Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.114
      1  1.114        ad /*	$NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $	*/
      2    1.1       mrg 
      3   1.48       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.48       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20    1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21    1.1       mrg  *    must display the following acknowledgement:
     22    1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.48       chs  *      Washington University, the University of California, Berkeley and
     24    1.1       mrg  *      its contributors.
     25    1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26    1.1       mrg  *    may be used to endorse or promote products derived from this software
     27    1.1       mrg  *    without specific prior written permission.
     28    1.1       mrg  *
     29    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39    1.1       mrg  * SUCH DAMAGE.
     40    1.1       mrg  *
     41    1.1       mrg  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42    1.4       mrg  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43    1.1       mrg  *
     44    1.1       mrg  *
     45    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46    1.1       mrg  * All rights reserved.
     47   1.48       chs  *
     48    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50    1.1       mrg  * notice and this permission notice appear in all copies of the
     51    1.1       mrg  * software, derivative works or modified versions, and any portions
     52    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.48       chs  *
     54   1.48       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.48       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.48       chs  *
     58    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59    1.1       mrg  *
     60    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61    1.1       mrg  *  School of Computer Science
     62    1.1       mrg  *  Carnegie Mellon University
     63    1.1       mrg  *  Pittsburgh PA 15213-3890
     64    1.1       mrg  *
     65    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66    1.1       mrg  * rights to redistribute these changes.
     67    1.1       mrg  */
     68   1.55     lukem 
     69   1.55     lukem #include <sys/cdefs.h>
     70  1.114        ad __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $");
     71    1.1       mrg 
     72   1.96      matt #include "opt_coredump.h"
     73   1.49     lukem #include "opt_kgdb.h"
     74   1.59      yamt #include "opt_kstack.h"
     75    1.5       mrg #include "opt_uvmhist.h"
     76    1.5       mrg 
     77    1.1       mrg /*
     78    1.1       mrg  * uvm_glue.c: glue functions
     79    1.1       mrg  */
     80    1.1       mrg 
     81    1.1       mrg #include <sys/param.h>
     82    1.1       mrg #include <sys/systm.h>
     83    1.1       mrg #include <sys/proc.h>
     84    1.1       mrg #include <sys/resourcevar.h>
     85    1.1       mrg #include <sys/buf.h>
     86    1.1       mrg #include <sys/user.h>
     87  1.106      yamt #include <sys/syncobj.h>
     88  1.111        ad #include <sys/cpu.h>
     89  1.114        ad #include <sys/atomic.h>
     90    1.1       mrg 
     91    1.1       mrg #include <uvm/uvm.h>
     92    1.1       mrg 
     93    1.1       mrg /*
     94    1.1       mrg  * local prototypes
     95    1.1       mrg  */
     96    1.1       mrg 
     97   1.78  junyoung static void uvm_swapout(struct lwp *);
     98    1.1       mrg 
     99  1.109        ad #define UVM_NUAREA_HIWAT	20
    100  1.109        ad #define	UVM_NUAREA_LOWAT	16
    101  1.109        ad 
    102   1.94      yamt #define	UAREA_NEXTFREE(uarea)	(*(vaddr_t *)(UAREA_TO_USER(uarea)))
    103   1.60       chs 
    104    1.1       mrg /*
    105    1.1       mrg  * XXXCDC: do these really belong here?
    106    1.1       mrg  */
    107    1.1       mrg 
    108   1.28   thorpej /*
    109    1.1       mrg  * uvm_kernacc: can the kernel access a region of memory
    110    1.1       mrg  *
    111   1.83      yamt  * - used only by /dev/kmem driver (mem.c)
    112    1.1       mrg  */
    113    1.1       mrg 
    114  1.102   thorpej bool
    115  1.104  christos uvm_kernacc(void *addr, size_t len, int rw)
    116    1.6       mrg {
    117  1.102   thorpej 	bool rv;
    118   1.13       eeh 	vaddr_t saddr, eaddr;
    119    1.6       mrg 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    120    1.6       mrg 
    121   1.31    kleink 	saddr = trunc_page((vaddr_t)addr);
    122   1.43       chs 	eaddr = round_page((vaddr_t)addr + len);
    123    1.6       mrg 	vm_map_lock_read(kernel_map);
    124    1.6       mrg 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    125    1.6       mrg 	vm_map_unlock_read(kernel_map);
    126    1.6       mrg 
    127    1.6       mrg 	return(rv);
    128    1.1       mrg }
    129    1.1       mrg 
    130    1.1       mrg #ifdef KGDB
    131    1.1       mrg /*
    132    1.1       mrg  * Change protections on kernel pages from addr to addr+len
    133    1.1       mrg  * (presumably so debugger can plant a breakpoint).
    134    1.1       mrg  *
    135    1.1       mrg  * We force the protection change at the pmap level.  If we were
    136    1.1       mrg  * to use vm_map_protect a change to allow writing would be lazily-
    137    1.1       mrg  * applied meaning we would still take a protection fault, something
    138    1.1       mrg  * we really don't want to do.  It would also fragment the kernel
    139    1.1       mrg  * map unnecessarily.  We cannot use pmap_protect since it also won't
    140    1.1       mrg  * enforce a write-enable request.  Using pmap_enter is the only way
    141    1.1       mrg  * we can ensure the change takes place properly.
    142    1.1       mrg  */
    143    1.6       mrg void
    144  1.104  christos uvm_chgkprot(void *addr, size_t len, int rw)
    145    1.6       mrg {
    146    1.6       mrg 	vm_prot_t prot;
    147   1.13       eeh 	paddr_t pa;
    148   1.13       eeh 	vaddr_t sva, eva;
    149    1.6       mrg 
    150    1.6       mrg 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    151   1.31    kleink 	eva = round_page((vaddr_t)addr + len);
    152   1.31    kleink 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    153    1.6       mrg 		/*
    154    1.6       mrg 		 * Extract physical address for the page.
