uvm_glue.c revision 1.112 1 1.112 ad /* $NetBSD: uvm_glue.c,v 1.112 2007/09/21 00:18:35 ad Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.55 lukem
69 1.55 lukem #include <sys/cdefs.h>
70 1.112 ad __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.112 2007/09/21 00:18:35 ad Exp $");
71 1.1 mrg
72 1.96 matt #include "opt_coredump.h"
73 1.49 lukem #include "opt_kgdb.h"
74 1.59 yamt #include "opt_kstack.h"
75 1.5 mrg #include "opt_uvmhist.h"
76 1.5 mrg
77 1.1 mrg /*
78 1.1 mrg * uvm_glue.c: glue functions
79 1.1 mrg */
80 1.1 mrg
81 1.1 mrg #include <sys/param.h>
82 1.1 mrg #include <sys/systm.h>
83 1.1 mrg #include <sys/proc.h>
84 1.1 mrg #include <sys/resourcevar.h>
85 1.1 mrg #include <sys/buf.h>
86 1.1 mrg #include <sys/user.h>
87 1.106 yamt #include <sys/syncobj.h>
88 1.111 ad #include <sys/cpu.h>
89 1.1 mrg
90 1.1 mrg #include <uvm/uvm.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * local prototypes
94 1.1 mrg */
95 1.1 mrg
96 1.78 junyoung static void uvm_swapout(struct lwp *);
97 1.1 mrg
98 1.109 ad #define UVM_NUAREA_HIWAT 20
99 1.109 ad #define UVM_NUAREA_LOWAT 16
100 1.109 ad
101 1.94 yamt #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
102 1.60 chs
103 1.105 rmind void uvm_uarea_free(vaddr_t);
104 1.75 jdolecek
105 1.1 mrg /*
106 1.1 mrg * XXXCDC: do these really belong here?
107 1.1 mrg */
108 1.1 mrg
109 1.28 thorpej /*
110 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
111 1.1 mrg *
112 1.83 yamt * - used only by /dev/kmem driver (mem.c)
113 1.1 mrg */
114 1.1 mrg
115 1.102 thorpej bool
116 1.104 christos uvm_kernacc(void *addr, size_t len, int rw)
117 1.6 mrg {
118 1.102 thorpej bool rv;
119 1.13 eeh vaddr_t saddr, eaddr;
120 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
121 1.6 mrg
122 1.31 kleink saddr = trunc_page((vaddr_t)addr);
123 1.43 chs eaddr = round_page((vaddr_t)addr + len);
124 1.6 mrg vm_map_lock_read(kernel_map);
125 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
126 1.6 mrg vm_map_unlock_read(kernel_map);
127 1.6 mrg
128 1.6 mrg return(rv);
129 1.1 mrg }
130 1.1 mrg
131 1.1 mrg #ifdef KGDB
132 1.1 mrg /*
133 1.1 mrg * Change protections on kernel pages from addr to addr+len
134 1.1 mrg * (presumably so debugger can plant a breakpoint).
135 1.1 mrg *
136 1.1 mrg * We force the protection change at the pmap level. If we were
137 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
138 1.1 mrg * applied meaning we would still take a protection fault, something
139 1.1 mrg * we really don't want to do. It would also fragment the kernel
140 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
141 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
142 1.1 mrg * we can ensure the change takes place properly.
143 1.1 mrg */
144 1.6 mrg void
145 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw)
146 1.6 mrg {
147 1.6 mrg vm_prot_t prot;
148 1.13 eeh paddr_t pa;
149 1.13 eeh vaddr_t sva, eva;
150 1.6 mrg
151 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
152 1.31 kleink eva = round_page((vaddr_t)addr + len);
153 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
154 1.6 mrg /*
155 1.6 mrg * Extract physical address for the page.
