uvm_glue.c revision 1.114 1 1.114 ad /* $NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.55 lukem
69 1.55 lukem #include <sys/cdefs.h>
70 1.114 ad __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $");
71 1.1 mrg
72 1.96 matt #include "opt_coredump.h"
73 1.49 lukem #include "opt_kgdb.h"
74 1.59 yamt #include "opt_kstack.h"
75 1.5 mrg #include "opt_uvmhist.h"
76 1.5 mrg
77 1.1 mrg /*
78 1.1 mrg * uvm_glue.c: glue functions
79 1.1 mrg */
80 1.1 mrg
81 1.1 mrg #include <sys/param.h>
82 1.1 mrg #include <sys/systm.h>
83 1.1 mrg #include <sys/proc.h>
84 1.1 mrg #include <sys/resourcevar.h>
85 1.1 mrg #include <sys/buf.h>
86 1.1 mrg #include <sys/user.h>
87 1.106 yamt #include <sys/syncobj.h>
88 1.111 ad #include <sys/cpu.h>
89 1.114 ad #include <sys/atomic.h>
90 1.1 mrg
91 1.1 mrg #include <uvm/uvm.h>
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * local prototypes
95 1.1 mrg */
96 1.1 mrg
97 1.78 junyoung static void uvm_swapout(struct lwp *);
98 1.1 mrg
99 1.109 ad #define UVM_NUAREA_HIWAT 20
100 1.109 ad #define UVM_NUAREA_LOWAT 16
101 1.109 ad
102 1.94 yamt #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
103 1.60 chs
104 1.1 mrg /*
105 1.1 mrg * XXXCDC: do these really belong here?
106 1.1 mrg */
107 1.1 mrg
108 1.28 thorpej /*
109 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
110 1.1 mrg *
111 1.83 yamt * - used only by /dev/kmem driver (mem.c)
112 1.1 mrg */
113 1.1 mrg
114 1.102 thorpej bool
115 1.104 christos uvm_kernacc(void *addr, size_t len, int rw)
116 1.6 mrg {
117 1.102 thorpej bool rv;
118 1.13 eeh vaddr_t saddr, eaddr;
119 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120 1.6 mrg
121 1.31 kleink saddr = trunc_page((vaddr_t)addr);
122 1.43 chs eaddr = round_page((vaddr_t)addr + len);
123 1.6 mrg vm_map_lock_read(kernel_map);
124 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 1.6 mrg vm_map_unlock_read(kernel_map);
126 1.6 mrg
127 1.6 mrg return(rv);
128 1.1 mrg }
129 1.1 mrg
130 1.1 mrg #ifdef KGDB
131 1.1 mrg /*
132 1.1 mrg * Change protections on kernel pages from addr to addr+len
133 1.1 mrg * (presumably so debugger can plant a breakpoint).
134 1.1 mrg *
135 1.1 mrg * We force the protection change at the pmap level. If we were
136 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
137 1.1 mrg * applied meaning we would still take a protection fault, something
138 1.1 mrg * we really don't want to do. It would also fragment the kernel
139 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
140 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
141 1.1 mrg * we can ensure the change takes place properly.
142 1.1 mrg */
143 1.6 mrg void
144 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw)
145 1.6 mrg {
146 1.6 mrg vm_prot_t prot;
147 1.13 eeh paddr_t pa;
148 1.13 eeh vaddr_t sva, eva;
149 1.6 mrg
150 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
151 1.31 kleink eva = round_page((vaddr_t)addr + len);
152 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
153 1.6 mrg /*
154 1.6 mrg * Extract physical address for the page.