    155    1.6       mrg 		 */
    156  1.103   thorpej 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    157    1.6       mrg 			panic("chgkprot: invalid page");
    158   1.30   thorpej 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    159    1.6       mrg 	}
    160   1.51     chris 	pmap_update(pmap_kernel());
    161    1.1       mrg }
    162    1.1       mrg #endif
    163    1.1       mrg 
    164    1.1       mrg /*
    165   1.52       chs  * uvm_vslock: wire user memory for I/O
    166    1.1       mrg  *
    167    1.1       mrg  * - called from physio and sys___sysctl
    168    1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    169    1.1       mrg  */
    170    1.1       mrg 
    171   1.26   thorpej int
    172   1.97       chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    173    1.1       mrg {
    174   1.50       chs 	struct vm_map *map;
    175   1.26   thorpej 	vaddr_t start, end;
    176   1.45       chs 	int error;
    177   1.26   thorpej 
    178   1.97       chs 	map = &vs->vm_map;
    179   1.31    kleink 	start = trunc_page((vaddr_t)addr);
    180   1.31    kleink 	end = round_page((vaddr_t)addr + len);
    181   1.93  drochner 	error = uvm_fault_wire(map, start, end, access_type, 0);
    182   1.45       chs 	return error;
    183    1.1       mrg }
    184    1.1       mrg 
    185    1.1       mrg /*
    186   1.52       chs  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    187    1.1       mrg  *
    188    1.1       mrg  * - called from physio and sys___sysctl
    189    1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    190    1.1       mrg  */
    191    1.1       mrg 
    192    1.6       mrg void
    193   1.97       chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    194    1.1       mrg {
    195   1.97       chs 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    196   1.43       chs 		round_page((vaddr_t)addr + len));
    197    1.1       mrg }
    198    1.1       mrg 
    199    1.1       mrg /*
    200   1.62   thorpej  * uvm_proc_fork: fork a virtual address space
    201    1.1       mrg  *
    202    1.1       mrg  * - the address space is copied as per parent map's inherit values
    203   1.62   thorpej  */
    204   1.62   thorpej void
    205  1.102   thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    206   1.62   thorpej {
    207   1.62   thorpej 
    208  1.103   thorpej 	if (shared == true) {
    209   1.62   thorpej 		p2->p_vmspace = NULL;
    210   1.62   thorpej 		uvmspace_share(p1, p2);
    211   1.62   thorpej 	} else {
    212   1.62   thorpej 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    213   1.62   thorpej 	}
    214   1.62   thorpej 
    215   1.62   thorpej 	cpu_proc_fork(p1, p2);
    216   1.62   thorpej }
    217   1.62   thorpej 
    218   1.62   thorpej 
    219   1.62   thorpej /*
    220   1.62   thorpej  * uvm_lwp_fork: fork a thread
    221   1.62   thorpej  *
    222    1.1       mrg  * - a new "user" structure is allocated for the child process
    223    1.1       mrg  *	[filled in by MD layer...]
    224   1.20   thorpej  * - if specified, the child gets a new user stack described by
    225   1.20   thorpej  *	stack and stacksize
    226    1.1       mrg  * - NOTE: the kernel stack may be at a different location in the child
    227    1.1       mrg  *	process, and thus addresses of automatic variables may be invalid
    228   1.62   thorpej  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    229   1.62   thorpej  *	after cpu_lwp_fork returns.
    230    1.1       mrg  * - XXXCDC: we need a way for this to return a failure value rather
    231    1.1       mrg  *   than just hang
    232    1.1       mrg  */
    233    1.6       mrg void
    234   1.89   thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    235   1.89   thorpej     void (*func)(void *), void *arg)
    236    1.6       mrg {
    237   1.45       chs 	int error;
    238    1.6       mrg 
    239    1.6       mrg 	/*
    240    1.7   thorpej 	 * Wire down the U-area for the process, which contains the PCB
    241   1.62   thorpej 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    242   1.62   thorpej 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    243   1.61       chs 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    244   1.62   thorpej 	 * L_INMEM will already be set and we don't need to do anything.
    245   1.21   thorpej 	 *
    246   1.61       chs 	 * Note the kernel stack gets read/write accesses right off the bat.
    247    1.6       mrg 	 */
    248   1.61       chs 
    249  1.100     pavel 	if ((l2->l_flag & LW_INMEM) == 0) {
    250   1.94      yamt 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    251   1.94      yamt 
    252   1.94      yamt 		error = uvm_fault_wire(kernel_map, uarea,
    253   1.94      yamt 		    uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
    254   1.61       chs 		if (error)
    255   1.62   thorpej 			panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
    256   1.67       scw #ifdef PMAP_UAREA
    257   1.67       scw 		/* Tell the pmap this is a u-area mapping */
    258   1.94      yamt 		PMAP_UAREA(uarea);
    259   1.67       scw #endif
    260  1.100     pavel 		l2->l_flag |= LW_INMEM;
    261   1.61       chs 	}
    262   1.59      yamt 
    263   1.59      yamt #ifdef KSTACK_CHECK_MAGIC
    264   1.59      yamt 	/*
    265   1.59      yamt 	 * fill stack with magic number
    266   1.59      yamt 	 */
    267   1.63      yamt 	kstack_setup_magic(l2);
    268   1.59      yamt #endif
    269    1.6       mrg 
    270    1.6       mrg 	/*
    271   1.62   thorpej 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    272   1.62   thorpej  	 * to run.  If this is a normal user fork, the child will exit
    273   1.34   thorpej 	 * directly to user mode via child_return() on its first time
    274   1.34   thorpej 	 * slice and will not return here.  If this is a kernel thread,
    275   1.34   thorpej 	 * the specified entry point will be executed.