156 1.6 mrg */
157 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false)
158 1.6 mrg panic("chgkprot: invalid page");
159 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
160 1.6 mrg }
161 1.51 chris pmap_update(pmap_kernel());
162 1.1 mrg }
163 1.1 mrg #endif
164 1.1 mrg
165 1.1 mrg /*
166 1.52 chs * uvm_vslock: wire user memory for I/O
167 1.1 mrg *
168 1.1 mrg * - called from physio and sys___sysctl
169 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
170 1.1 mrg */
171 1.1 mrg
172 1.26 thorpej int
173 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
174 1.1 mrg {
175 1.50 chs struct vm_map *map;
176 1.26 thorpej vaddr_t start, end;
177 1.45 chs int error;
178 1.26 thorpej
179 1.97 chs map = &vs->vm_map;
180 1.31 kleink start = trunc_page((vaddr_t)addr);
181 1.31 kleink end = round_page((vaddr_t)addr + len);
182 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0);
183 1.45 chs return error;
184 1.1 mrg }
185 1.1 mrg
186 1.1 mrg /*
187 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
188 1.1 mrg *
189 1.1 mrg * - called from physio and sys___sysctl
190 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
191 1.1 mrg */
192 1.1 mrg
193 1.6 mrg void
194 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
195 1.1 mrg {
196 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
197 1.43 chs round_page((vaddr_t)addr + len));
198 1.1 mrg }
199 1.1 mrg
200 1.1 mrg /*
201 1.62 thorpej * uvm_proc_fork: fork a virtual address space
202 1.1 mrg *
203 1.1 mrg * - the address space is copied as per parent map's inherit values
204 1.62 thorpej */
205 1.62 thorpej void
206 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
207 1.62 thorpej {
208 1.62 thorpej
209 1.103 thorpej if (shared == true) {
210 1.62 thorpej p2->p_vmspace = NULL;
211 1.62 thorpej uvmspace_share(p1, p2);
212 1.62 thorpej } else {
213 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
214 1.62 thorpej }
215 1.62 thorpej
216 1.62 thorpej cpu_proc_fork(p1, p2);
217 1.62 thorpej }
218 1.62 thorpej
219 1.62 thorpej
220 1.62 thorpej /*
221 1.62 thorpej * uvm_lwp_fork: fork a thread
222 1.62 thorpej *
223 1.1 mrg * - a new "user" structure is allocated for the child process
224 1.1 mrg * [filled in by MD layer...]
225 1.20 thorpej * - if specified, the child gets a new user stack described by
226 1.20 thorpej * stack and stacksize
227 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
228 1.1 mrg * process, and thus addresses of automatic variables may be invalid
229 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
230 1.62 thorpej * after cpu_lwp_fork returns.
231 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
232 1.1 mrg * than just hang
233 1.1 mrg */
234 1.6 mrg void
235 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
236 1.89 thorpej void (*func)(void *), void *arg)
237 1.6 mrg {
238 1.45 chs int error;
239 1.6 mrg
240 1.6 mrg /*
241 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
242 1.62 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
243 1.62 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
244 1.61 chs * to prevent kernel_map fragmentation. If we reused a cached U-area,
245 1.62 thorpej * L_INMEM will already be set and we don't need to do anything.
246 1.21 thorpej *
247 1.61 chs * Note the kernel stack gets read/write accesses right off the bat.
248 1.6 mrg */
249 1.61 chs
250 1.100 pavel if ((l2->l_flag & LW_INMEM) == 0) {
251 1.94 yamt vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
252 1.94 yamt
253 1.94 yamt error = uvm_fault_wire(kernel_map, uarea,
254 1.94 yamt uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
255 1.61 chs if (error)
256 1.62 thorpej panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
257 1.67 scw #ifdef PMAP_UAREA
258 1.67 scw /* Tell the pmap this is a u-area mapping */
259 1.94 yamt PMAP_UAREA(uarea);
260 1.67 scw #endif
261 1.100 pavel l2->l_flag |= LW_INMEM;
262 1.61 chs }
263 1.59 yamt
264 1.59 yamt #ifdef KSTACK_CHECK_MAGIC
265 1.59 yamt /*
266 1.59 yamt * fill stack with magic number
267 1.59 yamt */
268 1.63 yamt kstack_setup_magic(l2);
269 1.59 yamt #endif
270 1.6 mrg
271 1.6 mrg /*
272 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
273 1.62 thorpej * to run. If this is a normal user fork, the child will exit
274 1.34 thorpej * directly to user mode via child_return() on its first time
275 1.34 thorpej * slice and will not return here. If this is a kernel thread,
276 1.34 thorpej * the specified entry point will be executed.
277 1.6 mrg */
278 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
279 1.14 thorpej }
280 1.14 thorpej
281 1.14 thorpej /*
282 1.109 ad * uvm_cpu_attach: initialize per-CPU data structures.
