uvm_glue.c revision 1.108 1 1.108 ad /* $NetBSD: uvm_glue.c,v 1.108 2007/07/14 22:27:15 ad Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.55 lukem
69 1.55 lukem #include <sys/cdefs.h>
70 1.108 ad __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.108 2007/07/14 22:27:15 ad Exp $");
71 1.1 mrg
72 1.96 matt #include "opt_coredump.h"
73 1.49 lukem #include "opt_kgdb.h"
74 1.59 yamt #include "opt_kstack.h"
75 1.5 mrg #include "opt_uvmhist.h"
76 1.5 mrg
77 1.1 mrg /*
78 1.1 mrg * uvm_glue.c: glue functions
79 1.1 mrg */
80 1.1 mrg
81 1.1 mrg #include <sys/param.h>
82 1.1 mrg #include <sys/systm.h>
83 1.1 mrg #include <sys/proc.h>
84 1.1 mrg #include <sys/resourcevar.h>
85 1.1 mrg #include <sys/buf.h>
86 1.1 mrg #include <sys/user.h>
87 1.106 yamt #include <sys/syncobj.h>
88 1.1 mrg
89 1.1 mrg #include <uvm/uvm.h>
90 1.1 mrg
91 1.1 mrg #include <machine/cpu.h>
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * local prototypes
95 1.1 mrg */
96 1.1 mrg
97 1.78 junyoung static void uvm_swapout(struct lwp *);
98 1.1 mrg
99 1.60 chs #define UVM_NUAREA_MAX 16
100 1.94 yamt static vaddr_t uvm_uareas;
101 1.94 yamt static int uvm_nuarea;
102 1.107 ad kmutex_t uvm_uareas_lock;
103 1.94 yamt #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
104 1.60 chs
105 1.105 rmind void uvm_uarea_free(vaddr_t);
106 1.75 jdolecek
107 1.1 mrg /*
108 1.1 mrg * XXXCDC: do these really belong here?
109 1.1 mrg */
110 1.1 mrg
111 1.28 thorpej /*
112 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
113 1.1 mrg *
114 1.83 yamt * - used only by /dev/kmem driver (mem.c)
115 1.1 mrg */
116 1.1 mrg
117 1.102 thorpej bool
118 1.104 christos uvm_kernacc(void *addr, size_t len, int rw)
119 1.6 mrg {
120 1.102 thorpej bool rv;
121 1.13 eeh vaddr_t saddr, eaddr;
122 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
123 1.6 mrg
124 1.31 kleink saddr = trunc_page((vaddr_t)addr);
125 1.43 chs eaddr = round_page((vaddr_t)addr + len);
126 1.6 mrg vm_map_lock_read(kernel_map);
127 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
128 1.6 mrg vm_map_unlock_read(kernel_map);
129 1.6 mrg
130 1.6 mrg return(rv);
131 1.1 mrg }
132 1.1 mrg
133 1.1 mrg #ifdef KGDB
134 1.1 mrg /*
135 1.1 mrg * Change protections on kernel pages from addr to addr+len
136 1.1 mrg * (presumably so debugger can plant a breakpoint).
137 1.1 mrg *
138 1.1 mrg * We force the protection change at the pmap level. If we were
139 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
140 1.1 mrg * applied meaning we would still take a protection fault, something
141 1.1 mrg * we really don't want to do. It would also fragment the kernel
142 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
143 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
144 1.1 mrg * we can ensure the change takes place properly.
145 1.1 mrg */
146 1.6 mrg void
147 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw)
148 1.6 mrg {
149 1.6 mrg vm_prot_t prot;
150 1.13 eeh paddr_t pa;
151 1.13 eeh vaddr_t sva, eva;
152 1.6 mrg
153 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
154 1.31 kleink eva = round_page((vaddr_t)addr + len);
155 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
156 1.6 mrg /*
157 1.6 mrg * Extract physical address for the page.
