1 1.182 ad /* $NetBSD: uvm_glue.c,v 1.182 2023/10/04 20:34:19 ad Exp $ */ 2 1.1 mrg 3 1.48 chs /* 4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California. 6 1.1 mrg * 7 1.1 mrg * All rights reserved. 8 1.1 mrg * 9 1.1 mrg * This code is derived from software contributed to Berkeley by 10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University. 11 1.1 mrg * 12 1.1 mrg * Redistribution and use in source and binary forms, with or without 13 1.1 mrg * modification, are permitted provided that the following conditions 14 1.1 mrg * are met: 15 1.1 mrg * 1. Redistributions of source code must retain the above copyright 16 1.1 mrg * notice, this list of conditions and the following disclaimer. 17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright 18 1.1 mrg * notice, this list of conditions and the following disclaimer in the 19 1.1 mrg * documentation and/or other materials provided with the distribution. 20 1.147 chuck * 3. Neither the name of the University nor the names of its contributors 21 1.1 mrg * may be used to endorse or promote products derived from this software 22 1.1 mrg * without specific prior written permission. 23 1.1 mrg * 24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 1.1 mrg * SUCH DAMAGE. 35 1.1 mrg * 36 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 37 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp 38 1.1 mrg * 39 1.1 mrg * 40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University. 41 1.1 mrg * All rights reserved. 42 1.48 chs * 43 1.1 mrg * Permission to use, copy, modify and distribute this software and 44 1.1 mrg * its documentation is hereby granted, provided that both the copyright 45 1.1 mrg * notice and this permission notice appear in all copies of the 46 1.1 mrg * software, derivative works or modified versions, and any portions 47 1.1 mrg * thereof, and that both notices appear in supporting documentation. 48 1.48 chs * 49 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 50 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 52 1.48 chs * 53 1.1 mrg * Carnegie Mellon requests users of this software to return to 54 1.1 mrg * 55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU 56 1.1 mrg * School of Computer Science 57 1.1 mrg * Carnegie Mellon University 58 1.1 mrg * Pittsburgh PA 15213-3890 59 1.1 mrg * 60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the 61 1.1 mrg * rights to redistribute these changes. 62 1.1 mrg */ 63 1.55 lukem 64 1.55 lukem #include <sys/cdefs.h> 65 1.182 ad __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.182 2023/10/04 20:34:19 ad Exp $"); 66 1.1 mrg 67 1.49 lukem #include "opt_kgdb.h" 68 1.59 yamt #include "opt_kstack.h" 69 1.5 mrg #include "opt_uvmhist.h" 70 1.5 mrg 71 1.1 mrg /* 72 1.1 mrg * uvm_glue.c: glue functions 73 1.1 mrg */ 74 1.1 mrg 75 1.1 mrg #include <sys/param.h> 76 1.145 rmind #include <sys/kernel.h> 77 1.145 rmind 78 1.1 mrg #include <sys/systm.h> 79 1.1 mrg #include <sys/proc.h> 80 1.1 mrg #include <sys/resourcevar.h> 81 1.1 mrg #include <sys/buf.h> 82 1.106 yamt #include <sys/syncobj.h> 83 1.111 ad #include <sys/cpu.h> 84 1.114 ad #include <sys/atomic.h> 85 1.146 rmind #include <sys/lwp.h> 86 1.164 maxv #include <sys/asan.h> 87 1.1 mrg 88 1.1 mrg #include <uvm/uvm.h> 89 1.175 ad #include <uvm/uvm_pdpolicy.h> 90 1.173 ad #include <uvm/uvm_pgflcache.h> 91 1.1 mrg 92 1.1 mrg /* 93 1.150 rmind * uvm_kernacc: test if kernel can access a memory region. 94 1.1 mrg * 95 1.150 rmind * => Currently used only by /dev/kmem driver (dev/mm.c). 