283 1.109 ad */
284 1.109 ad
285 1.109 ad void
286 1.109 ad uvm_cpu_attach(struct cpu_info *ci)
287 1.109 ad {
288 1.109 ad
289 1.109 ad mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
290 1.109 ad ci->ci_data.cpu_uarea_cnt = 0;
291 1.109 ad ci->ci_data.cpu_uarea_list = 0;
292 1.109 ad }
293 1.109 ad
294 1.109 ad /*
295 1.60 chs * uvm_uarea_alloc: allocate a u-area
296 1.60 chs */
297 1.60 chs
298 1.102 thorpej bool
299 1.61 chs uvm_uarea_alloc(vaddr_t *uaddrp)
300 1.60 chs {
301 1.109 ad struct cpu_info *ci;
302 1.60 chs vaddr_t uaddr;
303 1.60 chs
304 1.60 chs #ifndef USPACE_ALIGN
305 1.60 chs #define USPACE_ALIGN 0
306 1.60 chs #endif
307 1.60 chs
308 1.109 ad ci = curcpu();
309 1.109 ad
310 1.109 ad if (ci->ci_data.cpu_uarea_cnt > 0) {
311 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
312 1.109 ad if (ci->ci_data.cpu_uarea_cnt == 0) {
313 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
314 1.109 ad } else {
315 1.109 ad uaddr = ci->ci_data.cpu_uarea_list;
316 1.109 ad ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
317 1.109 ad ci->ci_data.cpu_uarea_cnt--;
318 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
319 1.109 ad *uaddrp = uaddr;
320 1.109 ad return true;
321 1.109 ad }
322 1.60 chs }
323 1.109 ad
324 1.109 ad *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
325 1.109 ad UVM_KMF_PAGEABLE);
326 1.109 ad return false;
327 1.60 chs }
328 1.60 chs
329 1.60 chs /*
330 1.109 ad * uvm_uarea_free: free a u-area
331 1.75 jdolecek */
332 1.75 jdolecek
333 1.105 rmind void
334 1.75 jdolecek uvm_uarea_free(vaddr_t uaddr)
335 1.75 jdolecek {
336 1.109 ad struct cpu_info *ci;
337 1.109 ad
338 1.109 ad ci = curcpu();
339 1.109 ad
340 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
341 1.109 ad UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
342 1.109 ad ci->ci_data.cpu_uarea_list = uaddr;
343 1.109 ad ci->ci_data.cpu_uarea_cnt++;
344 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
345 1.75 jdolecek }
346 1.75 jdolecek
347 1.75 jdolecek /*
348 1.75 jdolecek * uvm_uarea_drain: return memory of u-areas over limit
349 1.75 jdolecek * back to system
350 1.109 ad *
351 1.109 ad * => if asked to drain as much as possible, drain all cpus.
352 1.109 ad * => if asked to drain to low water mark, drain local cpu only.
353 1.60 chs */
354 1.60 chs
355 1.60 chs void
356 1.102 thorpej uvm_uarea_drain(bool empty)
357 1.60 chs {
358 1.109 ad CPU_INFO_ITERATOR cii;
359 1.109 ad struct cpu_info *ci;
360 1.110 ad vaddr_t uaddr, nuaddr;
361 1.109 ad int count;
362 1.75 jdolecek
363 1.109 ad if (empty) {
364 1.109 ad for (CPU_INFO_FOREACH(cii, ci)) {
365 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
366 1.109 ad count = ci->ci_data.cpu_uarea_cnt;
367 1.109 ad uaddr = ci->ci_data.cpu_uarea_list;
368 1.109 ad ci->ci_data.cpu_uarea_cnt = 0;
369 1.109 ad ci->ci_data.cpu_uarea_list = 0;
370 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
371 1.109 ad
372 1.109 ad while (count != 0) {
373 1.110 ad nuaddr = UAREA_NEXTFREE(uaddr);
374 1.109 ad uvm_km_free(kernel_map, uaddr, USPACE,
375 1.109 ad UVM_KMF_PAGEABLE);
376 1.110 ad uaddr = nuaddr;
377 1.109 ad count--;
378 1.109 ad }
379 1.109 ad }
380 1.75 jdolecek return;
381 1.109 ad }
382 1.60 chs
383 1.109 ad ci = curcpu();
384 1.109 ad if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
385 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
386 1.109 ad while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
387 1.109 ad uaddr = ci->ci_data.cpu_uarea_list;
388 1.109 ad ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
389 1.109 ad ci->ci_data.cpu_uarea_cnt--;
390 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
391 1.109 ad uvm_km_free(kernel_map, uaddr, USPACE,
392 1.109 ad UVM_KMF_PAGEABLE);
393 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
394 1.109 ad }
395 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
396 1.60 chs }
397 1.60 chs }
398 1.60 chs
399 1.60 chs /*
400 1.80 pk * uvm_exit: exit a virtual address space
401 1.80 pk *
402 1.80 pk * - the process passed to us is a dead (pre-zombie) process; we
403 1.80 pk * are running on a different context now (the reaper).
404 1.80 pk * - borrow proc0's address space because freeing the vmspace
405 1.80 pk * of the dead process may block.
406 1.80 pk */
407 1.80 pk
408 1.80 pk void
409 1.89 thorpej uvm_proc_exit(struct proc *p)
410 1.80 pk {
411 1.80 pk struct lwp *l = curlwp; /* XXX */
412 1.80 pk struct vmspace *ovm;
413 1.80 pk
414 1.80 pk KASSERT(p == l->l_proc);
415 1.80 pk ovm = p->p_vmspace;
416 1.80 pk
417 1.80 pk /*
418 1.80 pk * borrow proc0's address space.