    276    1.6       mrg 	 */
    277   1.62   thorpej 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    278   1.14   thorpej }
    279   1.14   thorpej 
    280   1.14   thorpej /*
    281  1.109        ad  * uvm_cpu_attach: initialize per-CPU data structures.
    282  1.109        ad  */
    283  1.109        ad 
    284  1.109        ad void
    285  1.109        ad uvm_cpu_attach(struct cpu_info *ci)
    286  1.109        ad {
    287  1.109        ad 
    288  1.109        ad 	mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
    289  1.109        ad 	ci->ci_data.cpu_uarea_cnt = 0;
    290  1.109        ad 	ci->ci_data.cpu_uarea_list = 0;
    291  1.109        ad }
    292  1.109        ad 
    293  1.109        ad /*
    294   1.60       chs  * uvm_uarea_alloc: allocate a u-area
    295   1.60       chs  */
    296   1.60       chs 
    297  1.102   thorpej bool
    298   1.61       chs uvm_uarea_alloc(vaddr_t *uaddrp)
    299   1.60       chs {
    300  1.109        ad 	struct cpu_info *ci;
    301   1.60       chs 	vaddr_t uaddr;
    302   1.60       chs 
    303   1.60       chs #ifndef USPACE_ALIGN
    304   1.60       chs #define USPACE_ALIGN    0
    305   1.60       chs #endif
    306   1.60       chs 
    307  1.109        ad 	ci = curcpu();
    308  1.109        ad 
    309  1.109        ad 	if (ci->ci_data.cpu_uarea_cnt > 0) {
    310  1.109        ad 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
    311  1.109        ad 		if (ci->ci_data.cpu_uarea_cnt == 0) {
    312  1.109        ad 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    313  1.109        ad 		} else {
    314  1.109        ad 			uaddr = ci->ci_data.cpu_uarea_list;
    315  1.109        ad 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
    316  1.109        ad 			ci->ci_data.cpu_uarea_cnt--;
    317  1.109        ad 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    318  1.109        ad 			*uaddrp = uaddr;
    319  1.109        ad 			return true;
    320  1.109        ad 		}
    321   1.60       chs 	}
    322  1.109        ad 
    323  1.109        ad 	*uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
    324  1.109        ad 	    UVM_KMF_PAGEABLE);
    325  1.109        ad 	return false;
    326   1.60       chs }
    327   1.60       chs 
    328   1.60       chs /*
    329  1.109        ad  * uvm_uarea_free: free a u-area
    330   1.75  jdolecek  */
    331   1.75  jdolecek 
    332  1.105     rmind void
    333  1.113        ad uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
    334   1.75  jdolecek {
    335  1.109        ad 
    336  1.109        ad 	mutex_enter(&ci->ci_data.cpu_uarea_lock);
    337  1.109        ad 	UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
    338  1.109        ad 	ci->ci_data.cpu_uarea_list = uaddr;
    339  1.109        ad 	ci->ci_data.cpu_uarea_cnt++;
    340  1.109        ad 	mutex_exit(&ci->ci_data.cpu_uarea_lock);
    341   1.75  jdolecek }
    342   1.75  jdolecek 
    343   1.75  jdolecek /*
    344   1.75  jdolecek  * uvm_uarea_drain: return memory of u-areas over limit
    345   1.75  jdolecek  * back to system
    346  1.109        ad  *
    347  1.109        ad  * => if asked to drain as much as possible, drain all cpus.
    348  1.109        ad  * => if asked to drain to low water mark, drain local cpu only.
    349   1.60       chs  */
    350   1.60       chs 
    351   1.60       chs void
    352  1.102   thorpej uvm_uarea_drain(bool empty)
    353   1.60       chs {
    354  1.109        ad 	CPU_INFO_ITERATOR cii;
    355  1.109        ad 	struct cpu_info *ci;
    356  1.110        ad 	vaddr_t uaddr, nuaddr;
    357  1.109        ad 	int count;
    358   1.75  jdolecek 
    359  1.109        ad 	if (empty) {
    360  1.109        ad 		for (CPU_INFO_FOREACH(cii, ci)) {
    361  1.109        ad 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
    362  1.109        ad 			count = ci->ci_data.cpu_uarea_cnt;
    363  1.109        ad 			uaddr = ci->ci_data.cpu_uarea_list;
    364  1.109        ad 			ci->ci_data.cpu_uarea_cnt = 0;
    365  1.109        ad 			ci->ci_data.cpu_uarea_list = 0;
    366  1.109        ad 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    367  1.109        ad 
    368  1.109        ad 			while (count != 0) {
    369  1.110        ad 				nuaddr = UAREA_NEXTFREE(uaddr);
    370  1.109        ad 				uvm_km_free(kernel_map, uaddr, USPACE,
    371  1.109        ad 				    UVM_KMF_PAGEABLE);
    372  1.110        ad 				uaddr = nuaddr;
    373  1.109        ad 				count--;
    374  1.109        ad 			}
    375  1.109        ad 		}
    376   1.75  jdolecek 		return;
    377  1.109        ad 	}
    378   1.60       chs 
    379  1.109        ad 	ci = curcpu();
    380  1.109        ad 	if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
    381  1.109        ad 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
    382  1.109        ad 		while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
    383  1.109        ad 			uaddr = ci->ci_data.cpu_uarea_list;
    384  1.109        ad 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
    385  1.109        ad 			ci->ci_data.cpu_uarea_cnt--;
    386  1.109        ad 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    387  1.109        ad 			uvm_km_free(kernel_map, uaddr, USPACE,
    388  1.109        ad 			    UVM_KMF_PAGEABLE);
    389  1.109        ad 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
    390  1.109        ad 		}
    391  1.109        ad 		mutex_exit(&ci->ci_data.cpu_uarea_lock);
    392   1.60       chs 	}
    393   1.60       chs }
    394   1.60       chs 
    395   1.60       chs /*
    396   1.80        pk  * uvm_exit: exit a virtual address space
    397   1.80        pk  *
    398   1.80        pk  * - the process passed to us is a dead (pre-zombie) process; we
    399   1.80        pk  *   are running on a different context now (the reaper).