96 1.1 mrg */ 97 1.102 thorpej bool 98 1.150 rmind uvm_kernacc(void *addr, size_t len, vm_prot_t prot) 99 1.6 mrg { 100 1.150 rmind vaddr_t saddr = trunc_page((vaddr_t)addr); 101 1.150 rmind vaddr_t eaddr = round_page(saddr + len); 102 1.102 thorpej bool rv; 103 1.6 mrg 104 1.6 mrg vm_map_lock_read(kernel_map); 105 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot); 106 1.6 mrg vm_map_unlock_read(kernel_map); 107 1.6 mrg 108 1.150 rmind return rv; 109 1.1 mrg } 110 1.1 mrg 111 1.1 mrg #ifdef KGDB 112 1.1 mrg /* 113 1.1 mrg * Change protections on kernel pages from addr to addr+len 114 1.1 mrg * (presumably so debugger can plant a breakpoint). 115 1.1 mrg * 116 1.1 mrg * We force the protection change at the pmap level. If we were 117 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily- 118 1.1 mrg * applied meaning we would still take a protection fault, something 119 1.1 mrg * we really don't want to do. It would also fragment the kernel 120 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't 121 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way 122 1.1 mrg * we can ensure the change takes place properly. 123 1.1 mrg */ 124 1.6 mrg void 125 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw) 126 1.6 mrg { 127 1.6 mrg vm_prot_t prot; 128 1.13 eeh paddr_t pa; 129 1.13 eeh vaddr_t sva, eva; 130 1.6 mrg 131 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE; 132 1.31 kleink eva = round_page((vaddr_t)addr + len); 133 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) { 134 1.6 mrg /* 135 1.6 mrg * Extract physical address for the page. 136 1.6 mrg */ 137 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false) 138 1.123 christos panic("%s: invalid page", __func__); 139 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED); 140 1.6 mrg } 141 1.51 chris pmap_update(pmap_kernel()); 142 1.1 mrg } 143 1.1 mrg #endif 144 1.1 mrg 145 1.1 mrg /* 146 1.52 chs * uvm_vslock: wire user memory for I/O 147 1.1 mrg * 148 1.1 mrg * - called from physio and sys___sysctl 149 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?) 150 1.1 mrg */ 151 1.1 mrg 152 1.26 thorpej int 153 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type) 154 1.1 mrg { 155 1.50 chs struct vm_map *map; 156 1.26 thorpej vaddr_t start, end; 157 1.45 chs int error; 158 1.26 thorpej 159 1.97 chs map = &vs->vm_map; 160 1.31 kleink start = trunc_page((vaddr_t)addr); 161 1.31 kleink end = round_page((vaddr_t)addr + len); 162 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0); 163 1.45 chs return error; 164 1.1 mrg } 165 1.1 mrg 166 1.1 mrg /* 167 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock() 168 1.1 mrg * 169 1.1 mrg * - called from physio and sys___sysctl 170 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?) 171 1.1 mrg */ 172 1.1 mrg 173 1.6 mrg void 174 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len) 175 1.1 mrg { 176 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr), 177 1.43 chs round_page((vaddr_t)addr + len)); 178 1.1 mrg } 179 1.1 mrg 180 1.1 mrg /* 181 1.62 thorpej * uvm_proc_fork: fork a virtual address space 182 1.1 mrg * 183 1.1 mrg * - the address space is copied as per parent map's inherit values 184 1.62 thorpej */ 185 1.62 thorpej void 186 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared) 187 1.62 thorpej { 188 1.62 thorpej 189 1.103 thorpej if (shared == true) { 190 1.62 thorpej p2->p_vmspace = NULL; 191 1.62 thorpej uvmspace_share(p1, p2); 192 1.62 thorpej } else { 193 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace); 194 1.62 thorpej } 195 1.62 thorpej 196 1.62 thorpej cpu_proc_fork(p1, p2); 197 1.62 thorpej } 198 1.62 thorpej 199 1.62 thorpej /* 200 1.62 thorpej * uvm_lwp_fork: fork a thread 201 1.62 thorpej * 202 1.146 rmind * - a new PCB structure is allocated for the child process, 203 1.146 rmind * and filled in by MD layer 204 1.20 thorpej * - if specified, the child gets a new user stack described by 205 1.20 thorpej * stack and stacksize 206 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child 207 1.1 mrg * process, and thus addresses of automatic variables may be invalid 208 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here 209 1.62 thorpej * after cpu_lwp_fork returns. 