uvm_glue.c revision 1.136 1 1.136 mrg /* $NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.55 lukem
69 1.55 lukem #include <sys/cdefs.h>
70 1.136 mrg __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $");
71 1.1 mrg
72 1.49 lukem #include "opt_kgdb.h"
73 1.59 yamt #include "opt_kstack.h"
74 1.5 mrg #include "opt_uvmhist.h"
75 1.5 mrg
76 1.1 mrg /*
77 1.1 mrg * uvm_glue.c: glue functions
78 1.1 mrg */
79 1.1 mrg
80 1.1 mrg #include <sys/param.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/proc.h>
83 1.1 mrg #include <sys/resourcevar.h>
84 1.1 mrg #include <sys/buf.h>
85 1.1 mrg #include <sys/user.h>
86 1.106 yamt #include <sys/syncobj.h>
87 1.111 ad #include <sys/cpu.h>
88 1.114 ad #include <sys/atomic.h>
89 1.1 mrg
90 1.1 mrg #include <uvm/uvm.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * local prototypes
94 1.1 mrg */
95 1.1 mrg
96 1.78 junyoung static void uvm_swapout(struct lwp *);
97 1.123 christos static int uarea_swapin(vaddr_t);
98 1.1 mrg
99 1.1 mrg /*
100 1.1 mrg * XXXCDC: do these really belong here?
101 1.1 mrg */
102 1.1 mrg
103 1.28 thorpej /*
104 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
105 1.1 mrg *
106 1.83 yamt * - used only by /dev/kmem driver (mem.c)
107 1.1 mrg */
108 1.1 mrg
109 1.102 thorpej bool
110 1.104 christos uvm_kernacc(void *addr, size_t len, int rw)
111 1.6 mrg {
112 1.102 thorpej bool rv;
113 1.13 eeh vaddr_t saddr, eaddr;
114 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115 1.6 mrg
116 1.31 kleink saddr = trunc_page((vaddr_t)addr);
117 1.43 chs eaddr = round_page((vaddr_t)addr + len);
118 1.6 mrg vm_map_lock_read(kernel_map);
119 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 1.6 mrg vm_map_unlock_read(kernel_map);
121 1.6 mrg
122 1.6 mrg return(rv);
123 1.1 mrg }
124 1.1 mrg
125 1.1 mrg #ifdef KGDB
126 1.1 mrg /*
127 1.1 mrg * Change protections on kernel pages from addr to addr+len
128 1.1 mrg * (presumably so debugger can plant a breakpoint).
129 1.1 mrg *
130 1.1 mrg * We force the protection change at the pmap level. If we were
131 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
132 1.1 mrg * applied meaning we would still take a protection fault, something
133 1.1 mrg * we really don't want to do. It would also fragment the kernel
134 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
135 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
136 1.1 mrg * we can ensure the change takes place properly.
137 1.1 mrg */
138 1.6 mrg void
139 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw)
140 1.6 mrg {
141 1.6 mrg vm_prot_t prot;
142 1.13 eeh paddr_t pa;
143 1.13 eeh vaddr_t sva, eva;
144 1.6 mrg
145 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 1.31 kleink eva = round_page((vaddr_t)addr + len);
147 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 1.6 mrg /*
149 1.6 mrg * Extract physical address for the page.
150 1.6 mrg */
151 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 1.123 christos panic("%s: invalid page", __func__);
153 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 1.6 mrg }
155 1.51 chris pmap_update(pmap_kernel());
156 1.1 mrg }
157 1.1 mrg #endif
158 1.1 mrg
159 1.1 mrg /*
160 1.52 chs * uvm_vslock: wire user memory for I/O
161 1.1 mrg *
162 1.1 mrg * - called from physio and sys___sysctl
163 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
164 1.1 mrg */
165 1.1 mrg
166 1.26 thorpej int
167 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 1.1 mrg {
169 1.50 chs struct vm_map *map;
170 1.26 thorpej vaddr_t start, end;
171 1.45 chs int error;
172 1.26 thorpej
173 1.97 chs map = &vs->vm_map;
174 1.31 kleink start = trunc_page((vaddr_t)addr);
175 1.31 kleink end = round_page((vaddr_t)addr + len);
176 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0);
177 1.45 chs return error;
178 1.1 mrg }
179 1.1 mrg
180 1.1 mrg /*
181 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 1.1 mrg *
183 1.1 mrg * - called from physio and sys___sysctl
184 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
185 1.1 mrg */
186 1.1 mrg
187 1.6 mrg void
188 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 1.1 mrg {
190 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 1.43 chs round_page((vaddr_t)addr + len));
192 1.1 mrg }
193 1.1 mrg
194 1.1 mrg /*
195 1.62 thorpej * uvm_proc_fork: fork a virtual address space
196 1.1 mrg *
197 1.1 mrg * - the address space is copied as per parent map's inherit values
198 1.62 thorpej */
199 1.62 thorpej void
200 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 1.62 thorpej {
202 1.62 thorpej
203 1.103 thorpej if (shared == true) {
204 1.62 thorpej p2->p_vmspace = NULL;
205 1.62 thorpej uvmspace_share(p1, p2);
206 1.62 thorpej } else {
207 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 1.62 thorpej }
209 1.62 thorpej
210 1.62 thorpej cpu_proc_fork(p1, p2);
211 1.62 thorpej }
212 1.62 thorpej
213 1.62 thorpej
214 1.62 thorpej /*
215 1.62 thorpej * uvm_lwp_fork: fork a thread
216 1.62 thorpej *
217 1.1 mrg * - a new "user" structure is allocated for the child process
218 1.1 mrg * [filled in by MD layer...]