    400   1.80        pk  * - borrow proc0's address space because freeing the vmspace
    401   1.80        pk  *   of the dead process may block.
    402   1.80        pk  */
    403   1.80        pk 
    404   1.80        pk void
    405   1.89   thorpej uvm_proc_exit(struct proc *p)
    406   1.80        pk {
    407   1.80        pk 	struct lwp *l = curlwp; /* XXX */
    408   1.80        pk 	struct vmspace *ovm;
    409   1.80        pk 
    410   1.80        pk 	KASSERT(p == l->l_proc);
    411   1.80        pk 	ovm = p->p_vmspace;
    412   1.80        pk 
    413   1.80        pk 	/*
    414   1.80        pk 	 * borrow proc0's address space.
    415   1.80        pk 	 */
    416   1.80        pk 	pmap_deactivate(l);
    417   1.80        pk 	p->p_vmspace = proc0.p_vmspace;
    418   1.80        pk 	pmap_activate(l);
    419   1.80        pk 
    420   1.80        pk 	uvmspace_free(ovm);
    421   1.80        pk }
    422   1.80        pk 
    423   1.80        pk void
    424   1.80        pk uvm_lwp_exit(struct lwp *l)
    425   1.80        pk {
    426   1.94      yamt 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    427   1.80        pk 
    428  1.100     pavel 	l->l_flag &= ~LW_INMEM;
    429  1.113        ad 	uvm_uarea_free(va, l->l_cpu);
    430   1.80        pk 	l->l_addr = NULL;
    431   1.80        pk }
    432   1.80        pk 
    433   1.80        pk /*
    434    1.1       mrg  * uvm_init_limit: init per-process VM limits
    435    1.1       mrg  *
    436    1.1       mrg  * - called for process 0 and then inherited by all others.
    437    1.1       mrg  */
    438   1.60       chs 
    439    1.6       mrg void
    440   1.89   thorpej uvm_init_limits(struct proc *p)
    441    1.6       mrg {
    442    1.6       mrg 
    443    1.6       mrg 	/*
    444    1.6       mrg 	 * Set up the initial limits on process VM.  Set the maximum
    445    1.6       mrg 	 * resident set size to be all of (reasonably) available memory.
    446    1.6       mrg 	 * This causes any single, large process to start random page
    447    1.6       mrg 	 * replacement once it fills memory.
    448    1.6       mrg 	 */
    449    1.6       mrg 
    450    1.6       mrg 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    451   1.79        pk 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    452    1.6       mrg 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    453   1.79        pk 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    454    1.6       mrg 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    455    1.1       mrg }
    456    1.1       mrg 
    457    1.1       mrg #ifdef DEBUG
    458    1.1       mrg int	enableswap = 1;
    459    1.1       mrg int	swapdebug = 0;
    460    1.1       mrg #define	SDB_FOLLOW	1
    461    1.1       mrg #define SDB_SWAPIN	2
    462    1.1       mrg #define SDB_SWAPOUT	4
    463    1.1       mrg #endif
    464    1.1       mrg 
    465    1.1       mrg /*
    466   1.95      yamt  * uvm_swapin: swap in an lwp's u-area.
    467  1.107        ad  *
    468  1.107        ad  * - must be called with the LWP's swap lock held.
    469  1.107        ad  * - naturally, must not be called with l == curlwp
    470    1.1       mrg  */
    471    1.1       mrg 
    472    1.6       mrg void
    473   1.89   thorpej uvm_swapin(struct lwp *l)
    474    1.6       mrg {
    475   1.13       eeh 	vaddr_t addr;
    476   1.98        ad 	int error;
    477    1.6       mrg 
    478  1.112        ad 	/* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
    479  1.107        ad 	KASSERT(l != curlwp);
    480  1.107        ad 
    481   1.94      yamt 	addr = USER_TO_UAREA(l->l_addr);
    482   1.62   thorpej 	/* make L_INMEM true */
    483   1.93  drochner 	error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
    484   1.93  drochner 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    485   1.52       chs 	if (error) {
    486   1.52       chs 		panic("uvm_swapin: rewiring stack failed: %d", error);
    487   1.52       chs 	}
    488    1.6       mrg 
    489    1.6       mrg 	/*
    490    1.6       mrg 	 * Some architectures need to be notified when the user area has
    491    1.6       mrg 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    492    1.6       mrg 	 */
    493   1.62   thorpej 	cpu_swapin(l);
    494   1.98        ad 	lwp_lock(l);
    495   1.62   thorpej 	if (l->l_stat == LSRUN)
    496  1.106      yamt 		sched_enqueue(l, false);
    497  1.100     pavel 	l->l_flag |= LW_INMEM;
    498   1.62   thorpej 	l->l_swtime = 0;
    499   1.98        ad 	lwp_unlock(l);
    500    1.6       mrg 	++uvmexp.swapins;
    501    1.1       mrg }
    502    1.1       mrg 
    503    1.1       mrg /*
    504   1.99        ad  * uvm_kick_scheduler: kick the scheduler into action if not running.
    505   1.99        ad  *
    506   1.99        ad  * - called when swapped out processes have been awoken.