210 1.1 mrg */ 211 1.6 mrg void 212 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize, 213 1.89 thorpej void (*func)(void *), void *arg) 214 1.6 mrg { 215 1.6 mrg 216 1.137 rmind /* Fill stack with magic number. */ 217 1.63 yamt kstack_setup_magic(l2); 218 1.6 mrg 219 1.6 mrg /* 220 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready 221 1.62 thorpej * to run. If this is a normal user fork, the child will exit 222 1.34 thorpej * directly to user mode via child_return() on its first time 223 1.34 thorpej * slice and will not return here. If this is a kernel thread, 224 1.34 thorpej * the specified entry point will be executed. 225 1.6 mrg */ 226 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg); 227 1.14 thorpej } 228 1.14 thorpej 229 1.60 chs #ifndef USPACE_ALIGN 230 1.115 yamt #define USPACE_ALIGN 0 231 1.60 chs #endif 232 1.60 chs 233 1.115 yamt static pool_cache_t uvm_uarea_cache; 234 1.148 matt #if defined(__HAVE_CPU_UAREA_ROUTINES) 235 1.148 matt static pool_cache_t uvm_uarea_system_cache; 236 1.148 matt #else 237 1.148 matt #define uvm_uarea_system_cache uvm_uarea_cache 238 1.148 matt #endif 239 1.115 yamt 240 1.115 yamt static void * 241 1.115 yamt uarea_poolpage_alloc(struct pool *pp, int flags) 242 1.115 yamt { 243 1.168 chs 244 1.168 chs KASSERT((flags & PR_WAITOK) != 0); 245 1.168 chs 246 1.163 maxv #if defined(PMAP_MAP_POOLPAGE) 247 1.177 rin while (USPACE == PAGE_SIZE && 248 1.177 rin (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) { 249 1.163 maxv struct vm_page *pg; 250 1.163 maxv vaddr_t va; 251 1.154 para #if defined(PMAP_ALLOC_POOLPAGE) 252 1.168 chs pg = PMAP_ALLOC_POOLPAGE(0); 253 1.154 para #else 254 1.168 chs pg = uvm_pagealloc(NULL, 0, NULL, 0); 255 1.163 maxv #endif 256 1.168 chs if (pg == NULL) { 257 1.168 chs uvm_wait("uarea"); 258 1.168 chs continue; 259 1.168 chs } 260 1.163 maxv va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg)); 261 1.165 mlelstv KASSERT(va != 0); 262 1.163 maxv return (void *)va; 263 1.163 maxv } 264 1.163 maxv #endif 265 1.163 maxv #if defined(__HAVE_CPU_UAREA_ROUTINES) 266 1.148 matt void *va = cpu_uarea_alloc(false); 267 1.148 matt if (va) 268 1.148 matt return (void *)va; 269 1.163 maxv #endif 270 1.115 yamt return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz, 271 1.168 chs USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA); 272 1.115 yamt } 273 1.109 ad 274 1.115 yamt static void 275 1.115 yamt uarea_poolpage_free(struct pool *pp, void *addr) 276 1.115 yamt { 277 1.154 para #if defined(PMAP_MAP_POOLPAGE) 278 1.177 rin if (USPACE == PAGE_SIZE && 279 1.177 rin (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) { 280 1.154 para paddr_t pa; 281 1.154 para 282 1.154 para pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr); 283 1.154 para KASSERT(pa != 0); 284 1.154 para uvm_pagefree(PHYS_TO_VM_PAGE(pa)); 285 1.139 matt return; 286 1.139 matt } 287 1.154 para #endif 288 1.148 matt #if defined(__HAVE_CPU_UAREA_ROUTINES) 289 1.148 matt if (cpu_uarea_free(addr)) 290 1.148 matt return; 291 1.148 matt #endif 292 1.115 yamt uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz, 293 1.141 rmind UVM_KMF_WIRED); 294 1.115 yamt } 295 1.115 yamt 296 1.115 yamt static struct pool_allocator uvm_uarea_allocator = { 297 1.115 yamt .pa_alloc = uarea_poolpage_alloc, 298 1.115 yamt .pa_free = uarea_poolpage_free, 299 1.115 yamt .pa_pagesz = USPACE, 300 1.115 yamt }; 301 1.115 yamt 302 1.148 matt #if defined(__HAVE_CPU_UAREA_ROUTINES) 303 1.148 matt static void * 304 1.148 matt uarea_system_poolpage_alloc(struct pool *pp, int flags) 305 1.148 matt { 306 1.148 matt void * const va = cpu_uarea_alloc(true); 