219 1.20 thorpej * - if specified, the child gets a new user stack described by
220 1.20 thorpej * stack and stacksize
221 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
222 1.1 mrg * process, and thus addresses of automatic variables may be invalid
223 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
224 1.62 thorpej * after cpu_lwp_fork returns.
225 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
226 1.1 mrg * than just hang
227 1.1 mrg */
228 1.6 mrg void
229 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 1.89 thorpej void (*func)(void *), void *arg)
231 1.6 mrg {
232 1.45 chs int error;
233 1.6 mrg
234 1.6 mrg /*
235 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
236 1.62 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
237 1.62 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
238 1.61 chs * to prevent kernel_map fragmentation. If we reused a cached U-area,
239 1.62 thorpej * L_INMEM will already be set and we don't need to do anything.
240 1.21 thorpej *
241 1.61 chs * Note the kernel stack gets read/write accesses right off the bat.
242 1.6 mrg */
243 1.61 chs
244 1.100 pavel if ((l2->l_flag & LW_INMEM) == 0) {
245 1.94 yamt vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246 1.94 yamt
247 1.123 christos if ((error = uarea_swapin(uarea)) != 0)
248 1.123 christos panic("%s: uvm_fault_wire failed: %d", __func__, error);
249 1.67 scw #ifdef PMAP_UAREA
250 1.67 scw /* Tell the pmap this is a u-area mapping */
251 1.94 yamt PMAP_UAREA(uarea);
252 1.67 scw #endif
253 1.100 pavel l2->l_flag |= LW_INMEM;
254 1.61 chs }
255 1.59 yamt
256 1.59 yamt #ifdef KSTACK_CHECK_MAGIC
257 1.59 yamt /*
258 1.59 yamt * fill stack with magic number
259 1.59 yamt */
260 1.63 yamt kstack_setup_magic(l2);
261 1.59 yamt #endif
262 1.6 mrg
263 1.6 mrg /*
264 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
265 1.62 thorpej * to run. If this is a normal user fork, the child will exit
266 1.34 thorpej * directly to user mode via child_return() on its first time
267 1.34 thorpej * slice and will not return here. If this is a kernel thread,
268 1.34 thorpej * the specified entry point will be executed.
269 1.6 mrg */
270 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
271 1.14 thorpej }
272 1.14 thorpej
273 1.115 yamt static int
274 1.115 yamt uarea_swapin(vaddr_t addr)
275 1.115 yamt {
276 1.115 yamt
277 1.115 yamt return uvm_fault_wire(kernel_map, addr, addr + USPACE,
278 1.115 yamt VM_PROT_READ | VM_PROT_WRITE, 0);
279 1.115 yamt }
280 1.60 chs
281 1.115 yamt static void
282 1.115 yamt uarea_swapout(vaddr_t addr)
283 1.60 chs {
284 1.115 yamt
285 1.115 yamt uvm_fault_unwire(kernel_map, addr, addr + USPACE);
286 1.115 yamt }
287 1.60 chs
288 1.60 chs #ifndef USPACE_ALIGN
289 1.115 yamt #define USPACE_ALIGN 0
290 1.60 chs #endif
291 1.60 chs
292 1.115 yamt static pool_cache_t uvm_uarea_cache;
293 1.115 yamt
294 1.115 yamt static int
295 1.115 yamt uarea_ctor(void *arg, void *obj, int flags)
296 1.115 yamt {
297 1.115 yamt
298 1.115 yamt KASSERT((flags & PR_WAITOK) != 0);
299 1.115 yamt return uarea_swapin((vaddr_t)obj);
300 1.115 yamt }
301 1.115 yamt
302 1.115 yamt static void *
303 1.115 yamt uarea_poolpage_alloc(struct pool *pp, int flags)
304 1.115 yamt {
305 1.115 yamt
306 1.115 yamt return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
307 1.115 yamt USPACE_ALIGN, UVM_KMF_PAGEABLE |
308 1.115 yamt ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
309 1.115 yamt (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
310 1.115 yamt }
311 1.109 ad
312 1.115 yamt static void
313 1.115 yamt uarea_poolpage_free(struct pool *pp, void *addr)
314 1.115 yamt {
315 1.109 ad
316 1.115 yamt uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
317 1.109 ad UVM_KMF_PAGEABLE);
318 1.115 yamt }
319 1.115 yamt
320 1.115 yamt static struct pool_allocator uvm_uarea_allocator = {
321 1.115 yamt .pa_alloc = uarea_poolpage_alloc,
322 1.115 yamt .pa_free = uarea_poolpage_free,
323 1.115 yamt .pa_pagesz = USPACE,
324 1.115 yamt };
325 1.115 yamt
326 1.115 yamt void
327 1.115 yamt uvm_uarea_init(void)
328 1.115 yamt {
329 1.117 yamt int flags = PR_NOTOUCH;
330 1.115 yamt
331 1.116 yamt /*
332 1.116 yamt * specify PR_NOALIGN unless the alignment provided by
333 1.116 yamt * the backend (USPACE_ALIGN) is sufficient to provide
334 1.116 yamt * pool page size (UPSACE) alignment.