155 1.6 mrg */
156 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false)
157 1.6 mrg panic("chgkprot: invalid page");
158 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
159 1.6 mrg }
160 1.51 chris pmap_update(pmap_kernel());
161 1.1 mrg }
162 1.1 mrg #endif
163 1.1 mrg
164 1.1 mrg /*
165 1.52 chs * uvm_vslock: wire user memory for I/O
166 1.1 mrg *
167 1.1 mrg * - called from physio and sys___sysctl
168 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
169 1.1 mrg */
170 1.1 mrg
171 1.26 thorpej int
172 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
173 1.1 mrg {
174 1.50 chs struct vm_map *map;
175 1.26 thorpej vaddr_t start, end;
176 1.45 chs int error;
177 1.26 thorpej
178 1.97 chs map = &vs->vm_map;
179 1.31 kleink start = trunc_page((vaddr_t)addr);
180 1.31 kleink end = round_page((vaddr_t)addr + len);
181 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0);
182 1.45 chs return error;
183 1.1 mrg }
184 1.1 mrg
185 1.1 mrg /*
186 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
187 1.1 mrg *
188 1.1 mrg * - called from physio and sys___sysctl
189 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
190 1.1 mrg */
191 1.1 mrg
192 1.6 mrg void
193 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
194 1.1 mrg {
195 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
196 1.43 chs round_page((vaddr_t)addr + len));
197 1.1 mrg }
198 1.1 mrg
199 1.1 mrg /*
200 1.62 thorpej * uvm_proc_fork: fork a virtual address space
201 1.1 mrg *
202 1.1 mrg * - the address space is copied as per parent map's inherit values
203 1.62 thorpej */
204 1.62 thorpej void
205 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
206 1.62 thorpej {
207 1.62 thorpej
208 1.103 thorpej if (shared == true) {
209 1.62 thorpej p2->p_vmspace = NULL;
210 1.62 thorpej uvmspace_share(p1, p2);
211 1.62 thorpej } else {
212 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
213 1.62 thorpej }
214 1.62 thorpej
215 1.62 thorpej cpu_proc_fork(p1, p2);
216 1.62 thorpej }
217 1.62 thorpej
218 1.62 thorpej
219 1.62 thorpej /*
220 1.62 thorpej * uvm_lwp_fork: fork a thread
221 1.62 thorpej *
222 1.1 mrg * - a new "user" structure is allocated for the child process
223 1.1 mrg * [filled in by MD layer...]
224 1.20 thorpej * - if specified, the child gets a new user stack described by
225 1.20 thorpej * stack and stacksize
226 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
227 1.1 mrg * process, and thus addresses of automatic variables may be invalid
228 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
229 1.62 thorpej * after cpu_lwp_fork returns.
230 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
231 1.1 mrg * than just hang
232 1.1 mrg */
233 1.6 mrg void
234 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
235 1.89 thorpej void (*func)(void *), void *arg)
236 1.6 mrg {
237 1.45 chs int error;
238 1.6 mrg
239 1.6 mrg /*
240 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
241 1.62 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
242 1.62 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
243 1.61 chs * to prevent kernel_map fragmentation. If we reused a cached U-area,
244 1.62 thorpej * L_INMEM will already be set and we don't need to do anything.
245 1.21 thorpej *
246 1.61 chs * Note the kernel stack gets read/write accesses right off the bat.
247 1.6 mrg */
248 1.61 chs
249 1.100 pavel if ((l2->l_flag & LW_INMEM) == 0) {
250 1.94 yamt vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
251 1.94 yamt
252 1.94 yamt error = uvm_fault_wire(kernel_map, uarea,
253 1.94 yamt uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
254 1.61 chs if (error)
255 1.62 thorpej panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
256 1.67 scw #ifdef PMAP_UAREA
257 1.67 scw /* Tell the pmap this is a u-area mapping */
258 1.94 yamt PMAP_UAREA(uarea);
259 1.67 scw #endif
260 1.100 pavel l2->l_flag |= LW_INMEM;
261 1.61 chs }
262 1.59 yamt
263 1.59 yamt #ifdef KSTACK_CHECK_MAGIC
264 1.59 yamt /*
265 1.59 yamt * fill stack with magic number
266 1.59 yamt */
267 1.63 yamt kstack_setup_magic(l2);
268 1.59 yamt #endif
269 1.6 mrg
270 1.6 mrg /*
271 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
272 1.62 thorpej * to run. If this is a normal user fork, the child will exit
273 1.34 thorpej * directly to user mode via child_return() on its first time
274 1.34 thorpej * slice and will not return here. If this is a kernel thread,
275 1.34 thorpej * the specified entry point will be executed.
276 1.6 mrg */
277 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
278 1.14 thorpej }
279 1.14 thorpej
280 1.14 thorpej /*
281 1.109 ad * uvm_cpu_attach: initialize per-CPU data structures.