419 1.80 pk */
420 1.80 pk pmap_deactivate(l);
421 1.80 pk p->p_vmspace = proc0.p_vmspace;
422 1.80 pk pmap_activate(l);
423 1.80 pk
424 1.80 pk uvmspace_free(ovm);
425 1.80 pk }
426 1.80 pk
427 1.80 pk void
428 1.80 pk uvm_lwp_exit(struct lwp *l)
429 1.80 pk {
430 1.94 yamt vaddr_t va = USER_TO_UAREA(l->l_addr);
431 1.80 pk
432 1.100 pavel l->l_flag &= ~LW_INMEM;
433 1.80 pk uvm_uarea_free(va);
434 1.80 pk l->l_addr = NULL;
435 1.80 pk }
436 1.80 pk
437 1.80 pk /*
438 1.1 mrg * uvm_init_limit: init per-process VM limits
439 1.1 mrg *
440 1.1 mrg * - called for process 0 and then inherited by all others.
441 1.1 mrg */
442 1.60 chs
443 1.6 mrg void
444 1.89 thorpej uvm_init_limits(struct proc *p)
445 1.6 mrg {
446 1.6 mrg
447 1.6 mrg /*
448 1.6 mrg * Set up the initial limits on process VM. Set the maximum
449 1.6 mrg * resident set size to be all of (reasonably) available memory.
450 1.6 mrg * This causes any single, large process to start random page
451 1.6 mrg * replacement once it fills memory.
452 1.6 mrg */
453 1.6 mrg
454 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
455 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
456 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
457 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
458 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
459 1.1 mrg }
460 1.1 mrg
461 1.1 mrg #ifdef DEBUG
462 1.1 mrg int enableswap = 1;
463 1.1 mrg int swapdebug = 0;
464 1.1 mrg #define SDB_FOLLOW 1
465 1.1 mrg #define SDB_SWAPIN 2
466 1.1 mrg #define SDB_SWAPOUT 4
467 1.1 mrg #endif
468 1.1 mrg
469 1.1 mrg /*
470 1.95 yamt * uvm_swapin: swap in an lwp's u-area.
471 1.107 ad *
472 1.107 ad * - must be called with the LWP's swap lock held.
473 1.107 ad * - naturally, must not be called with l == curlwp
474 1.1 mrg */
475 1.1 mrg
476 1.6 mrg void
477 1.89 thorpej uvm_swapin(struct lwp *l)
478 1.6 mrg {
479 1.13 eeh vaddr_t addr;
480 1.98 ad int error;
481 1.6 mrg
482 1.112 ad /* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
483 1.107 ad KASSERT(l != curlwp);
484 1.107 ad
485 1.94 yamt addr = USER_TO_UAREA(l->l_addr);
486 1.62 thorpej /* make L_INMEM true */
487 1.93 drochner error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
488 1.93 drochner VM_PROT_READ | VM_PROT_WRITE, 0);
489 1.52 chs if (error) {
490 1.52 chs panic("uvm_swapin: rewiring stack failed: %d", error);
491 1.52 chs }
492 1.6 mrg
493 1.6 mrg /*
494 1.6 mrg * Some architectures need to be notified when the user area has
495 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
496 1.6 mrg */
497 1.62 thorpej cpu_swapin(l);
498 1.98 ad lwp_lock(l);
499 1.62 thorpej if (l->l_stat == LSRUN)
500 1.106 yamt sched_enqueue(l, false);
501 1.100 pavel l->l_flag |= LW_INMEM;
502 1.62 thorpej l->l_swtime = 0;
503 1.98 ad lwp_unlock(l);
504 1.6 mrg ++uvmexp.swapins;
505 1.1 mrg }
506 1.1 mrg
507 1.1 mrg /*
508 1.99 ad * uvm_kick_scheduler: kick the scheduler into action if not running.
509 1.99 ad *
510 1.99 ad * - called when swapped out processes have been awoken.
511 1.99 ad */
512 1.99 ad
513 1.99 ad void
514 1.99 ad uvm_kick_scheduler(void)
515 1.99 ad {
516 1.99 ad
517 1.103 thorpej if (uvm.swap_running == false)
518 1.101 ad return;
519 1.101 ad
520 1.107 ad mutex_enter(&uvm_scheduler_mutex);
521 1.103 thorpej uvm.scheduler_kicked = true;
522 1.99 ad cv_signal(&uvm.scheduler_cv);
523 1.107 ad mutex_exit(&uvm_scheduler_mutex);
524 1.99 ad }
525 1.99 ad
526 1.99 ad /*
527 1.1 mrg * uvm_scheduler: process zero main loop
528 1.1 mrg *
529 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
530 1.1 mrg * priority.