158 1.6 mrg */
159 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false)
160 1.6 mrg panic("chgkprot: invalid page");
161 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
162 1.6 mrg }
163 1.51 chris pmap_update(pmap_kernel());
164 1.1 mrg }
165 1.1 mrg #endif
166 1.1 mrg
167 1.1 mrg /*
168 1.52 chs * uvm_vslock: wire user memory for I/O
169 1.1 mrg *
170 1.1 mrg * - called from physio and sys___sysctl
171 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
172 1.1 mrg */
173 1.1 mrg
174 1.26 thorpej int
175 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
176 1.1 mrg {
177 1.50 chs struct vm_map *map;
178 1.26 thorpej vaddr_t start, end;
179 1.45 chs int error;
180 1.26 thorpej
181 1.97 chs map = &vs->vm_map;
182 1.31 kleink start = trunc_page((vaddr_t)addr);
183 1.31 kleink end = round_page((vaddr_t)addr + len);
184 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0);
185 1.45 chs return error;
186 1.1 mrg }
187 1.1 mrg
188 1.1 mrg /*
189 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
190 1.1 mrg *
191 1.1 mrg * - called from physio and sys___sysctl
192 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
193 1.1 mrg */
194 1.1 mrg
195 1.6 mrg void
196 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
197 1.1 mrg {
198 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
199 1.43 chs round_page((vaddr_t)addr + len));
200 1.1 mrg }
201 1.1 mrg
202 1.1 mrg /*
203 1.62 thorpej * uvm_proc_fork: fork a virtual address space
204 1.1 mrg *
205 1.1 mrg * - the address space is copied as per parent map's inherit values
206 1.62 thorpej */
207 1.62 thorpej void
208 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
209 1.62 thorpej {
210 1.62 thorpej
211 1.103 thorpej if (shared == true) {
212 1.62 thorpej p2->p_vmspace = NULL;
213 1.62 thorpej uvmspace_share(p1, p2);
214 1.62 thorpej } else {
215 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
216 1.62 thorpej }
217 1.62 thorpej
218 1.62 thorpej cpu_proc_fork(p1, p2);
219 1.62 thorpej }
220 1.62 thorpej
221 1.62 thorpej
222 1.62 thorpej /*
223 1.62 thorpej * uvm_lwp_fork: fork a thread
224 1.62 thorpej *
225 1.1 mrg * - a new "user" structure is allocated for the child process
226 1.1 mrg * [filled in by MD layer...]
227 1.20 thorpej * - if specified, the child gets a new user stack described by
228 1.20 thorpej * stack and stacksize
229 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
230 1.1 mrg * process, and thus addresses of automatic variables may be invalid
231 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
232 1.62 thorpej * after cpu_lwp_fork returns.
233 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
234 1.1 mrg * than just hang
235 1.1 mrg */
236 1.6 mrg void
237 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
238 1.89 thorpej void (*func)(void *), void *arg)
239 1.6 mrg {
240 1.45 chs int error;
241 1.6 mrg
242 1.6 mrg /*
243 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
244 1.62 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
245 1.62 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
246 1.61 chs * to prevent kernel_map fragmentation. If we reused a cached U-area,
247 1.62 thorpej * L_INMEM will already be set and we don't need to do anything.
248 1.21 thorpej *
249 1.61 chs * Note the kernel stack gets read/write accesses right off the bat.
250 1.6 mrg */
251 1.61 chs
252 1.100 pavel if ((l2->l_flag & LW_INMEM) == 0) {
253 1.94 yamt vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
254 1.94 yamt
255 1.94 yamt error = uvm_fault_wire(kernel_map, uarea,
256 1.94 yamt uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
257 1.61 chs if (error)
258 1.62 thorpej panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
259 1.67 scw #ifdef PMAP_UAREA
260 1.67 scw /* Tell the pmap this is a u-area mapping */
261 1.94 yamt PMAP_UAREA(uarea);
262 1.67 scw #endif
263 1.100 pavel l2->l_flag |= LW_INMEM;
264 1.61 chs }
265 1.59 yamt
266 1.59 yamt #ifdef KSTACK_CHECK_MAGIC
267 1.59 yamt /*
268 1.59 yamt * fill stack with magic number
269 1.59 yamt */
270 1.63 yamt kstack_setup_magic(l2);
271 1.59 yamt #endif
272 1.6 mrg
273 1.6 mrg /*
274 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
275 1.62 thorpej * to run. If this is a normal user fork, the child will exit
276 1.34 thorpej * directly to user mode via child_return() on its first time
277 1.34 thorpej * slice and will not return here. If this is a kernel thread,
278 1.34 thorpej * the specified entry point will be executed.