282 1.109 ad */
283 1.109 ad
284 1.109 ad void
285 1.109 ad uvm_cpu_attach(struct cpu_info *ci)
286 1.109 ad {
287 1.109 ad
288 1.109 ad mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
289 1.109 ad ci->ci_data.cpu_uarea_cnt = 0;
290 1.109 ad ci->ci_data.cpu_uarea_list = 0;
291 1.109 ad }
292 1.109 ad
293 1.109 ad /*
294 1.60 chs * uvm_uarea_alloc: allocate a u-area
295 1.60 chs */
296 1.60 chs
297 1.102 thorpej bool
298 1.61 chs uvm_uarea_alloc(vaddr_t *uaddrp)
299 1.60 chs {
300 1.109 ad struct cpu_info *ci;
301 1.60 chs vaddr_t uaddr;
302 1.60 chs
303 1.60 chs #ifndef USPACE_ALIGN
304 1.60 chs #define USPACE_ALIGN 0
305 1.60 chs #endif
306 1.60 chs
307 1.109 ad ci = curcpu();
308 1.109 ad
309 1.109 ad if (ci->ci_data.cpu_uarea_cnt > 0) {
310 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
311 1.109 ad if (ci->ci_data.cpu_uarea_cnt == 0) {
312 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
313 1.109 ad } else {
314 1.109 ad uaddr = ci->ci_data.cpu_uarea_list;
315 1.109 ad ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
316 1.109 ad ci->ci_data.cpu_uarea_cnt--;
317 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
318 1.109 ad *uaddrp = uaddr;
319 1.109 ad return true;
320 1.109 ad }
321 1.60 chs }
322 1.109 ad
323 1.109 ad *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
324 1.109 ad UVM_KMF_PAGEABLE);
325 1.109 ad return false;
326 1.60 chs }
327 1.60 chs
328 1.60 chs /*
329 1.109 ad * uvm_uarea_free: free a u-area
330 1.75 jdolecek */
331 1.75 jdolecek
332 1.105 rmind void
333 1.113 ad uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
334 1.75 jdolecek {
335 1.109 ad
336 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
337 1.109 ad UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
338 1.109 ad ci->ci_data.cpu_uarea_list = uaddr;
339 1.109 ad ci->ci_data.cpu_uarea_cnt++;
340 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
341 1.75 jdolecek }
342 1.75 jdolecek
343 1.75 jdolecek /*
344 1.75 jdolecek * uvm_uarea_drain: return memory of u-areas over limit
345 1.75 jdolecek * back to system
346 1.109 ad *
347 1.109 ad * => if asked to drain as much as possible, drain all cpus.
348 1.109 ad * => if asked to drain to low water mark, drain local cpu only.
349 1.60 chs */
350 1.60 chs
351 1.60 chs void
352 1.102 thorpej uvm_uarea_drain(bool empty)
353 1.60 chs {
354 1.109 ad CPU_INFO_ITERATOR cii;
355 1.109 ad struct cpu_info *ci;
356 1.110 ad vaddr_t uaddr, nuaddr;
357 1.109 ad int count;
358 1.75 jdolecek
359 1.109 ad if (empty) {
360 1.109 ad for (CPU_INFO_FOREACH(cii, ci)) {
361 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
362 1.109 ad count = ci->ci_data.cpu_uarea_cnt;
363 1.109 ad uaddr = ci->ci_data.cpu_uarea_list;
364 1.109 ad ci->ci_data.cpu_uarea_cnt = 0;
365 1.109 ad ci->ci_data.cpu_uarea_list = 0;
366 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
367 1.109 ad
368 1.109 ad while (count != 0) {
369 1.110 ad nuaddr = UAREA_NEXTFREE(uaddr);
370 1.109 ad uvm_km_free(kernel_map, uaddr, USPACE,
371 1.109 ad UVM_KMF_PAGEABLE);
372 1.110 ad uaddr = nuaddr;
373 1.109 ad count--;
374 1.109 ad }
375 1.109 ad }
376 1.75 jdolecek return;
377 1.109 ad }
378 1.60 chs
379 1.109 ad ci = curcpu();
380 1.109 ad if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
381 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
382 1.109 ad while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
383 1.109 ad uaddr = ci->ci_data.cpu_uarea_list;
384 1.109 ad ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
385 1.109 ad ci->ci_data.cpu_uarea_cnt--;
386 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
387 1.109 ad uvm_km_free(kernel_map, uaddr, USPACE,
388 1.109 ad UVM_KMF_PAGEABLE);
389 1.109 ad mutex_enter(&ci->ci_data.cpu_uarea_lock);
390 1.109 ad }
391 1.109 ad mutex_exit(&ci->ci_data.cpu_uarea_lock);
392 1.60 chs }
393 1.60 chs }
394 1.60 chs
395 1.60 chs /*
396 1.80 pk * uvm_exit: exit a virtual address space
397 1.80 pk *
398 1.80 pk * - the process passed to us is a dead (pre-zombie) process; we
399 1.80 pk * are running on a different context now (the reaper).
400 1.80 pk * - borrow proc0's address space because freeing the vmspace
401 1.80 pk * of the dead process may block.
402 1.80 pk */
403 1.80 pk
404 1.80 pk void
405 1.89 thorpej uvm_proc_exit(struct proc *p)
406 1.80 pk {
407 1.80 pk struct lwp *l = curlwp; /* XXX */
408 1.80 pk struct vmspace *ovm;
409 1.80 pk
410 1.80 pk KASSERT(p == l->l_proc);
411 1.80 pk ovm = p->p_vmspace;
412 1.80 pk
413 1.80 pk /*
414 1.80 pk * borrow proc0's address space.