531 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
532 1.1 mrg */
533 1.1 mrg
534 1.6 mrg void
535 1.89 thorpej uvm_scheduler(void)
536 1.1 mrg {
537 1.62 thorpej struct lwp *l, *ll;
538 1.32 augustss int pri;
539 1.6 mrg int ppri;
540 1.1 mrg
541 1.99 ad l = curlwp;
542 1.99 ad lwp_lock(l);
543 1.107 ad l->l_priority = PVM;
544 1.107 ad l->l_usrpri = PVM;
545 1.99 ad lwp_unlock(l);
546 1.99 ad
547 1.99 ad for (;;) {
548 1.1 mrg #ifdef DEBUG
549 1.107 ad mutex_enter(&uvm_scheduler_mutex);
550 1.99 ad while (!enableswap)
551 1.107 ad cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
552 1.107 ad mutex_exit(&uvm_scheduler_mutex);
553 1.99 ad #endif
554 1.99 ad ll = NULL; /* process to choose */
555 1.99 ad ppri = INT_MIN; /* its priority */
556 1.99 ad
557 1.107 ad mutex_enter(&proclist_lock);
558 1.99 ad LIST_FOREACH(l, &alllwp, l_list) {
559 1.99 ad /* is it a runnable swapped out process? */
560 1.100 pavel if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
561 1.99 ad pri = l->l_swtime + l->l_slptime -
562 1.99 ad (l->l_proc->p_nice - NZERO) * 8;
563 1.99 ad if (pri > ppri) { /* higher priority? */
564 1.99 ad ll = l;
565 1.99 ad ppri = pri;
566 1.99 ad }
567 1.6 mrg }
568 1.6 mrg }
569 1.1 mrg #ifdef DEBUG
570 1.99 ad if (swapdebug & SDB_FOLLOW)
571 1.99 ad printf("scheduler: running, procp %p pri %d\n", ll,
572 1.99 ad ppri);
573 1.1 mrg #endif
574 1.99 ad /*
575 1.99 ad * Nothing to do, back to sleep
576 1.99 ad */
577 1.99 ad if ((l = ll) == NULL) {
578 1.107 ad mutex_exit(&proclist_lock);
579 1.107 ad mutex_enter(&uvm_scheduler_mutex);
580 1.103 thorpej if (uvm.scheduler_kicked == false)
581 1.99 ad cv_wait(&uvm.scheduler_cv,
582 1.107 ad &uvm_scheduler_mutex);
583 1.103 thorpej uvm.scheduler_kicked = false;
584 1.107 ad mutex_exit(&uvm_scheduler_mutex);
585 1.99 ad continue;
586 1.99 ad }
587 1.6 mrg
588 1.99 ad /*
589 1.99 ad * we have found swapped out process which we would like
590 1.99 ad * to bring back in.
591 1.99 ad *
592 1.99 ad * XXX: this part is really bogus cuz we could deadlock
593 1.99 ad * on memory despite our feeble check
594 1.99 ad */
595 1.99 ad if (uvmexp.free > atop(USPACE)) {
596 1.1 mrg #ifdef DEBUG
597 1.99 ad if (swapdebug & SDB_SWAPIN)
598 1.99 ad printf("swapin: pid %d(%s)@%p, pri %d "
599 1.99 ad "free %d\n", l->l_proc->p_pid,
600 1.99 ad l->l_proc->p_comm, l->l_addr, ppri,
601 1.99 ad uvmexp.free);
602 1.1 mrg #endif
603 1.107 ad mutex_enter(&l->l_swaplock);
604 1.107 ad mutex_exit(&proclist_lock);
605 1.99 ad uvm_swapin(l);
606 1.107 ad mutex_exit(&l->l_swaplock);
607 1.107 ad continue;
608 1.99 ad } else {
609 1.99 ad /*
610 1.99 ad * not enough memory, jab the pageout daemon and
611 1.99 ad * wait til the coast is clear
612 1.99 ad */
613 1.107 ad mutex_exit(&proclist_lock);
614 1.1 mrg #ifdef DEBUG
615 1.99 ad if (swapdebug & SDB_FOLLOW)
616 1.99 ad printf("scheduler: no room for pid %d(%s),"
617 1.99 ad " free %d\n", l->l_proc->p_pid,
618 1.99 ad l->l_proc->p_comm, uvmexp.free);
619 1.1 mrg #endif
620 1.99 ad uvm_wait("schedpwait");
621 1.1 mrg #ifdef DEBUG
622 1.99 ad if (swapdebug & SDB_FOLLOW)
623 1.99 ad printf("scheduler: room again, free %d\n",
624 1.99 ad uvmexp.free);
625 1.1 mrg #endif
626 1.99 ad }
627 1.99 ad }
628 1.1 mrg }
629 1.1 mrg
630 1.1 mrg /*
631 1.62 thorpej * swappable: is LWP "l" swappable?