279 1.6 mrg */
280 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
281 1.14 thorpej }
282 1.14 thorpej
283 1.14 thorpej /*
284 1.60 chs * uvm_uarea_alloc: allocate a u-area
285 1.60 chs */
286 1.60 chs
287 1.102 thorpej bool
288 1.61 chs uvm_uarea_alloc(vaddr_t *uaddrp)
289 1.60 chs {
290 1.60 chs vaddr_t uaddr;
291 1.60 chs
292 1.60 chs #ifndef USPACE_ALIGN
293 1.60 chs #define USPACE_ALIGN 0
294 1.60 chs #endif
295 1.60 chs
296 1.107 ad mutex_enter(&uvm_uareas_lock);
297 1.75 jdolecek if (uvm_nuarea > 0) {
298 1.94 yamt uaddr = uvm_uareas;
299 1.94 yamt uvm_uareas = UAREA_NEXTFREE(uaddr);
300 1.60 chs uvm_nuarea--;
301 1.107 ad mutex_exit(&uvm_uareas_lock);
302 1.61 chs *uaddrp = uaddr;
303 1.103 thorpej return true;
304 1.60 chs } else {
305 1.107 ad mutex_exit(&uvm_uareas_lock);
306 1.84 yamt *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
307 1.84 yamt UVM_KMF_PAGEABLE);
308 1.103 thorpej return false;
309 1.60 chs }
310 1.60 chs }
311 1.60 chs
312 1.60 chs /*
313 1.75 jdolecek * uvm_uarea_free: free a u-area; never blocks
314 1.75 jdolecek */
315 1.75 jdolecek
316 1.105 rmind void
317 1.75 jdolecek uvm_uarea_free(vaddr_t uaddr)
318 1.75 jdolecek {
319 1.107 ad mutex_enter(&uvm_uareas_lock);
320 1.94 yamt UAREA_NEXTFREE(uaddr) = uvm_uareas;
321 1.94 yamt uvm_uareas = uaddr;
322 1.75 jdolecek uvm_nuarea++;
323 1.107 ad mutex_exit(&uvm_uareas_lock);
324 1.75 jdolecek }
325 1.75 jdolecek
326 1.75 jdolecek /*
327 1.75 jdolecek * uvm_uarea_drain: return memory of u-areas over limit
328 1.75 jdolecek * back to system
329 1.60 chs */
330 1.60 chs
331 1.60 chs void
332 1.102 thorpej uvm_uarea_drain(bool empty)
333 1.60 chs {
334 1.75 jdolecek int leave = empty ? 0 : UVM_NUAREA_MAX;
335 1.75 jdolecek vaddr_t uaddr;
336 1.75 jdolecek
337 1.75 jdolecek if (uvm_nuarea <= leave)
338 1.75 jdolecek return;
339 1.60 chs
340 1.107 ad mutex_enter(&uvm_uareas_lock);
341 1.75 jdolecek while(uvm_nuarea > leave) {
342 1.94 yamt uaddr = uvm_uareas;
343 1.94 yamt uvm_uareas = UAREA_NEXTFREE(uaddr);
344 1.75 jdolecek uvm_nuarea--;
345 1.107 ad mutex_exit(&uvm_uareas_lock);
346 1.84 yamt uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE);
347 1.107 ad mutex_enter(&uvm_uareas_lock);
348 1.60 chs }
349 1.107 ad mutex_exit(&uvm_uareas_lock);
350 1.60 chs }
351 1.60 chs
352 1.60 chs /*
353 1.80 pk * uvm_exit: exit a virtual address space
354 1.80 pk *
355 1.80 pk * - the process passed to us is a dead (pre-zombie) process; we
356 1.80 pk * are running on a different context now (the reaper).
357 1.80 pk * - borrow proc0's address space because freeing the vmspace
358 1.80 pk * of the dead process may block.
359 1.80 pk */
360 1.80 pk
361 1.80 pk void
362 1.89 thorpej uvm_proc_exit(struct proc *p)
363 1.80 pk {
364 1.80 pk struct lwp *l = curlwp; /* XXX */
365 1.80 pk struct vmspace *ovm;
366 1.80 pk
367 1.80 pk KASSERT(p == l->l_proc);
368 1.80 pk ovm = p->p_vmspace;
369 1.80 pk
370 1.80 pk /*
371 1.80 pk * borrow proc0's address space.
372 1.80 pk */
373 1.80 pk pmap_deactivate(l);
374 1.80 pk p->p_vmspace = proc0.p_vmspace;
375 1.80 pk pmap_activate(l);
376 1.80 pk
377 1.80 pk uvmspace_free(ovm);
378 1.80 pk }
379 1.80 pk
380 1.80 pk void
381 1.80 pk uvm_lwp_exit(struct lwp *l)
382 1.80 pk {
383 1.94 yamt vaddr_t va = USER_TO_UAREA(l->l_addr);
384 1.80 pk
385 1.100 pavel l->l_flag &= ~LW_INMEM;
386 1.80 pk uvm_uarea_free(va);
387 1.80 pk l->l_addr = NULL;
388 1.80 pk }
389 1.80 pk
390 1.80 pk /*
391 1.1 mrg * uvm_init_limit: init per-process VM limits
392 1.1 mrg *
393 1.1 mrg * - called for process 0 and then inherited by all others.