415 1.80 pk */
416 1.80 pk pmap_deactivate(l);
417 1.80 pk p->p_vmspace = proc0.p_vmspace;
418 1.80 pk pmap_activate(l);
419 1.80 pk
420 1.80 pk uvmspace_free(ovm);
421 1.80 pk }
422 1.80 pk
423 1.80 pk void
424 1.80 pk uvm_lwp_exit(struct lwp *l)
425 1.80 pk {
426 1.94 yamt vaddr_t va = USER_TO_UAREA(l->l_addr);
427 1.80 pk
428 1.100 pavel l->l_flag &= ~LW_INMEM;
429 1.113 ad uvm_uarea_free(va, l->l_cpu);
430 1.80 pk l->l_addr = NULL;
431 1.80 pk }
432 1.80 pk
433 1.80 pk /*
434 1.1 mrg * uvm_init_limit: init per-process VM limits
435 1.1 mrg *
436 1.1 mrg * - called for process 0 and then inherited by all others.
437 1.1 mrg */
438 1.60 chs
439 1.6 mrg void
440 1.89 thorpej uvm_init_limits(struct proc *p)
441 1.6 mrg {
442 1.6 mrg
443 1.6 mrg /*
444 1.6 mrg * Set up the initial limits on process VM. Set the maximum
445 1.6 mrg * resident set size to be all of (reasonably) available memory.
446 1.6 mrg * This causes any single, large process to start random page
447 1.6 mrg * replacement once it fills memory.
448 1.6 mrg */
449 1.6 mrg
450 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
451 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
452 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
453 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
454 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
455 1.1 mrg }
456 1.1 mrg
457 1.1 mrg #ifdef DEBUG
458 1.1 mrg int enableswap = 1;
459 1.1 mrg int swapdebug = 0;
460 1.1 mrg #define SDB_FOLLOW 1
461 1.1 mrg #define SDB_SWAPIN 2
462 1.1 mrg #define SDB_SWAPOUT 4
463 1.1 mrg #endif
464 1.1 mrg
465 1.1 mrg /*
466 1.95 yamt * uvm_swapin: swap in an lwp's u-area.
467 1.107 ad *
468 1.107 ad * - must be called with the LWP's swap lock held.
469 1.107 ad * - naturally, must not be called with l == curlwp
470 1.1 mrg */
471 1.1 mrg
472 1.6 mrg void
473 1.89 thorpej uvm_swapin(struct lwp *l)
474 1.6 mrg {
475 1.13 eeh vaddr_t addr;
476 1.98 ad int error;
477 1.6 mrg
478 1.112 ad /* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
479 1.107 ad KASSERT(l != curlwp);
480 1.107 ad
481 1.94 yamt addr = USER_TO_UAREA(l->l_addr);
482 1.62 thorpej /* make L_INMEM true */
483 1.93 drochner error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
484 1.93 drochner VM_PROT_READ | VM_PROT_WRITE, 0);
485 1.52 chs if (error) {
486 1.52 chs panic("uvm_swapin: rewiring stack failed: %d", error);
487 1.52 chs }
488 1.6 mrg
489 1.6 mrg /*
490 1.6 mrg * Some architectures need to be notified when the user area has
491 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
492 1.6 mrg */
493 1.62 thorpej cpu_swapin(l);
494 1.98 ad lwp_lock(l);
495 1.62 thorpej if (l->l_stat == LSRUN)
496 1.106 yamt sched_enqueue(l, false);
497 1.100 pavel l->l_flag |= LW_INMEM;
498 1.62 thorpej l->l_swtime = 0;
499 1.98 ad lwp_unlock(l);
500 1.6 mrg ++uvmexp.swapins;
501 1.1 mrg }
502 1.1 mrg
503 1.1 mrg /*
504 1.99 ad * uvm_kick_scheduler: kick the scheduler into action if not running.
505 1.99 ad *
506 1.99 ad * - called when swapped out processes have been awoken.
507 1.99 ad */
508 1.99 ad
509 1.99 ad void
510 1.99 ad uvm_kick_scheduler(void)
511 1.99 ad {
512 1.99 ad
513 1.103 thorpej if (uvm.swap_running == false)
514 1.101 ad return;
515 1.101 ad
516 1.107 ad mutex_enter(&uvm_scheduler_mutex);
517 1.103 thorpej uvm.scheduler_kicked = true;
518 1.99 ad cv_signal(&uvm.scheduler_cv);
519 1.107 ad mutex_exit(&uvm_scheduler_mutex);
520 1.99 ad }
521 1.99 ad
522 1.99 ad /*
523 1.1 mrg * uvm_scheduler: process zero main loop
524 1.1 mrg *
525 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
526 1.1 mrg * priority.