    507   1.99        ad  */
    508   1.99        ad 
    509   1.99        ad void
    510   1.99        ad uvm_kick_scheduler(void)
    511   1.99        ad {
    512   1.99        ad 
    513  1.103   thorpej 	if (uvm.swap_running == false)
    514  1.101        ad 		return;
    515  1.101        ad 
    516  1.107        ad 	mutex_enter(&uvm_scheduler_mutex);
    517  1.103   thorpej 	uvm.scheduler_kicked = true;
    518   1.99        ad 	cv_signal(&uvm.scheduler_cv);
    519  1.107        ad 	mutex_exit(&uvm_scheduler_mutex);
    520   1.99        ad }
    521   1.99        ad 
    522   1.99        ad /*
    523    1.1       mrg  * uvm_scheduler: process zero main loop
    524    1.1       mrg  *
    525    1.1       mrg  * - attempt to swapin every swaped-out, runnable process in order of
    526    1.1       mrg  *	priority.
    527    1.1       mrg  * - if not enough memory, wake the pagedaemon and let it clear space.
    528    1.1       mrg  */
    529    1.1       mrg 
    530    1.6       mrg void
    531   1.89   thorpej uvm_scheduler(void)
    532    1.1       mrg {
    533   1.62   thorpej 	struct lwp *l, *ll;
    534   1.32  augustss 	int pri;
    535    1.6       mrg 	int ppri;
    536    1.1       mrg 
    537   1.99        ad 	l = curlwp;
    538   1.99        ad 	lwp_lock(l);
    539  1.113        ad 	l->l_priority = PRI_VM;
    540  1.113        ad 	l->l_class = SCHED_FIFO;
    541   1.99        ad 	lwp_unlock(l);
    542   1.99        ad 
    543   1.99        ad 	for (;;) {
    544    1.1       mrg #ifdef DEBUG
    545  1.107        ad 		mutex_enter(&uvm_scheduler_mutex);
    546   1.99        ad 		while (!enableswap)
    547  1.107        ad 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
    548  1.107        ad 		mutex_exit(&uvm_scheduler_mutex);
    549   1.99        ad #endif
    550   1.99        ad 		ll = NULL;		/* process to choose */
    551   1.99        ad 		ppri = INT_MIN;		/* its priority */
    552   1.99        ad 
    553  1.107        ad 		mutex_enter(&proclist_lock);
    554   1.99        ad 		LIST_FOREACH(l, &alllwp, l_list) {
    555   1.99        ad 			/* is it a runnable swapped out process? */
    556  1.100     pavel 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
    557   1.99        ad 				pri = l->l_swtime + l->l_slptime -
    558   1.99        ad 				    (l->l_proc->p_nice - NZERO) * 8;
    559   1.99        ad 				if (pri > ppri) {   /* higher priority? */
    560   1.99        ad 					ll = l;
    561   1.99        ad 					ppri = pri;
    562   1.99        ad 				}
    563    1.6       mrg 			}
    564    1.6       mrg 		}
    565    1.1       mrg #ifdef DEBUG
    566   1.99        ad 		if (swapdebug & SDB_FOLLOW)
    567   1.99        ad 			printf("scheduler: running, procp %p pri %d\n", ll,
    568   1.99        ad 			    ppri);
    569    1.1       mrg #endif
    570   1.99        ad 		/*
    571   1.99        ad 		 * Nothing to do, back to sleep
    572   1.99        ad 		 */
    573   1.99        ad 		if ((l = ll) == NULL) {
    574  1.107        ad 			mutex_exit(&proclist_lock);
    575  1.107        ad 			mutex_enter(&uvm_scheduler_mutex);
    576  1.103   thorpej 			if (uvm.scheduler_kicked == false)
    577   1.99        ad 				cv_wait(&uvm.scheduler_cv,
    578  1.107        ad 				    &uvm_scheduler_mutex);
    579  1.103   thorpej 			uvm.scheduler_kicked = false;
    580  1.107        ad 			mutex_exit(&uvm_scheduler_mutex);
    581   1.99        ad 			continue;
    582   1.99        ad 		}
    583    1.6       mrg 
    584   1.99        ad 		/*
    585   1.99        ad 		 * we have found swapped out process which we would like
    586   1.99        ad 		 * to bring back in.
    587   1.99        ad 		 *
    588   1.99        ad 		 * XXX: this part is really bogus cuz we could deadlock
    589   1.99        ad 		 * on memory despite our feeble check
    590   1.99        ad 		 */
    591   1.99        ad 		if (uvmexp.free > atop(USPACE)) {
    592    1.1       mrg #ifdef DEBUG
    593   1.99        ad 			if (swapdebug & SDB_SWAPIN)
    594   1.99        ad 				printf("swapin: pid %d(%s)@%p, pri %d "
    595   1.99        ad 				    "free %d\n", l->l_proc->p_pid,
    596   1.99        ad 				    l->l_proc->p_comm, l->l_addr, ppri,
    597   1.99        ad 				    uvmexp.free);
    598    1.1       mrg #endif
    599  1.107        ad 			mutex_enter(&l->l_swaplock);
    600  1.107        ad 			mutex_exit(&proclist_lock);
    601   1.99        ad 			uvm_swapin(l);
    602  1.107        ad 			mutex_exit(&l->l_swaplock);
    603  1.107        ad 			continue;
    604   1.99        ad 		} else {
    605   1.99        ad 			/*
    606   1.99        ad 			 * not enough memory, jab the pageout daemon and
    607   1.99        ad 			 * wait til the coast is clear
    608   1.99        ad 			 */
    609  1.107        ad 			mutex_exit(&proclist_lock);
    610    1.1       mrg #ifdef DEBUG
    611   1.99        ad 			if (swapdebug & SDB_FOLLOW)
    612   1.99        ad 				printf("scheduler: no room for pid %d(%s),"
    613   1.99        ad 				    " free %d\n", l->l_proc->p_pid,
    614   1.99        ad 				    l->l_proc->p_comm, uvmexp.free);
    615    1.1       mrg #endif
    616   1.99        ad 			uvm_wait("schedpwait");
    617    1.1       mrg #ifdef DEBUG
    618   1.99        ad 			if (swapdebug & SDB_FOLLOW)
    619   1.99        ad 				printf("scheduler: room again, free %d\n",
    620   1.99        ad 				    uvmexp.free);
    621    1.1       mrg #endif
    622   1.99        ad 		}
    623   1.99        ad 	}
    624    1.1       mrg }
    625    1.1       mrg 
    626    1.1       mrg /*
    627   1.62   thorpej  * swappable: is LWP "l" swappable?