394 1.1 mrg */
395 1.60 chs
396 1.6 mrg void
397 1.89 thorpej uvm_init_limits(struct proc *p)
398 1.6 mrg {
399 1.6 mrg
400 1.6 mrg /*
401 1.6 mrg * Set up the initial limits on process VM. Set the maximum
402 1.6 mrg * resident set size to be all of (reasonably) available memory.
403 1.6 mrg * This causes any single, large process to start random page
404 1.6 mrg * replacement once it fills memory.
405 1.6 mrg */
406 1.6 mrg
407 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
408 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
409 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
410 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
411 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
412 1.1 mrg }
413 1.1 mrg
414 1.1 mrg #ifdef DEBUG
415 1.1 mrg int enableswap = 1;
416 1.1 mrg int swapdebug = 0;
417 1.1 mrg #define SDB_FOLLOW 1
418 1.1 mrg #define SDB_SWAPIN 2
419 1.1 mrg #define SDB_SWAPOUT 4
420 1.1 mrg #endif
421 1.1 mrg
422 1.1 mrg /*
423 1.95 yamt * uvm_swapin: swap in an lwp's u-area.
424 1.107 ad *
425 1.107 ad * - must be called with the LWP's swap lock held.
426 1.107 ad * - naturally, must not be called with l == curlwp
427 1.1 mrg */
428 1.1 mrg
429 1.6 mrg void
430 1.89 thorpej uvm_swapin(struct lwp *l)
431 1.6 mrg {
432 1.13 eeh vaddr_t addr;
433 1.98 ad int error;
434 1.6 mrg
435 1.107 ad KASSERT(mutex_owned(&l->l_swaplock));
436 1.107 ad KASSERT(l != curlwp);
437 1.107 ad
438 1.94 yamt addr = USER_TO_UAREA(l->l_addr);
439 1.62 thorpej /* make L_INMEM true */
440 1.93 drochner error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
441 1.93 drochner VM_PROT_READ | VM_PROT_WRITE, 0);
442 1.52 chs if (error) {
443 1.52 chs panic("uvm_swapin: rewiring stack failed: %d", error);
444 1.52 chs }
445 1.6 mrg
446 1.6 mrg /*
447 1.6 mrg * Some architectures need to be notified when the user area has
448 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
449 1.6 mrg */
450 1.62 thorpej cpu_swapin(l);
451 1.98 ad lwp_lock(l);
452 1.62 thorpej if (l->l_stat == LSRUN)
453 1.106 yamt sched_enqueue(l, false);
454 1.100 pavel l->l_flag |= LW_INMEM;
455 1.62 thorpej l->l_swtime = 0;
456 1.98 ad lwp_unlock(l);
457 1.6 mrg ++uvmexp.swapins;
458 1.1 mrg }
459 1.1 mrg
460 1.1 mrg /*
461 1.99 ad * uvm_kick_scheduler: kick the scheduler into action if not running.
462 1.99 ad *
463 1.99 ad * - called when swapped out processes have been awoken.
464 1.99 ad */
465 1.99 ad
466 1.99 ad void
467 1.99 ad uvm_kick_scheduler(void)
468 1.99 ad {
469 1.99 ad
470 1.103 thorpej if (uvm.swap_running == false)
471 1.101 ad return;
472 1.101 ad
473 1.107 ad mutex_enter(&uvm_scheduler_mutex);
474 1.103 thorpej uvm.scheduler_kicked = true;
475 1.99 ad cv_signal(&uvm.scheduler_cv);
476 1.107 ad mutex_exit(&uvm_scheduler_mutex);
477 1.99 ad }
478 1.99 ad
479 1.99 ad /*
480 1.1 mrg * uvm_scheduler: process zero main loop
481 1.1 mrg *
482 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
483 1.1 mrg * priority.