527 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
528 1.1 mrg */
529 1.1 mrg
530 1.6 mrg void
531 1.89 thorpej uvm_scheduler(void)
532 1.1 mrg {
533 1.62 thorpej struct lwp *l, *ll;
534 1.32 augustss int pri;
535 1.6 mrg int ppri;
536 1.1 mrg
537 1.99 ad l = curlwp;
538 1.99 ad lwp_lock(l);
539 1.113 ad l->l_priority = PRI_VM;
540 1.113 ad l->l_class = SCHED_FIFO;
541 1.99 ad lwp_unlock(l);
542 1.99 ad
543 1.99 ad for (;;) {
544 1.1 mrg #ifdef DEBUG
545 1.107 ad mutex_enter(&uvm_scheduler_mutex);
546 1.99 ad while (!enableswap)
547 1.107 ad cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
548 1.107 ad mutex_exit(&uvm_scheduler_mutex);
549 1.99 ad #endif
550 1.99 ad ll = NULL; /* process to choose */
551 1.99 ad ppri = INT_MIN; /* its priority */
552 1.99 ad
553 1.107 ad mutex_enter(&proclist_lock);
554 1.99 ad LIST_FOREACH(l, &alllwp, l_list) {
555 1.99 ad /* is it a runnable swapped out process? */
556 1.100 pavel if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
557 1.99 ad pri = l->l_swtime + l->l_slptime -
558 1.99 ad (l->l_proc->p_nice - NZERO) * 8;
559 1.99 ad if (pri > ppri) { /* higher priority? */
560 1.99 ad ll = l;
561 1.99 ad ppri = pri;
562 1.99 ad }
563 1.6 mrg }
564 1.6 mrg }
565 1.1 mrg #ifdef DEBUG
566 1.99 ad if (swapdebug & SDB_FOLLOW)
567 1.99 ad printf("scheduler: running, procp %p pri %d\n", ll,
568 1.99 ad ppri);
569 1.1 mrg #endif
570 1.99 ad /*
571 1.99 ad * Nothing to do, back to sleep
572 1.99 ad */
573 1.99 ad if ((l = ll) == NULL) {
574 1.107 ad mutex_exit(&proclist_lock);
575 1.107 ad mutex_enter(&uvm_scheduler_mutex);
576 1.103 thorpej if (uvm.scheduler_kicked == false)
577 1.99 ad cv_wait(&uvm.scheduler_cv,
578 1.107 ad &uvm_scheduler_mutex);
579 1.103 thorpej uvm.scheduler_kicked = false;
580 1.107 ad mutex_exit(&uvm_scheduler_mutex);
581 1.99 ad continue;
582 1.99 ad }
583 1.6 mrg
584 1.99 ad /*
585 1.99 ad * we have found swapped out process which we would like
586 1.99 ad * to bring back in.
587 1.99 ad *
588 1.99 ad * XXX: this part is really bogus cuz we could deadlock
589 1.99 ad * on memory despite our feeble check
590 1.99 ad */
591 1.99 ad if (uvmexp.free > atop(USPACE)) {
592 1.1 mrg #ifdef DEBUG
593 1.99 ad if (swapdebug & SDB_SWAPIN)
594 1.99 ad printf("swapin: pid %d(%s)@%p, pri %d "
595 1.99 ad "free %d\n", l->l_proc->p_pid,
596 1.99 ad l->l_proc->p_comm, l->l_addr, ppri,
597 1.99 ad uvmexp.free);
598 1.1 mrg #endif
599 1.107 ad mutex_enter(&l->l_swaplock);
600 1.107 ad mutex_exit(&proclist_lock);
601 1.99 ad uvm_swapin(l);
602 1.107 ad mutex_exit(&l->l_swaplock);
603 1.107 ad continue;
604 1.99 ad } else {
605 1.99 ad /*
606 1.99 ad * not enough memory, jab the pageout daemon and
607 1.99 ad * wait til the coast is clear
608 1.99 ad */
609 1.107 ad mutex_exit(&proclist_lock);
610 1.1 mrg #ifdef DEBUG
611 1.99 ad if (swapdebug & SDB_FOLLOW)
612 1.99 ad printf("scheduler: no room for pid %d(%s),"
613 1.99 ad " free %d\n", l->l_proc->p_pid,
614 1.99 ad l->l_proc->p_comm, uvmexp.free);
615 1.1 mrg #endif
616 1.99 ad uvm_wait("schedpwait");
617 1.1 mrg #ifdef DEBUG
618 1.99 ad if (swapdebug & SDB_FOLLOW)
619 1.99 ad printf("scheduler: room again, free %d\n",
620 1.99 ad uvmexp.free);
621 1.1 mrg #endif
622 1.99 ad }
623 1.99 ad }
624 1.1 mrg }
625 1.1 mrg
626 1.1 mrg /*
627 1.62 thorpej * swappable: is LWP "l" swappable?