    628    1.1       mrg  */
    629    1.1       mrg 
    630  1.106      yamt static bool
    631  1.106      yamt swappable(struct lwp *l)
    632  1.106      yamt {
    633  1.106      yamt 
    634  1.106      yamt 	if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
    635  1.106      yamt 		return false;
    636  1.106      yamt 	if (l->l_holdcnt != 0)
    637  1.106      yamt 		return false;
    638  1.106      yamt 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
    639  1.106      yamt 		return false;
    640  1.106      yamt 	return true;
    641  1.106      yamt }
    642    1.1       mrg 
    643    1.1       mrg /*
    644    1.1       mrg  * swapout_threads: find threads that can be swapped and unwire their
    645    1.1       mrg  *	u-areas.
    646    1.1       mrg  *
    647    1.1       mrg  * - called by the pagedaemon
    648    1.1       mrg  * - try and swap at least one processs
    649    1.1       mrg  * - processes that are sleeping or stopped for maxslp or more seconds
    650    1.1       mrg  *   are swapped... otherwise the longest-sleeping or stopped process
    651    1.1       mrg  *   is swapped, otherwise the longest resident process...
    652    1.1       mrg  */
    653   1.60       chs 
    654    1.6       mrg void
    655   1.89   thorpej uvm_swapout_threads(void)
    656    1.1       mrg {
    657   1.62   thorpej 	struct lwp *l;
    658   1.62   thorpej 	struct lwp *outl, *outl2;
    659    1.6       mrg 	int outpri, outpri2;
    660    1.6       mrg 	int didswap = 0;
    661   1.48       chs 	extern int maxslp;
    662  1.107        ad 	bool gotit;
    663  1.107        ad 
    664    1.6       mrg 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    665    1.1       mrg 
    666    1.1       mrg #ifdef DEBUG
    667    1.6       mrg 	if (!enableswap)
    668    1.6       mrg 		return;
    669    1.1       mrg #endif
    670    1.1       mrg 
    671    1.6       mrg 	/*
    672   1.62   thorpej 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    673   1.62   thorpej 	 * outl2/outpri2: the longest resident thread (its swap time)
    674    1.6       mrg 	 */
    675   1.62   thorpej 	outl = outl2 = NULL;
    676    1.6       mrg 	outpri = outpri2 = 0;
    677  1.107        ad 
    678  1.107        ad  restart:
    679  1.107        ad 	mutex_enter(&proclist_lock);
    680   1.62   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
    681   1.81      yamt 		KASSERT(l->l_proc != NULL);
    682  1.107        ad 		if (!mutex_tryenter(&l->l_swaplock))
    683  1.107        ad 			continue;
    684   1.98        ad 		if (!swappable(l)) {
    685  1.107        ad 			mutex_exit(&l->l_swaplock);
    686    1.6       mrg 			continue;
    687   1.98        ad 		}
    688   1.62   thorpej 		switch (l->l_stat) {
    689   1.68        cl 		case LSONPROC:
    690   1.98        ad 			break;
    691   1.69        cl 
    692   1.62   thorpej 		case LSRUN:
    693   1.62   thorpej 			if (l->l_swtime > outpri2) {
    694   1.62   thorpej 				outl2 = l;
    695   1.62   thorpej 				outpri2 = l->l_swtime;
    696    1.6       mrg 			}
    697   1.98        ad 			break;
    698   1.48       chs 
    699   1.62   thorpej 		case LSSLEEP:
    700   1.62   thorpej 		case LSSTOP:
    701   1.62   thorpej 			if (l->l_slptime >= maxslp) {
    702  1.107        ad 				mutex_exit(&proclist_lock);
    703   1.62   thorpej 				uvm_swapout(l);
    704  1.107        ad 				/*
    705  1.107        ad 				 * Locking in the wrong direction -
    706  1.107        ad 				 * try to prevent the LWP from exiting.
    707  1.107        ad 				 */
    708  1.107        ad 				gotit = mutex_tryenter(&proclist_lock);
    709  1.107        ad 				mutex_exit(&l->l_swaplock);
    710    1.6       mrg 				didswap++;
    711  1.107        ad 				if (!gotit)
    712  1.107        ad 					goto restart;
    713   1.98        ad 				continue;
    714   1.62   thorpej 			} else if (l->l_slptime > outpri) {
    715   1.62   thorpej 				outl = l;
    716   1.62   thorpej 				outpri = l->l_slptime;
    717    1.6       mrg 			}
    718   1.98        ad 			break;
    719    1.6       mrg 		}
    720  1.107        ad 		mutex_exit(&l->l_swaplock);
    721    1.6       mrg 	}
    722  1.107        ad 
    723    1.6       mrg 	/*
    724    1.6       mrg 	 * If we didn't get rid of any real duds, toss out the next most
    725    1.6       mrg 	 * likely sleeping/stopped or running candidate.  We only do this
    726    1.6       mrg 	 * if we are real low on memory since we don't gain much by doing
    727    1.6       mrg 	 * it (USPACE bytes).