484 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
485 1.1 mrg */
486 1.1 mrg
487 1.6 mrg void
488 1.89 thorpej uvm_scheduler(void)
489 1.1 mrg {
490 1.62 thorpej struct lwp *l, *ll;
491 1.32 augustss int pri;
492 1.6 mrg int ppri;
493 1.1 mrg
494 1.99 ad l = curlwp;
495 1.99 ad lwp_lock(l);
496 1.107 ad l->l_priority = PVM;
497 1.107 ad l->l_usrpri = PVM;
498 1.99 ad lwp_unlock(l);
499 1.99 ad
500 1.99 ad for (;;) {
501 1.1 mrg #ifdef DEBUG
502 1.107 ad mutex_enter(&uvm_scheduler_mutex);
503 1.99 ad while (!enableswap)
504 1.107 ad cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
505 1.107 ad mutex_exit(&uvm_scheduler_mutex);
506 1.99 ad #endif
507 1.99 ad ll = NULL; /* process to choose */
508 1.99 ad ppri = INT_MIN; /* its priority */
509 1.99 ad
510 1.107 ad mutex_enter(&proclist_lock);
511 1.99 ad LIST_FOREACH(l, &alllwp, l_list) {
512 1.99 ad /* is it a runnable swapped out process? */
513 1.100 pavel if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
514 1.99 ad pri = l->l_swtime + l->l_slptime -
515 1.99 ad (l->l_proc->p_nice - NZERO) * 8;
516 1.99 ad if (pri > ppri) { /* higher priority? */
517 1.99 ad ll = l;
518 1.99 ad ppri = pri;
519 1.99 ad }
520 1.6 mrg }
521 1.6 mrg }
522 1.1 mrg #ifdef DEBUG
523 1.99 ad if (swapdebug & SDB_FOLLOW)
524 1.99 ad printf("scheduler: running, procp %p pri %d\n", ll,
525 1.99 ad ppri);
526 1.1 mrg #endif
527 1.99 ad /*
528 1.99 ad * Nothing to do, back to sleep
529 1.99 ad */
530 1.99 ad if ((l = ll) == NULL) {
531 1.107 ad mutex_exit(&proclist_lock);
532 1.107 ad mutex_enter(&uvm_scheduler_mutex);
533 1.103 thorpej if (uvm.scheduler_kicked == false)
534 1.99 ad cv_wait(&uvm.scheduler_cv,
535 1.107 ad &uvm_scheduler_mutex);
536 1.103 thorpej uvm.scheduler_kicked = false;
537 1.107 ad mutex_exit(&uvm_scheduler_mutex);
538 1.99 ad continue;
539 1.99 ad }
540 1.6 mrg
541 1.99 ad /*
542 1.99 ad * we have found swapped out process which we would like
543 1.99 ad * to bring back in.
544 1.99 ad *
545 1.99 ad * XXX: this part is really bogus cuz we could deadlock
546 1.99 ad * on memory despite our feeble check
547 1.99 ad */
548 1.99 ad if (uvmexp.free > atop(USPACE)) {
549 1.1 mrg #ifdef DEBUG
550 1.99 ad if (swapdebug & SDB_SWAPIN)
551 1.99 ad printf("swapin: pid %d(%s)@%p, pri %d "
552 1.99 ad "free %d\n", l->l_proc->p_pid,
553 1.99 ad l->l_proc->p_comm, l->l_addr, ppri,
554 1.99 ad uvmexp.free);
555 1.1 mrg #endif
556 1.107 ad mutex_enter(&l->l_swaplock);
557 1.107 ad mutex_exit(&proclist_lock);
558 1.99 ad uvm_swapin(l);
559 1.107 ad mutex_exit(&l->l_swaplock);
560 1.107 ad continue;
561 1.99 ad } else {
562 1.99 ad /*
563 1.99 ad * not enough memory, jab the pageout daemon and
564 1.99 ad * wait til the coast is clear
565 1.99 ad */
566 1.107 ad mutex_exit(&proclist_lock);
567 1.1 mrg #ifdef DEBUG
568 1.99 ad if (swapdebug & SDB_FOLLOW)
569 1.99 ad printf("scheduler: no room for pid %d(%s),"
570 1.99 ad " free %d\n", l->l_proc->p_pid,
571 1.99 ad l->l_proc->p_comm, uvmexp.free);
572 1.1 mrg #endif
573 1.99 ad uvm_wait("schedpwait");
574 1.1 mrg #ifdef DEBUG
575 1.99 ad if (swapdebug & SDB_FOLLOW)
576 1.99 ad printf("scheduler: room again, free %d\n",
577 1.99 ad uvmexp.free);
578 1.1 mrg #endif
579 1.99 ad }
580 1.99 ad }
581 1.1 mrg }
582 1.1 mrg
583 1.1 mrg /*
584 1.62 thorpej * swappable: is LWP "l" swappable?
585 1.1 mrg */
586 1.1 mrg
587 1.106 yamt static bool
588 1.106 yamt swappable(struct lwp *l)
589 1.106 yamt {
590 1.106 yamt
591 1.106 yamt if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
592 1.106 yamt return false;
593 1.106 yamt if (l->l_holdcnt != 0)
594 1.106 yamt return false;
595 1.106 yamt if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
596 1.106 yamt return false;
597 1.106 yamt return true;
598 1.106 yamt }
599 1.1 mrg
600 1.1 mrg /*
601 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
602 1.1 mrg * u-areas.