628 1.1 mrg */
629 1.1 mrg
630 1.106 yamt static bool
631 1.106 yamt swappable(struct lwp *l)
632 1.106 yamt {
633 1.106 yamt
634 1.106 yamt if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
635 1.106 yamt return false;
636 1.106 yamt if (l->l_holdcnt != 0)
637 1.106 yamt return false;
638 1.106 yamt if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
639 1.106 yamt return false;
640 1.106 yamt return true;
641 1.106 yamt }
642 1.1 mrg
643 1.1 mrg /*
644 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
645 1.1 mrg * u-areas.
646 1.1 mrg *
647 1.1 mrg * - called by the pagedaemon
648 1.1 mrg * - try and swap at least one processs
649 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
650 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
651 1.1 mrg * is swapped, otherwise the longest resident process...
652 1.1 mrg */
653 1.60 chs
654 1.6 mrg void
655 1.89 thorpej uvm_swapout_threads(void)
656 1.1 mrg {
657 1.62 thorpej struct lwp *l;
658 1.62 thorpej struct lwp *outl, *outl2;
659 1.6 mrg int outpri, outpri2;
660 1.6 mrg int didswap = 0;
661 1.48 chs extern int maxslp;
662 1.107 ad bool gotit;
663 1.107 ad
664 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
665 1.1 mrg
666 1.1 mrg #ifdef DEBUG
667 1.6 mrg if (!enableswap)
668 1.6 mrg return;
669 1.1 mrg #endif
670 1.1 mrg
671 1.6 mrg /*
672 1.62 thorpej * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
673 1.62 thorpej * outl2/outpri2: the longest resident thread (its swap time)
674 1.6 mrg */
675 1.62 thorpej outl = outl2 = NULL;
676 1.6 mrg outpri = outpri2 = 0;
677 1.107 ad
678 1.107 ad restart:
679 1.107 ad mutex_enter(&proclist_lock);
680 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
681 1.81 yamt KASSERT(l->l_proc != NULL);
682 1.107 ad if (!mutex_tryenter(&l->l_swaplock))
683 1.107 ad continue;
684 1.98 ad if (!swappable(l)) {
685 1.107 ad mutex_exit(&l->l_swaplock);
686 1.6 mrg continue;
687 1.98 ad }
688 1.62 thorpej switch (l->l_stat) {
689 1.68 cl case LSONPROC:
690 1.98 ad break;
691 1.69 cl
692 1.62 thorpej case LSRUN:
693 1.62 thorpej if (l->l_swtime > outpri2) {
694 1.62 thorpej outl2 = l;
695 1.62 thorpej outpri2 = l->l_swtime;
696 1.6 mrg }
697 1.98 ad break;
698 1.48 chs
699 1.62 thorpej case LSSLEEP:
700 1.62 thorpej case LSSTOP:
701 1.62 thorpej if (l->l_slptime >= maxslp) {
702 1.107 ad mutex_exit(&proclist_lock);
703 1.62 thorpej uvm_swapout(l);
704 1.107 ad /*
705 1.107 ad * Locking in the wrong direction -
706 1.107 ad * try to prevent the LWP from exiting.
707 1.107 ad */
708 1.107 ad gotit = mutex_tryenter(&proclist_lock);
709 1.107 ad mutex_exit(&l->l_swaplock);
710 1.6 mrg didswap++;
711 1.107 ad if (!gotit)
712 1.107 ad goto restart;
713 1.98 ad continue;
714 1.62 thorpej } else if (l->l_slptime > outpri) {
715 1.62 thorpej outl = l;
716 1.62 thorpej outpri = l->l_slptime;
717 1.6 mrg }
718 1.98 ad break;
719 1.6 mrg }
720 1.107 ad mutex_exit(&l->l_swaplock);
721 1.6 mrg }
722 1.107 ad
723 1.6 mrg /*
724 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
725 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
726 1.6 mrg * if we are real low on memory since we don't gain much by doing
727 1.6 mrg * it (USPACE bytes).
728 1.6 mrg */
729 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
730 1.62 thorpej if ((l = outl) == NULL)
731 1.62 thorpej l = outl2;
732 1.1 mrg #ifdef DEBUG
733 1.6 mrg if (swapdebug & SDB_SWAPOUT)
734 1.62 thorpej printf("swapout_threads: no duds, try procp %p\n", l);
735 1.1 mrg #endif
736 1.98 ad if (l) {
737 1.107 ad mutex_enter(&l->l_swaplock);
738 1.107 ad mutex_exit(&proclist_lock);
739 1.107 ad if (swappable(l))
740 1.107 ad uvm_swapout(l);
741 1.107 ad mutex_exit(&l->l_swaplock);
742 1.107 ad return;
743 1.98 ad }
744 1.6 mrg }
745 1.98 ad
746 1.107 ad mutex_exit(&proclist_lock);
747 1.1 mrg }
748 1.1 mrg
749 1.1 mrg /*
750 1.62 thorpej * uvm_swapout: swap out lwp "l"
751 1.1 mrg *
752 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
753 1.1 mrg * the pmap.