632 1.1 mrg */
633 1.1 mrg
634 1.106 yamt static bool
635 1.106 yamt swappable(struct lwp *l)
636 1.106 yamt {
637 1.106 yamt
638 1.106 yamt if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
639 1.106 yamt return false;
640 1.106 yamt if (l->l_holdcnt != 0)
641 1.106 yamt return false;
642 1.106 yamt if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
643 1.106 yamt return false;
644 1.106 yamt return true;
645 1.106 yamt }
646 1.1 mrg
647 1.1 mrg /*
648 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
649 1.1 mrg * u-areas.
650 1.1 mrg *
651 1.1 mrg * - called by the pagedaemon
652 1.1 mrg * - try and swap at least one processs
653 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
654 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
655 1.1 mrg * is swapped, otherwise the longest resident process...
656 1.1 mrg */
657 1.60 chs
658 1.6 mrg void
659 1.89 thorpej uvm_swapout_threads(void)
660 1.1 mrg {
661 1.62 thorpej struct lwp *l;
662 1.62 thorpej struct lwp *outl, *outl2;
663 1.6 mrg int outpri, outpri2;
664 1.6 mrg int didswap = 0;
665 1.48 chs extern int maxslp;
666 1.107 ad bool gotit;
667 1.107 ad
668 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
669 1.1 mrg
670 1.1 mrg #ifdef DEBUG
671 1.6 mrg if (!enableswap)
672 1.6 mrg return;
673 1.1 mrg #endif
674 1.1 mrg
675 1.6 mrg /*
676 1.62 thorpej * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
677 1.62 thorpej * outl2/outpri2: the longest resident thread (its swap time)
678 1.6 mrg */
679 1.62 thorpej outl = outl2 = NULL;
680 1.6 mrg outpri = outpri2 = 0;
681 1.107 ad
682 1.107 ad restart:
683 1.107 ad mutex_enter(&proclist_lock);
684 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
685 1.81 yamt KASSERT(l->l_proc != NULL);
686 1.107 ad if (!mutex_tryenter(&l->l_swaplock))
687 1.107 ad continue;
688 1.98 ad if (!swappable(l)) {
689 1.107 ad mutex_exit(&l->l_swaplock);
690 1.6 mrg continue;
691 1.98 ad }
692 1.62 thorpej switch (l->l_stat) {
693 1.68 cl case LSONPROC:
694 1.98 ad break;
695 1.69 cl
696 1.62 thorpej case LSRUN:
697 1.62 thorpej if (l->l_swtime > outpri2) {
698 1.62 thorpej outl2 = l;
699 1.62 thorpej outpri2 = l->l_swtime;
700 1.6 mrg }
701 1.98 ad break;
702 1.48 chs
703 1.62 thorpej case LSSLEEP:
704 1.62 thorpej case LSSTOP:
705 1.62 thorpej if (l->l_slptime >= maxslp) {
706 1.107 ad mutex_exit(&proclist_lock);
707 1.62 thorpej uvm_swapout(l);
708 1.107 ad /*
709 1.107 ad * Locking in the wrong direction -
710 1.107 ad * try to prevent the LWP from exiting.
711 1.107 ad */
712 1.107 ad gotit = mutex_tryenter(&proclist_lock);
713 1.107 ad mutex_exit(&l->l_swaplock);
714 1.6 mrg didswap++;
715 1.107 ad if (!gotit)
716 1.107 ad goto restart;
717 1.98 ad continue;
718 1.62 thorpej } else if (l->l_slptime > outpri) {
719 1.62 thorpej outl = l;
720 1.62 thorpej outpri = l->l_slptime;
721 1.6 mrg }
722 1.98 ad break;
723 1.6 mrg }
724 1.107 ad mutex_exit(&l->l_swaplock);
725 1.6 mrg }
726 1.107 ad
727 1.6 mrg /*
728 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
729 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
730 1.6 mrg * if we are real low on memory since we don't gain much by doing
731 1.6 mrg * it (USPACE bytes).
732 1.6 mrg */
733 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
734 1.62 thorpej if ((l = outl) == NULL)
735 1.62 thorpej l = outl2;
736 1.1 mrg #ifdef DEBUG
737 1.6 mrg if (swapdebug & SDB_SWAPOUT)
738 1.62 thorpej printf("swapout_threads: no duds, try procp %p\n", l);
739 1.1 mrg #endif
740 1.98 ad if (l) {
741 1.107 ad mutex_enter(&l->l_swaplock);
742 1.107 ad mutex_exit(&proclist_lock);
743 1.107 ad if (swappable(l))
744 1.107 ad uvm_swapout(l);
745 1.107 ad mutex_exit(&l->l_swaplock);
746 1.107 ad return;
747 1.98 ad }
748 1.6 mrg }
749 1.98 ad
750 1.107 ad mutex_exit(&proclist_lock);
751 1.1 mrg }
752 1.1 mrg
753 1.1 mrg /*
754 1.62 thorpej * uvm_swapout: swap out lwp "l"
755 1.1 mrg *
756 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
757 1.1 mrg * the pmap.