307 1.151 matt if (va != NULL) 308 1.151 matt return va; 309 1.151 matt 310 1.151 matt return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz, 311 1.151 matt USPACE_ALIGN, UVM_KMF_WIRED | 312 1.151 matt ((flags & PR_WAITOK) ? UVM_KMF_WAITVA : 313 1.151 matt (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK))); 314 1.148 matt } 315 1.148 matt 316 1.148 matt static void 317 1.148 matt uarea_system_poolpage_free(struct pool *pp, void *addr) 318 1.148 matt { 319 1.158 chs if (cpu_uarea_free(addr)) 320 1.158 chs return; 321 1.158 chs 322 1.158 chs uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz, 323 1.158 chs UVM_KMF_WIRED); 324 1.148 matt } 325 1.148 matt 326 1.148 matt static struct pool_allocator uvm_uarea_system_allocator = { 327 1.148 matt .pa_alloc = uarea_system_poolpage_alloc, 328 1.148 matt .pa_free = uarea_system_poolpage_free, 329 1.148 matt .pa_pagesz = USPACE, 330 1.148 matt }; 331 1.148 matt #endif /* __HAVE_CPU_UAREA_ROUTINES */ 332 1.148 matt 333 1.115 yamt void 334 1.115 yamt uvm_uarea_init(void) 335 1.115 yamt { 336 1.117 yamt int flags = PR_NOTOUCH; 337 1.115 yamt 338 1.116 yamt /* 339 1.116 yamt * specify PR_NOALIGN unless the alignment provided by 340 1.116 yamt * the backend (USPACE_ALIGN) is sufficient to provide 341 1.116 yamt * pool page size (UPSACE) alignment. 342 1.116 yamt */ 343 1.116 yamt 344 1.117 yamt if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) || 345 1.117 yamt (USPACE_ALIGN % USPACE) != 0) { 346 1.117 yamt flags |= PR_NOALIGN; 347 1.117 yamt } 348 1.117 yamt 349 1.117 yamt uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags, 350 1.141 rmind "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL); 351 1.149 drochner #if defined(__HAVE_CPU_UAREA_ROUTINES) 352 1.149 drochner uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN, 353 1.149 drochner 0, flags, "uareasys", &uvm_uarea_system_allocator, 354 1.149 drochner IPL_NONE, NULL, NULL, NULL); 355 1.149 drochner #endif 356 1.60 chs } 357 1.60 chs 358 1.60 chs /* 359 1.115 yamt * uvm_uarea_alloc: allocate a u-area 360 1.75 jdolecek */ 361 1.75 jdolecek 362 1.141 rmind vaddr_t 363 1.141 rmind uvm_uarea_alloc(void) 364 1.75 jdolecek { 365 1.109 ad 366 1.141 rmind return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK); 367 1.75 jdolecek } 368 1.75 jdolecek 369 1.148 matt vaddr_t 370 1.160 matt uvm_uarea_system_alloc(struct cpu_info *ci) 371 1.148 matt { 372 1.160 matt #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP 373 1.160 matt if (__predict_false(ci != NULL)) 374 1.160 matt return cpu_uarea_alloc_idlelwp(ci); 375 1.160 matt #endif 376 1.148 matt 377 1.148 matt return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK); 378 1.148 matt } 379 1.148 matt 380 1.75 jdolecek /* 381 1.115 yamt * uvm_uarea_free: free a u-area 382 1.60 chs */ 383 1.60 chs 384 1.60 chs void 385 1.141 rmind uvm_uarea_free(vaddr_t uaddr) 386 1.60 chs { 387 1.60 chs 388 1.167 maxv kasan_mark((void *)uaddr, USPACE, USPACE, 0); 389 1.115 yamt pool_cache_put(uvm_uarea_cache, (void *)uaddr); 390 1.60 chs } 391 1.60 chs 392 1.148 matt void 393 1.148 matt uvm_uarea_system_free(vaddr_t uaddr) 394 1.148 matt { 395 1.148 matt 396 1.167 maxv kasan_mark((void *)uaddr, USPACE, USPACE, 0); 397 1.148 matt pool_cache_put(uvm_uarea_system_cache, (void *)uaddr); 398 1.148 matt } 399 1.148 matt 400 1.142 rmind vaddr_t 401 1.142 rmind uvm_lwp_getuarea(lwp_t *l) 402 1.142 rmind { 403 1.142 rmind 404 1.146 rmind return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET; 405 1.142 rmind } 406 1.142 rmind 407 1.142 rmind void 408 1.142 rmind uvm_lwp_setuarea(lwp_t *l, vaddr_t addr) 409 1.142 rmind { 410 1.142 rmind 411 1.146 rmind l->l_addr = (void *)(addr + UAREA_PCB_OFFSET); 412 1.142 rmind } 413 1.142 rmind 414 1.60 chs /* 415 1.118 yamt * uvm_proc_exit: exit a virtual address space 416 1.80 pk * 417 1.80 pk * - borrow proc0's address space because freeing the vmspace 418 1.80 pk * of the dead process may block. 