754 1.107 ad * - must be called with l->l_swaplock held.
755 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
756 1.1 mrg */
757 1.1 mrg
758 1.6 mrg static void
759 1.89 thorpej uvm_swapout(struct lwp *l)
760 1.1 mrg {
761 1.13 eeh vaddr_t addr;
762 1.62 thorpej struct proc *p = l->l_proc;
763 1.1 mrg
764 1.107 ad KASSERT(mutex_owned(&l->l_swaplock));
765 1.98 ad
766 1.1 mrg #ifdef DEBUG
767 1.6 mrg if (swapdebug & SDB_SWAPOUT)
768 1.62 thorpej printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
769 1.62 thorpej p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
770 1.62 thorpej l->l_slptime, uvmexp.free);
771 1.1 mrg #endif
772 1.1 mrg
773 1.6 mrg /*
774 1.6 mrg * Mark it as (potentially) swapped out.
775 1.6 mrg */
776 1.107 ad lwp_lock(l);
777 1.106 yamt if (!swappable(l)) {
778 1.69 cl KDASSERT(l->l_cpu != curcpu());
779 1.98 ad lwp_unlock(l);
780 1.68 cl return;
781 1.68 cl }
782 1.100 pavel l->l_flag &= ~LW_INMEM;
783 1.98 ad l->l_swtime = 0;
784 1.62 thorpej if (l->l_stat == LSRUN)
785 1.106 yamt sched_dequeue(l);
786 1.98 ad lwp_unlock(l);
787 1.98 ad p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
788 1.6 mrg ++uvmexp.swapouts;
789 1.68 cl
790 1.68 cl /*
791 1.68 cl * Do any machine-specific actions necessary before swapout.
792 1.68 cl * This can include saving floating point state, etc.
793 1.68 cl */
794 1.68 cl cpu_swapout(l);
795 1.43 chs
796 1.43 chs /*
797 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
798 1.43 chs */
799 1.94 yamt addr = USER_TO_UAREA(l->l_addr);
800 1.62 thorpej uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
801 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
802 1.107 ad }
803 1.107 ad
804 1.107 ad /*
805 1.107 ad * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
806 1.107 ad * back into memory if it is currently swapped.
807 1.107 ad */
808 1.107 ad
809 1.107 ad void
810 1.107 ad uvm_lwp_hold(struct lwp *l)
811 1.107 ad {
812 1.107 ad
813 1.114 ad if (l == curlwp) {
814 1.114 ad atomic_inc_uint(&l->l_holdcnt);
815 1.114 ad } else {
816 1.114 ad mutex_enter(&l->l_swaplock);
817 1.114 ad if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
818 1.114 ad (l->l_flag & LW_INMEM) == 0)
819 1.114 ad uvm_swapin(l);
820 1.114 ad mutex_exit(&l->l_swaplock);
821 1.114 ad }
822 1.107 ad }
823 1.107 ad
824 1.107 ad /*
825 1.107 ad * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
826 1.107 ad * drops to zero, it's eligable to be swapped.
827 1.107 ad */
828 1.107 ad
829 1.107 ad void
830 1.107 ad uvm_lwp_rele(struct lwp *l)
831 1.107 ad {
832 1.107 ad
833 1.107 ad KASSERT(l->l_holdcnt != 0);
834 1.98 ad
835 1.114 ad atomic_dec_uint(&l->l_holdcnt);
836 1.1 mrg }
837 1.1 mrg
838 1.96 matt #ifdef COREDUMP
839 1.56 thorpej /*
840 1.56 thorpej * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
841 1.56 thorpej * a core file.