758 1.107 ad * - must be called with l->l_swaplock held.
759 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
760 1.1 mrg */
761 1.1 mrg
762 1.6 mrg static void
763 1.89 thorpej uvm_swapout(struct lwp *l)
764 1.1 mrg {
765 1.13 eeh vaddr_t addr;
766 1.62 thorpej struct proc *p = l->l_proc;
767 1.1 mrg
768 1.107 ad KASSERT(mutex_owned(&l->l_swaplock));
769 1.98 ad
770 1.1 mrg #ifdef DEBUG
771 1.6 mrg if (swapdebug & SDB_SWAPOUT)
772 1.62 thorpej printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
773 1.62 thorpej p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
774 1.62 thorpej l->l_slptime, uvmexp.free);
775 1.1 mrg #endif
776 1.1 mrg
777 1.6 mrg /*
778 1.6 mrg * Mark it as (potentially) swapped out.
779 1.6 mrg */
780 1.107 ad lwp_lock(l);
781 1.106 yamt if (!swappable(l)) {
782 1.69 cl KDASSERT(l->l_cpu != curcpu());
783 1.98 ad lwp_unlock(l);
784 1.68 cl return;
785 1.68 cl }
786 1.100 pavel l->l_flag &= ~LW_INMEM;
787 1.98 ad l->l_swtime = 0;
788 1.62 thorpej if (l->l_stat == LSRUN)
789 1.106 yamt sched_dequeue(l);
790 1.98 ad lwp_unlock(l);
791 1.98 ad p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
792 1.6 mrg ++uvmexp.swapouts;
793 1.68 cl
794 1.68 cl /*
795 1.68 cl * Do any machine-specific actions necessary before swapout.
796 1.68 cl * This can include saving floating point state, etc.
797 1.68 cl */
798 1.68 cl cpu_swapout(l);
799 1.43 chs
800 1.43 chs /*
801 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
802 1.43 chs */
803 1.94 yamt addr = USER_TO_UAREA(l->l_addr);
804 1.62 thorpej uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
805 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
806 1.107 ad }
807 1.107 ad
808 1.107 ad /*
809 1.107 ad * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
810 1.107 ad * back into memory if it is currently swapped.
811 1.107 ad */
812 1.107 ad
813 1.107 ad void
814 1.107 ad uvm_lwp_hold(struct lwp *l)
815 1.107 ad {
816 1.107 ad
817 1.107 ad /* XXXSMP mutex_enter(&l->l_swaplock); */
818 1.107 ad if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0)
819 1.107 ad uvm_swapin(l);
820 1.107 ad /* XXXSMP mutex_exit(&l->l_swaplock); */
821 1.107 ad }
822 1.107 ad
823 1.107 ad /*
824 1.107 ad * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
825 1.107 ad * drops to zero, it's eligable to be swapped.
826 1.107 ad */
827 1.107 ad
828 1.107 ad void
829 1.107 ad uvm_lwp_rele(struct lwp *l)
830 1.107 ad {
831 1.107 ad
832 1.107 ad KASSERT(l->l_holdcnt != 0);
833 1.98 ad
834 1.107 ad /* XXXSMP mutex_enter(&l->l_swaplock); */
835 1.107 ad l->l_holdcnt--;
836 1.107 ad /* XXXSMP mutex_exit(&l->l_swaplock); */
837 1.1 mrg }
838 1.1 mrg
839 1.96 matt #ifdef COREDUMP
840 1.56 thorpej /*
841 1.56 thorpej * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
842 1.56 thorpej * a core file.
