANTED)
1659 wakeup(pg);
1660
1661 /*
1662 * note that pg can't be PG_RELEASED since we did not drop
1663 * the object lock since the last time we checked.
1664 */
1665
1666 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1667 UVM_PAGE_OWN(pg, NULL);
1668 uvmfault_unlockall(&ufi, amap, uobj, anon);
1669 if (!uvm_reclaimable()) {
1670 UVMHIST_LOG(maphist,
1671 "<- failed. out of VM",0,0,0,0);
1672 /* XXX instrumentation */
1673 return ENOMEM;
1674 }
1675 /* XXX instrumentation */
1676 uvm_wait("flt_pmfail2");
1677 goto ReFault;
1678 }
1679
1680 uvm_lock_pageq();
1681 if (wire_fault) {
1682 uvm_pagewire(pg);
1683 if (pg->pqflags & PQ_AOBJ) {
1684
1685 /*
1686 * since the now-wired page cannot be paged out,
1687 * release its swap resources for others to use.
1688 * since an aobj page with no swap cannot be PG_CLEAN,
1689 * clear its clean flag now.
1690 */
1691
1692 pg->flags &= ~(PG_CLEAN);
1693 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1694 }
1695 } else {
1696 uvm_pageactivate(pg);
1697 }
1698 uvm_unlock_pageq();
1699 if (pg->flags & PG_WANTED)
1700 wakeup(pg);
1701
1702 /*
1703 * note that pg can't be PG_RELEASED since we did not drop the object
1704 * lock since the last time we checked.
1705 */
1706
1707 pg->flags &= ~(PG_BUSY|PG_FAKE|PG_WANTED);
1708 UVM_PAGE_OWN(pg, NULL);
1709 uvmfault_unlockall(&ufi, amap, uobj, anon);
1710 pmap_update(ufi.orig_map->pmap);
1711 UVMHIST_LOG(maphist, "<- done (SUCCESS!)",0,0,0,0);
1712 return 0;
1713 }
1714
1715 /*
1716 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1717 *
1718 * => map may be read-locked by caller, but MUST NOT be write-locked.
1719 * => if map is read-locked, any operations which may cause map to
1720 * be write-locked in uvm_fault() must be taken care of by
1721 * the caller. See uvm_map_pageable().
1722 */
1723
1724 int
1725 uvm_fault_wire(struct vm_map *map, vaddr_t start, vaddr_t end,
1726 vm_fault_t fault_type, vm_prot_t access_type)
1727 {
1728 vaddr_t va;
1729 int error;
1730
1731 /*
1732 * now fault it in a page at a time. if the fault fails then we have
1733 * to undo what we have done. note that in uvm_fault VM_PROT_NONE
1734 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1735 */
1736
1737 /*
1738 * XXX work around overflowing a vaddr_t. this prevents us from
1739 * wiring the last page in the address space, though.
1740 */
1741 if (start > end) {
1742 return EFAULT;
1743 }
1744
1745 for (va = start ; va < end ; va += PAGE_SIZE) {
1746 error = uvm_fault(map, va, fault_type, access_type);
1747 if (error) {
1748 if (va != start) {
1749 uvm_fault_unwire(map, start, va);
1750 }
1751 return error;
1752 }
1753 }
1754 return 0;
1755 }
1756
1757 /*
1758 * uvm_fault_unwire(): unwire range of virtual space.
1759 */
1760
1761 void
1762 uvm_fault_unwire(struct vm_map *map, vaddr_t start, vaddr_t end)
1763 {
1764 vm_map_lock_read(map);
1765 uvm_fault_unwire_locked(map, start, end);
1766 vm_map_unlock_read(map);
1767 }
1768
1769 /*
1770 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1771 *
1772 * => map must be at least read-locked.
1773 */
1774
1775 void
1776 uvm_fault_unwire_locked(struct vm_map *map, vaddr_t start, vaddr_t end)
1777 {
1778 struct vm_map_entry *entry;
1779 pmap_t pmap = vm_map_pmap(map);
1780 vaddr_t va;
1781 paddr_t pa;
1782 struct vm_page *pg;
1783
1784 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1785
1786 /*
1787 * we assume that the area we are unwiring has actually been wired
1788 * in the first place. this means that we should be able to extract
1789 * the PAs from the pmap. we also lock out the page daemon so that
1790 * we can call uvm_pageunwire.
1791 */
1792
1793 uvm_lock_pageq();
1794
1795 /*
1796 * find the beginning map entry for the region.
1797 */
1798
1799 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1800 if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1801 panic("uvm_fault_unwire_locked: address not in map");
1802
1803 for (va = start; va < end; va += PAGE_SIZE) {
1804 if (pmap_extract(pmap, va, &pa) == FALSE)
1805 continue;
1806
1807 /*
1808 * find the map entry for the current address.
1809 */
1810
1811 KASSERT(va >= entry->start);
1812 while (va >= entry->end) {
1813 KASSERT(entry->next != &map->header &&
1814 entry->next->start <= entry->end);
1815 entry = entry->next;
1816 }
1817
1818 /*
1819 * if the entry is no longer wired, tell the pmap.
1820 */
1821
1822 if (VM_MAPENT_ISWIRED(entry) == 0)
1823 pmap_unwire(pmap, va);
1824
1825 pg = PHYS_TO_VM_PAGE(pa);
1826 if (pg)
1827 uvm_pageunwire(pg);
1828 }
1829
1830 uvm_unlock_pageq();
1831 }
1832