842 1.56 thorpej */
843 1.56 thorpej
844 1.56 thorpej int
845 1.89 thorpej uvm_coredump_walkmap(struct proc *p, void *iocookie,
846 1.89 thorpej int (*func)(struct proc *, void *, struct uvm_coredump_state *),
847 1.89 thorpej void *cookie)
848 1.56 thorpej {
849 1.56 thorpej struct uvm_coredump_state state;
850 1.56 thorpej struct vmspace *vm = p->p_vmspace;
851 1.56 thorpej struct vm_map *map = &vm->vm_map;
852 1.56 thorpej struct vm_map_entry *entry;
853 1.56 thorpej int error;
854 1.56 thorpej
855 1.64 atatat entry = NULL;
856 1.64 atatat vm_map_lock_read(map);
857 1.87 matt state.end = 0;
858 1.64 atatat for (;;) {
859 1.64 atatat if (entry == NULL)
860 1.64 atatat entry = map->header.next;
861 1.64 atatat else if (!uvm_map_lookup_entry(map, state.end, &entry))
862 1.64 atatat entry = entry->next;
863 1.64 atatat if (entry == &map->header)
864 1.64 atatat break;
865 1.64 atatat
866 1.56 thorpej state.cookie = cookie;
867 1.86 matt if (state.end > entry->start) {
868 1.86 matt state.start = state.end;
869 1.86 matt } else {
870 1.86 matt state.start = entry->start;
871 1.86 matt }
872 1.86 matt state.realend = entry->end;
873 1.56 thorpej state.end = entry->end;
874 1.56 thorpej state.prot = entry->protection;
875 1.56 thorpej state.flags = 0;
876 1.56 thorpej
877 1.82 chs /*
878 1.82 chs * Dump the region unless one of the following is true:
879 1.82 chs *
880 1.82 chs * (1) the region has neither object nor amap behind it
881 1.82 chs * (ie. it has never been accessed).
882 1.82 chs *
883 1.82 chs * (2) the region has no amap and is read-only
884 1.82 chs * (eg. an executable text section).
885 1.82 chs *
886 1.82 chs * (3) the region's object is a device.
887 1.85 nathanw *
888 1.85 nathanw * (4) the region is unreadable by the process.
889 1.82 chs */
890 1.56 thorpej
891 1.82 chs KASSERT(!UVM_ET_ISSUBMAP(entry));
892 1.82 chs KASSERT(state.start < VM_MAXUSER_ADDRESS);
893 1.82 chs KASSERT(state.end <= VM_MAXUSER_ADDRESS);
894 1.82 chs if (entry->object.uvm_obj == NULL &&
895 1.82 chs entry->aref.ar_amap == NULL) {
896 1.86 matt state.realend = state.start;
897 1.86 matt } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
898 1.82 chs entry->aref.ar_amap == NULL) {
899 1.86 matt state.realend = state.start;
900 1.86 matt } else if (entry->object.uvm_obj != NULL &&
901 1.82 chs UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
902 1.86 matt state.realend = state.start;
903 1.86 matt } else if ((entry->protection & VM_PROT_READ) == 0) {
904 1.86 matt state.realend = state.start;
905 1.86 matt } else {
906 1.86 matt if (state.start >= (vaddr_t)vm->vm_maxsaddr)
907 1.86 matt state.flags |= UVM_COREDUMP_STACK;
908 1.86 matt
909 1.86 matt /*
910 1.86 matt * If this an anonymous entry, only dump instantiated
911 1.86 matt * pages.
912 1.86 matt */
913 1.86 matt if (entry->object.uvm_obj == NULL) {
914 1.86 matt vaddr_t end;
915 1.86 matt
916 1.86 matt amap_lock(entry->aref.ar_amap);
917 1.86 matt for (end = state.start;
918 1.86 matt end < state.end; end += PAGE_SIZE) {
919 1.86 matt struct vm_anon *anon;
920 1.86 matt anon = amap_lookup(&entry->aref,
921 1.86 matt end - entry->start);
922 1.86 matt /*
923 1.86 matt * If we have already encountered an
924 1.86 matt * uninstantiated page, stop at the
925 1.86 matt * first instantied page.
926 1.86 matt */
927 1.86 matt if (anon != NULL &&
928 1.86 matt state.realend != state.end) {
929 1.86 matt state.end = end;
930 1.86 matt break;
931 1.86 matt }
932 1.86 matt
933 1.86 matt /*
934 1.86 matt * If this page is the first
935 1.86 matt * uninstantiated page, mark this as
936 1.86 matt * the real ending point. Continue to
937 1.86 matt * counting uninstantiated pages.
938 1.86 matt */
939 1.86 matt if (anon == NULL &&
940 1.86 matt state.realend == state.end) {
941 1.86 matt state.realend = end;
942 1.86 matt }
943 1.86 matt }
944 1.86 matt amap_unlock(entry->aref.ar_amap);
945 1.86 matt }
946 1.82 chs }
947 1.86 matt
948 1.56 thorpej
949 1.64 atatat vm_map_unlock_read(map);
950 1.88 matt error = (*func)(p, iocookie, &state);
951 1.56 thorpej if (error)
952 1.56 thorpej return (error);
953 1.64 atatat vm_map_lock_read(map);
954 1.56 thorpej }
955 1.64 atatat vm_map_unlock_read(map);
956 1.56 thorpej
957 1.56 thorpej return (0);
958 1.56 thorpej }
959 1.96 matt #endif /* COREDUMP */
960