603 1.1 mrg *
604 1.1 mrg * - called by the pagedaemon
605 1.1 mrg * - try and swap at least one processs
606 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
607 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
608 1.1 mrg * is swapped, otherwise the longest resident process...
609 1.1 mrg */
610 1.60 chs
611 1.6 mrg void
612 1.89 thorpej uvm_swapout_threads(void)
613 1.1 mrg {
614 1.62 thorpej struct lwp *l;
615 1.62 thorpej struct lwp *outl, *outl2;
616 1.6 mrg int outpri, outpri2;
617 1.6 mrg int didswap = 0;
618 1.48 chs extern int maxslp;
619 1.107 ad bool gotit;
620 1.107 ad
621 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
622 1.1 mrg
623 1.1 mrg #ifdef DEBUG
624 1.6 mrg if (!enableswap)
625 1.6 mrg return;
626 1.1 mrg #endif
627 1.1 mrg
628 1.6 mrg /*
629 1.62 thorpej * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
630 1.62 thorpej * outl2/outpri2: the longest resident thread (its swap time)
631 1.6 mrg */
632 1.62 thorpej outl = outl2 = NULL;
633 1.6 mrg outpri = outpri2 = 0;
634 1.107 ad
635 1.107 ad restart:
636 1.107 ad mutex_enter(&proclist_lock);
637 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
638 1.81 yamt KASSERT(l->l_proc != NULL);
639 1.107 ad if (!mutex_tryenter(&l->l_swaplock))
640 1.107 ad continue;
641 1.98 ad if (!swappable(l)) {
642 1.107 ad mutex_exit(&l->l_swaplock);
643 1.6 mrg continue;
644 1.98 ad }
645 1.62 thorpej switch (l->l_stat) {
646 1.68 cl case LSONPROC:
647 1.98 ad break;
648 1.69 cl
649 1.62 thorpej case LSRUN:
650 1.62 thorpej if (l->l_swtime > outpri2) {
651 1.62 thorpej outl2 = l;
652 1.62 thorpej outpri2 = l->l_swtime;
653 1.6 mrg }
654 1.98 ad break;
655 1.48 chs
656 1.62 thorpej case LSSLEEP:
657 1.62 thorpej case LSSTOP:
658 1.62 thorpej if (l->l_slptime >= maxslp) {
659 1.107 ad mutex_exit(&proclist_lock);
660 1.62 thorpej uvm_swapout(l);
661 1.107 ad /*
662 1.107 ad * Locking in the wrong direction -
663 1.107 ad * try to prevent the LWP from exiting.
664 1.107 ad */
665 1.107 ad gotit = mutex_tryenter(&proclist_lock);
666 1.107 ad mutex_exit(&l->l_swaplock);
667 1.6 mrg didswap++;
668 1.107 ad if (!gotit)
669 1.107 ad goto restart;
670 1.98 ad continue;
671 1.62 thorpej } else if (l->l_slptime > outpri) {
672 1.62 thorpej outl = l;
673 1.62 thorpej outpri = l->l_slptime;
674 1.6 mrg }
675 1.98 ad break;
676 1.6 mrg }
677 1.107 ad mutex_exit(&l->l_swaplock);
678 1.6 mrg }
679 1.107 ad
680 1.6 mrg /*
681 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
682 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
683 1.6 mrg * if we are real low on memory since we don't gain much by doing
684 1.6 mrg * it (USPACE bytes).
685 1.6 mrg */
686 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
687 1.62 thorpej if ((l = outl) == NULL)
688 1.62 thorpej l = outl2;
689 1.1 mrg #ifdef DEBUG
690 1.6 mrg if (swapdebug & SDB_SWAPOUT)
691 1.62 thorpej printf("swapout_threads: no duds, try procp %p\n", l);
692 1.1 mrg #endif
693 1.98 ad if (l) {
694 1.107 ad mutex_enter(&l->l_swaplock);
695 1.107 ad mutex_exit(&proclist_lock);
696 1.107 ad if (swappable(l))
697 1.107 ad uvm_swapout(l);
698 1.107 ad mutex_exit(&l->l_swaplock);
699 1.107 ad return;
700 1.98 ad }
701 1.6 mrg }
702 1.98 ad
703 1.107 ad mutex_exit(&proclist_lock);
704 1.1 mrg }
705 1.1 mrg
706 1.1 mrg /*
707 1.62 thorpej * uvm_swapout: swap out lwp "l"
708 1.1 mrg *
709 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
710 1.1 mrg * the pmap.