843 1.56 thorpej */
844 1.56 thorpej
845 1.56 thorpej int
846 1.89 thorpej uvm_coredump_walkmap(struct proc *p, void *iocookie,
847 1.89 thorpej int (*func)(struct proc *, void *, struct uvm_coredump_state *),
848 1.89 thorpej void *cookie)
849 1.56 thorpej {
850 1.56 thorpej struct uvm_coredump_state state;
851 1.56 thorpej struct vmspace *vm = p->p_vmspace;
852 1.56 thorpej struct vm_map *map = &vm->vm_map;
853 1.56 thorpej struct vm_map_entry *entry;
854 1.56 thorpej int error;
855 1.56 thorpej
856 1.64 atatat entry = NULL;
857 1.64 atatat vm_map_lock_read(map);
858 1.87 matt state.end = 0;
859 1.64 atatat for (;;) {
860 1.64 atatat if (entry == NULL)
861 1.64 atatat entry = map->header.next;
862 1.64 atatat else if (!uvm_map_lookup_entry(map, state.end, &entry))
863 1.64 atatat entry = entry->next;
864 1.64 atatat if (entry == &map->header)
865 1.64 atatat break;
866 1.64 atatat
867 1.56 thorpej state.cookie = cookie;
868 1.86 matt if (state.end > entry->start) {
869 1.86 matt state.start = state.end;
870 1.86 matt } else {
871 1.86 matt state.start = entry->start;
872 1.86 matt }
873 1.86 matt state.realend = entry->end;
874 1.56 thorpej state.end = entry->end;
875 1.56 thorpej state.prot = entry->protection;
876 1.56 thorpej state.flags = 0;
877 1.56 thorpej
878 1.82 chs /*
879 1.82 chs * Dump the region unless one of the following is true:
880 1.82 chs *
881 1.82 chs * (1) the region has neither object nor amap behind it
882 1.82 chs * (ie. it has never been accessed).
883 1.82 chs *
884 1.82 chs * (2) the region has no amap and is read-only
885 1.82 chs * (eg. an executable text section).
886 1.82 chs *
887 1.82 chs * (3) the region's object is a device.
888 1.85 nathanw *
889 1.85 nathanw * (4) the region is unreadable by the process.
890 1.82 chs */
891 1.56 thorpej
892 1.82 chs KASSERT(!UVM_ET_ISSUBMAP(entry));
893 1.82 chs KASSERT(state.start < VM_MAXUSER_ADDRESS);
894 1.82 chs KASSERT(state.end <= VM_MAXUSER_ADDRESS);
895 1.82 chs if (entry->object.uvm_obj == NULL &&
896 1.82 chs entry->aref.ar_amap == NULL) {
897 1.86 matt state.realend = state.start;
898 1.86 matt } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
899 1.82 chs entry->aref.ar_amap == NULL) {
900 1.86 matt state.realend = state.start;
901 1.86 matt } else if (entry->object.uvm_obj != NULL &&
902 1.82 chs UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
903 1.86 matt state.realend = state.start;
904 1.86 matt } else if ((entry->protection & VM_PROT_READ) == 0) {
905 1.86 matt state.realend = state.start;
906 1.86 matt } else {
907 1.86 matt if (state.start >= (vaddr_t)vm->vm_maxsaddr)
908 1.86 matt state.flags |= UVM_COREDUMP_STACK;
909 1.86 matt
910 1.86 matt /*
911 1.86 matt * If this an anonymous entry, only dump instantiated
912 1.86 matt * pages.
913 1.86 matt */
914 1.86 matt if (entry->object.uvm_obj == NULL) {
915 1.86 matt vaddr_t end;
916 1.86 matt
917 1.86 matt amap_lock(entry->aref.ar_amap);
918 1.86 matt for (end = state.start;
919 1.86 matt end < state.end; end += PAGE_SIZE) {
920 1.86 matt struct vm_anon *anon;
921 1.86 matt anon = amap_lookup(&entry->aref,
922 1.86 matt end - entry->start);
923 1.86 matt /*
924 1.86 matt * If we have already encountered an
925 1.86 matt * uninstantiated page, stop at the
926 1.86 matt * first instantied page.
927 1.86 matt */
928 1.86 matt if (anon != NULL &&
929 1.86 matt state.realend != state.end) {
930 1.86 matt state.end = end;
931 1.86 matt break;
932 1.86 matt }
933 1.86 matt
934 1.86 matt /*
935 1.86 matt * If this page is the first
936 1.86 matt * uninstantiated page, mark this as
937 1.86 matt * the real ending point. Continue to
938 1.86 matt * counting uninstantiated pages.
939 1.86 matt */
940 1.86 matt if (anon == NULL &&
941 1.86 matt state.realend == state.end) {
942 1.86 matt state.realend = end;
943 1.86 matt }
944 1.86 matt }
945 1.86 matt amap_unlock(entry->aref.ar_amap);
946 1.86 matt }
947 1.82 chs }
948 1.86 matt
949 1.56 thorpej
950 1.64 atatat vm_map_unlock_read(map);
951 1.88 matt error = (*func)(p, iocookie, &state);
952 1.56 thorpej if (error)
953 1.56 thorpej return (error);
954 1.64 atatat vm_map_lock_read(map);
955 1.56 thorpej }
956 1.64 atatat vm_map_unlock_read(map);
957 1.56 thorpej
958 1.56 thorpej return (0);
959 1.56 thorpej }
960 1.96 matt #endif /* COREDUMP */
961