419 1.80 pk */ 420 1.80 pk 421 1.80 pk void 422 1.89 thorpej uvm_proc_exit(struct proc *p) 423 1.80 pk { 424 1.80 pk struct lwp *l = curlwp; /* XXX */ 425 1.80 pk struct vmspace *ovm; 426 1.80 pk 427 1.80 pk KASSERT(p == l->l_proc); 428 1.80 pk ovm = p->p_vmspace; 429 1.159 martin KASSERT(ovm != NULL); 430 1.159 martin 431 1.159 martin if (__predict_false(ovm == proc0.p_vmspace)) 432 1.159 martin return; 433 1.80 pk 434 1.80 pk /* 435 1.80 pk * borrow proc0's address space. 436 1.80 pk */ 437 1.161 uebayasi kpreempt_disable(); 438 1.159 martin pmap_deactivate(l); 439 1.80 pk p->p_vmspace = proc0.p_vmspace; 440 1.80 pk pmap_activate(l); 441 1.161 uebayasi kpreempt_enable(); 442 1.80 pk 443 1.159 martin uvmspace_free(ovm); 444 1.80 pk } 445 1.80 pk 446 1.80 pk void 447 1.80 pk uvm_lwp_exit(struct lwp *l) 448 1.80 pk { 449 1.143 rmind vaddr_t va = uvm_lwp_getuarea(l); 450 1.148 matt bool system = (l->l_flag & LW_SYSTEM) != 0; 451 1.80 pk 452 1.148 matt if (system) 453 1.148 matt uvm_uarea_system_free(va); 454 1.148 matt else 455 1.148 matt uvm_uarea_free(va); 456 1.143 rmind #ifdef DIAGNOSTIC 457 1.143 rmind uvm_lwp_setuarea(l, (vaddr_t)NULL); 458 1.143 rmind #endif 459 1.80 pk } 460 1.80 pk 461 1.80 pk /* 462 1.1 mrg * uvm_init_limit: init per-process VM limits 463 1.1 mrg * 464 1.1 mrg * - called for process 0 and then inherited by all others. 465 1.1 mrg */ 466 1.60 chs 467 1.6 mrg void 468 1.89 thorpej uvm_init_limits(struct proc *p) 469 1.6 mrg { 470 1.6 mrg 471 1.6 mrg /* 472 1.6 mrg * Set up the initial limits on process VM. Set the maximum 473 1.6 mrg * resident set size to be all of (reasonably) available memory. 474 1.6 mrg * This causes any single, large process to start random page 475 1.6 mrg * replacement once it fills memory. 476 1.6 mrg */ 477 1.6 mrg 478 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ; 479 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap; 480 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ; 481 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap; 482 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY; 483 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY; 484 1.172 ad p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(VM_MAXUSER_ADDRESS, 485 1.180 ad ctob((rlim_t)uvm_availmem(false))); 486 1.1 mrg } 487 1.1 mrg 488 1.99 ad /* 489 1.141 rmind * uvm_scheduler: process zero main loop. 490 1.1 mrg */ 491 1.145 rmind 492 1.145 rmind extern struct loadavg averunnable; 493 1.145 rmind 494 1.6 mrg void 495 1.89 thorpej uvm_scheduler(void) 496 1.1 mrg { 497 1.141 rmind lwp_t *l = curlwp; 498 1.1 mrg 499 1.99 ad lwp_lock(l); 500 1.113 ad l->l_class = SCHED_FIFO; 501 1.170 ad lwp_changepri(l, PRI_VM); 502 1.99 ad lwp_unlock(l); 503 1.99 ad 504 1.173 ad /* Start the freelist cache. */ 505 1.173 ad uvm_pgflcache_start(); 506 1.173 ad 507 1.99 ad for (;;) { 508 1.171 ad /* Update legacy stats for post-mortem debugging. */ 509 1.171 ad uvm_update_uvmexp(); 510 1.173 ad 511 1.173 ad /* See if the pagedaemon needs to generate some free pages. */ 512 1.173 ad uvm_kick_pdaemon(); 513 1.173 ad 514 1.173 ad /* Calculate process statistics. */ 515 1.145 rmind sched_pstats(); 516 1.145 rmind (void)kpause("uvm", false, hz, NULL); 517 1.114 ad } 518 1.107 ad } 519 1.175 ad 520 1.175 ad /* 521 1.175 ad * uvm_idle: called from the idle loop. 522 1.175 ad */ 523 1.175 ad 524 1.175 ad void 525 1.175 ad uvm_idle(void) 526 1.175 ad { 527 1.175 ad struct cpu_info *ci = curcpu(); 528 1.175 ad struct uvm_cpu *ucpu = ci->ci_data.cpu_uvm; 529 1.175 ad 530 1.175 ad KASSERT(kpreempt_disabled()); 531 1.175 ad 532 1.182 ad uvmpdpol_idle(ucpu); 533 1.175 ad } 534