711 1.107 ad * - must be called with l->l_swaplock held.
712 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
713 1.1 mrg */
714 1.1 mrg
715 1.6 mrg static void
716 1.89 thorpej uvm_swapout(struct lwp *l)
717 1.1 mrg {
718 1.13 eeh vaddr_t addr;
719 1.62 thorpej struct proc *p = l->l_proc;
720 1.1 mrg
721 1.107 ad KASSERT(mutex_owned(&l->l_swaplock));
722 1.98 ad
723 1.1 mrg #ifdef DEBUG
724 1.6 mrg if (swapdebug & SDB_SWAPOUT)
725 1.62 thorpej printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
726 1.62 thorpej p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
727 1.62 thorpej l->l_slptime, uvmexp.free);
728 1.1 mrg #endif
729 1.1 mrg
730 1.6 mrg /*
731 1.6 mrg * Mark it as (potentially) swapped out.
732 1.6 mrg */
733 1.107 ad lwp_lock(l);
734 1.106 yamt if (!swappable(l)) {
735 1.69 cl KDASSERT(l->l_cpu != curcpu());
736 1.98 ad lwp_unlock(l);
737 1.68 cl return;
738 1.68 cl }
739 1.100 pavel l->l_flag &= ~LW_INMEM;
740 1.98 ad l->l_swtime = 0;
741 1.62 thorpej if (l->l_stat == LSRUN)
742 1.106 yamt sched_dequeue(l);
743 1.98 ad lwp_unlock(l);
744 1.98 ad p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
745 1.6 mrg ++uvmexp.swapouts;
746 1.68 cl
747 1.68 cl /*
748 1.68 cl * Do any machine-specific actions necessary before swapout.
749 1.68 cl * This can include saving floating point state, etc.
750 1.68 cl */
751 1.68 cl cpu_swapout(l);
752 1.43 chs
753 1.43 chs /*
754 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
755 1.43 chs */
756 1.94 yamt addr = USER_TO_UAREA(l->l_addr);
757 1.62 thorpej uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
758 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
759 1.107 ad }
760 1.107 ad
761 1.107 ad /*
762 1.107 ad * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
763 1.107 ad * back into memory if it is currently swapped.
764 1.107 ad */
765 1.107 ad
766 1.107 ad void
767 1.107 ad uvm_lwp_hold(struct lwp *l)
768 1.107 ad {
769 1.107 ad
770 1.107 ad /* XXXSMP mutex_enter(&l->l_swaplock); */
771 1.107 ad if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0)
772 1.107 ad uvm_swapin(l);
773 1.107 ad /* XXXSMP mutex_exit(&l->l_swaplock); */
774 1.107 ad }
775 1.107 ad
776 1.107 ad /*
777 1.107 ad * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
778 1.107 ad * drops to zero, it's eligable to be swapped.
779 1.107 ad */
780 1.107 ad
781 1.107 ad void
782 1.107 ad uvm_lwp_rele(struct lwp *l)
783 1.107 ad {
784 1.107 ad
785 1.107 ad KASSERT(l->l_holdcnt != 0);
786 1.98 ad
787 1.107 ad /* XXXSMP mutex_enter(&l->l_swaplock); */
788 1.107 ad l->l_holdcnt--;
789 1.107 ad /* XXXSMP mutex_exit(&l->l_swaplock); */
790 1.1 mrg }
791 1.1 mrg
792 1.96 matt #ifdef COREDUMP
793 1.56 thorpej /*
794 1.56 thorpej * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
795 1.56 thorpej * a core file.