    728    1.6       mrg 	 */
    729    1.6       mrg 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    730   1.62   thorpej 		if ((l = outl) == NULL)
    731   1.62   thorpej 			l = outl2;
    732    1.1       mrg #ifdef DEBUG
    733    1.6       mrg 		if (swapdebug & SDB_SWAPOUT)
    734   1.62   thorpej 			printf("swapout_threads: no duds, try procp %p\n", l);
    735    1.1       mrg #endif
    736   1.98        ad 		if (l) {
    737  1.107        ad 			mutex_enter(&l->l_swaplock);
    738  1.107        ad 			mutex_exit(&proclist_lock);
    739  1.107        ad 			if (swappable(l))
    740  1.107        ad 				uvm_swapout(l);
    741  1.107        ad 			mutex_exit(&l->l_swaplock);
    742  1.107        ad 			return;
    743   1.98        ad 		}
    744    1.6       mrg 	}
    745   1.98        ad 
    746  1.107        ad 	mutex_exit(&proclist_lock);
    747    1.1       mrg }
    748    1.1       mrg 
    749    1.1       mrg /*
    750   1.62   thorpej  * uvm_swapout: swap out lwp "l"
    751    1.1       mrg  *
    752   1.48       chs  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    753    1.1       mrg  *   the pmap.
    754  1.107        ad  * - must be called with l->l_swaplock held.
    755    1.1       mrg  * - XXXCDC: should deactivate all process' private anonymous memory
    756    1.1       mrg  */
    757    1.1       mrg 
    758    1.6       mrg static void
    759   1.89   thorpej uvm_swapout(struct lwp *l)
    760    1.1       mrg {
    761   1.13       eeh 	vaddr_t addr;
    762   1.62   thorpej 	struct proc *p = l->l_proc;
    763    1.1       mrg 
    764  1.107        ad 	KASSERT(mutex_owned(&l->l_swaplock));
    765   1.98        ad 
    766    1.1       mrg #ifdef DEBUG
    767    1.6       mrg 	if (swapdebug & SDB_SWAPOUT)
    768   1.62   thorpej 		printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    769   1.62   thorpej 	   p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
    770   1.62   thorpej 	   l->l_slptime, uvmexp.free);
    771    1.1       mrg #endif
    772    1.1       mrg 
    773    1.6       mrg 	/*
    774    1.6       mrg 	 * Mark it as (potentially) swapped out.
    775    1.6       mrg 	 */
    776  1.107        ad 	lwp_lock(l);
    777  1.106      yamt 	if (!swappable(l)) {
    778   1.69        cl 		KDASSERT(l->l_cpu != curcpu());
    779   1.98        ad 		lwp_unlock(l);
    780   1.68        cl 		return;
    781   1.68        cl 	}
    782  1.100     pavel 	l->l_flag &= ~LW_INMEM;
    783   1.98        ad 	l->l_swtime = 0;
    784   1.62   thorpej 	if (l->l_stat == LSRUN)
    785  1.106      yamt 		sched_dequeue(l);
    786   1.98        ad 	lwp_unlock(l);
    787   1.98        ad 	p->p_stats->p_ru.ru_nswap++;	/* XXXSMP */
    788    1.6       mrg 	++uvmexp.swapouts;
    789   1.68        cl 
    790   1.68        cl 	/*
    791   1.68        cl 	 * Do any machine-specific actions necessary before swapout.
    792   1.68        cl 	 * This can include saving floating point state, etc.
    793   1.68        cl 	 */
    794   1.68        cl 	cpu_swapout(l);
    795   1.43       chs 
    796   1.43       chs 	/*
    797   1.43       chs 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    798   1.43       chs 	 */
    799   1.94      yamt 	addr = USER_TO_UAREA(l->l_addr);
    800   1.62   thorpej 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
    801   1.43       chs 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
    802  1.107        ad }
    803  1.107        ad 
    804  1.107        ad /*
    805  1.107        ad  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
    806  1.107        ad  * back into memory if it is currently swapped.
    807  1.107        ad  */
    808  1.107        ad 
    809  1.107        ad void
    810  1.107        ad uvm_lwp_hold(struct lwp *l)
    811  1.107        ad {
    812  1.107        ad 
    813  1.114        ad 	if (l == curlwp) {
    814  1.114        ad 		atomic_inc_uint(&l->l_holdcnt);
    815  1.114        ad 	} else {
    816  1.114        ad 		mutex_enter(&l->l_swaplock);
    817  1.114        ad 		if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
    818  1.114        ad 		    (l->l_flag & LW_INMEM) == 0)
    819  1.114        ad 			uvm_swapin(l);
    820  1.114        ad 		mutex_exit(&l->l_swaplock);
    821  1.114        ad 	}
    822  1.107        ad }
    823  1.107        ad 
    824  1.107        ad /*
    825  1.107        ad  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
    826  1.107        ad  * drops to zero, it's eligable to be swapped.
    827  1.107        ad  */
    828  1.107        ad 
    829  1.107        ad void
    830  1.107        ad uvm_lwp_rele(struct lwp *l)
    831  1.107        ad {
    832  1.107        ad 
    833  1.107        ad 	KASSERT(l->l_holdcnt != 0);
    834   1.98        ad 
    835  1.114        ad 	atomic_dec_uint(&l->l_holdcnt);
    836    1.1       mrg }
    837    1.1       mrg 
    838   1.96      matt #ifdef COREDUMP
    839   1.56   thorpej /*
    840   1.56   thorpej  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
    841   1.56   thorpej  * a core file.