796 1.56 thorpej */
797 1.56 thorpej
798 1.56 thorpej int
799 1.89 thorpej uvm_coredump_walkmap(struct proc *p, void *iocookie,
800 1.89 thorpej int (*func)(struct proc *, void *, struct uvm_coredump_state *),
801 1.89 thorpej void *cookie)
802 1.56 thorpej {
803 1.56 thorpej struct uvm_coredump_state state;
804 1.56 thorpej struct vmspace *vm = p->p_vmspace;
805 1.56 thorpej struct vm_map *map = &vm->vm_map;
806 1.56 thorpej struct vm_map_entry *entry;
807 1.56 thorpej int error;
808 1.56 thorpej
809 1.64 atatat entry = NULL;
810 1.64 atatat vm_map_lock_read(map);
811 1.87 matt state.end = 0;
812 1.64 atatat for (;;) {
813 1.64 atatat if (entry == NULL)
814 1.64 atatat entry = map->header.next;
815 1.64 atatat else if (!uvm_map_lookup_entry(map, state.end, &entry))
816 1.64 atatat entry = entry->next;
817 1.64 atatat if (entry == &map->header)
818 1.64 atatat break;
819 1.64 atatat
820 1.56 thorpej state.cookie = cookie;
821 1.86 matt if (state.end > entry->start) {
822 1.86 matt state.start = state.end;
823 1.86 matt } else {
824 1.86 matt state.start = entry->start;
825 1.86 matt }
826 1.86 matt state.realend = entry->end;
827 1.56 thorpej state.end = entry->end;
828 1.56 thorpej state.prot = entry->protection;
829 1.56 thorpej state.flags = 0;
830 1.56 thorpej
831 1.82 chs /*
832 1.82 chs * Dump the region unless one of the following is true:
833 1.82 chs *
834 1.82 chs * (1) the region has neither object nor amap behind it
835 1.82 chs * (ie. it has never been accessed).
836 1.82 chs *
837 1.82 chs * (2) the region has no amap and is read-only
838 1.82 chs * (eg. an executable text section).
839 1.82 chs *
840 1.82 chs * (3) the region's object is a device.
841 1.85 nathanw *
842 1.85 nathanw * (4) the region is unreadable by the process.
843 1.82 chs */
844 1.56 thorpej
845 1.82 chs KASSERT(!UVM_ET_ISSUBMAP(entry));
846 1.82 chs KASSERT(state.start < VM_MAXUSER_ADDRESS);
847 1.82 chs KASSERT(state.end <= VM_MAXUSER_ADDRESS);
848 1.82 chs if (entry->object.uvm_obj == NULL &&
849 1.82 chs entry->aref.ar_amap == NULL) {
850 1.86 matt state.realend = state.start;
851 1.86 matt } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
852 1.82 chs entry->aref.ar_amap == NULL) {
853 1.86 matt state.realend = state.start;
854 1.86 matt } else if (entry->object.uvm_obj != NULL &&
855 1.82 chs UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
856 1.86 matt state.realend = state.start;
857 1.86 matt } else if ((entry->protection & VM_PROT_READ) == 0) {
858 1.86 matt state.realend = state.start;
859 1.86 matt } else {
860 1.86 matt if (state.start >= (vaddr_t)vm->vm_maxsaddr)
861 1.86 matt state.flags |= UVM_COREDUMP_STACK;
862 1.86 matt
863 1.86 matt /*
864 1.86 matt * If this an anonymous entry, only dump instantiated
865 1.86 matt * pages.
866 1.86 matt */
867 1.86 matt if (entry->object.uvm_obj == NULL) {
868 1.86 matt vaddr_t end;
869 1.86 matt
870 1.86 matt amap_lock(entry->aref.ar_amap);
871 1.86 matt for (end = state.start;
872 1.86 matt end < state.end; end += PAGE_SIZE) {
873 1.86 matt struct vm_anon *anon;
874 1.86 matt anon = amap_lookup(&entry->aref,
875 1.86 matt end - entry->start);
876 1.86 matt /*
877 1.86 matt * If we have already encountered an
878 1.86 matt * uninstantiated page, stop at the
879 1.86 matt * first instantied page.
880 1.86 matt */
881 1.86 matt if (anon != NULL &&
882 1.86 matt state.realend != state.end) {
883 1.86 matt state.end = end;
884 1.86 matt break;
885 1.86 matt }
886 1.86 matt
887 1.86 matt /*
888 1.86 matt * If this page is the first
889 1.86 matt * uninstantiated page, mark this as
890 1.86 matt * the real ending point. Continue to
891 1.86 matt * counting uninstantiated pages.
892 1.86 matt */
893 1.86 matt if (anon == NULL &&
894 1.86 matt state.realend == state.end) {
895 1.86 matt state.realend = end;
896 1.86 matt }
897 1.86 matt }
898 1.86 matt amap_unlock(entry->aref.ar_amap);
899 1.86 matt }
900 1.82 chs }
901 1.86 matt
902 1.56 thorpej
903 1.64 atatat vm_map_unlock_read(map);
904 1.88 matt error = (*func)(p, iocookie, &state);
905 1.56 thorpej if (error)
906 1.56 thorpej return (error);
907 1.64 atatat vm_map_lock_read(map);
908 1.56 thorpej }
909 1.64 atatat vm_map_unlock_read(map);
910 1.56 thorpej
911 1.56 thorpej return (0);
912 1.56 thorpej }
913 1.96 matt #endif /* COREDUMP */
914