    842   1.56   thorpej  */
    843   1.56   thorpej 
    844   1.56   thorpej int
    845   1.89   thorpej uvm_coredump_walkmap(struct proc *p, void *iocookie,
    846   1.89   thorpej     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
    847   1.89   thorpej     void *cookie)
    848   1.56   thorpej {
    849   1.56   thorpej 	struct uvm_coredump_state state;
    850   1.56   thorpej 	struct vmspace *vm = p->p_vmspace;
    851   1.56   thorpej 	struct vm_map *map = &vm->vm_map;
    852   1.56   thorpej 	struct vm_map_entry *entry;
    853   1.56   thorpej 	int error;
    854   1.56   thorpej 
    855   1.64    atatat 	entry = NULL;
    856   1.64    atatat 	vm_map_lock_read(map);
    857   1.87      matt 	state.end = 0;
    858   1.64    atatat 	for (;;) {
    859   1.64    atatat 		if (entry == NULL)
    860   1.64    atatat 			entry = map->header.next;
    861   1.64    atatat 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
    862   1.64    atatat 			entry = entry->next;
    863   1.64    atatat 		if (entry == &map->header)
    864   1.64    atatat 			break;
    865   1.64    atatat 
    866   1.56   thorpej 		state.cookie = cookie;
    867   1.86      matt 		if (state.end > entry->start) {
    868   1.86      matt 			state.start = state.end;
    869   1.86      matt 		} else {
    870   1.86      matt 			state.start = entry->start;
    871   1.86      matt 		}
    872   1.86      matt 		state.realend = entry->end;
    873   1.56   thorpej 		state.end = entry->end;
    874   1.56   thorpej 		state.prot = entry->protection;
    875   1.56   thorpej 		state.flags = 0;
    876   1.56   thorpej 
    877   1.82       chs 		/*
    878   1.82       chs 		 * Dump the region unless one of the following is true:
    879   1.82       chs 		 *
    880   1.82       chs 		 * (1) the region has neither object nor amap behind it
    881   1.82       chs 		 *     (ie. it has never been accessed).
    882   1.82       chs 		 *
    883   1.82       chs 		 * (2) the region has no amap and is read-only
    884   1.82       chs 		 *     (eg. an executable text section).
    885   1.82       chs 		 *
    886   1.82       chs 		 * (3) the region's object is a device.
    887   1.85   nathanw 		 *
    888   1.85   nathanw 		 * (4) the region is unreadable by the process.
    889   1.82       chs 		 */
    890   1.56   thorpej 
    891   1.82       chs 		KASSERT(!UVM_ET_ISSUBMAP(entry));
    892   1.82       chs 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
    893   1.82       chs 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
    894   1.82       chs 		if (entry->object.uvm_obj == NULL &&
    895   1.82       chs 		    entry->aref.ar_amap == NULL) {
    896   1.86      matt 			state.realend = state.start;
    897   1.86      matt 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
    898   1.82       chs 		    entry->aref.ar_amap == NULL) {
    899   1.86      matt 			state.realend = state.start;
    900   1.86      matt 		} else if (entry->object.uvm_obj != NULL &&
    901   1.82       chs 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
    902   1.86      matt 			state.realend = state.start;
    903   1.86      matt 		} else if ((entry->protection & VM_PROT_READ) == 0) {
    904   1.86      matt 			state.realend = state.start;
    905   1.86      matt 		} else {
    906   1.86      matt 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
    907   1.86      matt 				state.flags |= UVM_COREDUMP_STACK;
    908   1.86      matt 
    909   1.86      matt 			/*
    910   1.86      matt 			 * If this an anonymous entry, only dump instantiated
    911   1.86      matt 			 * pages.
    912   1.86      matt 			 */
    913   1.86      matt 			if (entry->object.uvm_obj == NULL) {
    914   1.86      matt 				vaddr_t end;
    915   1.86      matt 
    916   1.86      matt 				amap_lock(entry->aref.ar_amap);
    917   1.86      matt 				for (end = state.start;
    918   1.86      matt 				     end < state.end; end += PAGE_SIZE) {
    919   1.86      matt 					struct vm_anon *anon;
    920   1.86      matt 					anon = amap_lookup(&entry->aref,
    921   1.86      matt 					    end - entry->start);
    922   1.86      matt 					/*
    923   1.86      matt 					 * If we have already encountered an
    924   1.86      matt 					 * uninstantiated page, stop at the
    925   1.86      matt 					 * first instantied page.
    926   1.86      matt 					 */
    927   1.86      matt 					if (anon != NULL &&
    928   1.86      matt 					    state.realend != state.end) {
    929   1.86      matt 						state.end = end;
    930   1.86      matt 						break;
    931   1.86      matt 					}
    932   1.86      matt 
    933   1.86      matt 					/*
    934   1.86      matt 					 * If this page is the first
    935   1.86      matt 					 * uninstantiated page, mark this as
    936   1.86      matt 					 * the real ending point.  Continue to
    937   1.86      matt 					 * counting uninstantiated pages.
    938   1.86      matt 					 */
    939   1.86      matt 					if (anon == NULL &&
    940   1.86      matt 					    state.realend == state.end) {
    941   1.86      matt 						state.realend = end;
    942   1.86      matt 					}
    943   1.86      matt 				}
    944   1.86      matt 				amap_unlock(entry->aref.ar_amap);
    945   1.86      matt 			}
    946   1.82       chs 		}
    947   1.86      matt 
    948   1.56   thorpej 
    949   1.64    atatat 		vm_map_unlock_read(map);
    950   1.88      matt 		error = (*func)(p, iocookie, &state);
    951   1.56   thorpej 		if (error)
    952   1.56   thorpej 			return (error);
    953   1.64    atatat 		vm_map_lock_read(map);
    954   1.56   thorpej 	}
    955   1.64    atatat 	vm_map_unlock_read(map);
    956   1.56   thorpej 
    957   1.56   thorpej 	return (0);
    958   1.56   thorpej }
    959   1.96      matt #endif /* COREDUMP */
    960