335 1.116 yamt */
336 1.116 yamt
337 1.117 yamt if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
338 1.117 yamt (USPACE_ALIGN % USPACE) != 0) {
339 1.117 yamt flags |= PR_NOALIGN;
340 1.117 yamt }
341 1.117 yamt
342 1.117 yamt uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
343 1.115 yamt "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
344 1.60 chs }
345 1.60 chs
346 1.60 chs /*
347 1.115 yamt * uvm_uarea_alloc: allocate a u-area
348 1.75 jdolecek */
349 1.75 jdolecek
350 1.115 yamt bool
351 1.115 yamt uvm_uarea_alloc(vaddr_t *uaddrp)
352 1.75 jdolecek {
353 1.109 ad
354 1.115 yamt *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
355 1.115 yamt return true;
356 1.75 jdolecek }
357 1.75 jdolecek
358 1.75 jdolecek /*
359 1.115 yamt * uvm_uarea_free: free a u-area
360 1.60 chs */
361 1.60 chs
362 1.60 chs void
363 1.115 yamt uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
364 1.60 chs {
365 1.60 chs
366 1.115 yamt pool_cache_put(uvm_uarea_cache, (void *)uaddr);
367 1.60 chs }
368 1.60 chs
369 1.60 chs /*
370 1.118 yamt * uvm_proc_exit: exit a virtual address space
371 1.80 pk *
372 1.80 pk * - borrow proc0's address space because freeing the vmspace
373 1.80 pk * of the dead process may block.
374 1.80 pk */
375 1.80 pk
376 1.80 pk void
377 1.89 thorpej uvm_proc_exit(struct proc *p)
378 1.80 pk {
379 1.80 pk struct lwp *l = curlwp; /* XXX */
380 1.80 pk struct vmspace *ovm;
381 1.80 pk
382 1.80 pk KASSERT(p == l->l_proc);
383 1.80 pk ovm = p->p_vmspace;
384 1.80 pk
385 1.80 pk /*
386 1.80 pk * borrow proc0's address space.
387 1.80 pk */
388 1.129 ad KPREEMPT_DISABLE(l);
389 1.80 pk pmap_deactivate(l);
390 1.80 pk p->p_vmspace = proc0.p_vmspace;
391 1.80 pk pmap_activate(l);
392 1.129 ad KPREEMPT_ENABLE(l);
393 1.80 pk
394 1.80 pk uvmspace_free(ovm);
395 1.80 pk }
396 1.80 pk
397 1.80 pk void
398 1.80 pk uvm_lwp_exit(struct lwp *l)
399 1.80 pk {
400 1.94 yamt vaddr_t va = USER_TO_UAREA(l->l_addr);
401 1.80 pk
402 1.100 pavel l->l_flag &= ~LW_INMEM;
403 1.113 ad uvm_uarea_free(va, l->l_cpu);
404 1.80 pk l->l_addr = NULL;
405 1.80 pk }
406 1.80 pk
407 1.80 pk /*
408 1.1 mrg * uvm_init_limit: init per-process VM limits
409 1.1 mrg *
410 1.1 mrg * - called for process 0 and then inherited by all others.
411 1.1 mrg */
412 1.60 chs
413 1.6 mrg void
414 1.89 thorpej uvm_init_limits(struct proc *p)
415 1.6 mrg {
416 1.6 mrg
417 1.6 mrg /*
418 1.6 mrg * Set up the initial limits on process VM. Set the maximum
419 1.6 mrg * resident set size to be all of (reasonably) available memory.
420 1.6 mrg * This causes any single, large process to start random page
421 1.6 mrg * replacement once it fills memory.
422 1.6 mrg */
423 1.6 mrg
424 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
425 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
426 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
427 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
428 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
429 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
430 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
431 1.1 mrg }
432 1.1 mrg
433 1.1 mrg #ifdef DEBUG
434 1.1 mrg int enableswap = 1;
435 1.1 mrg int swapdebug = 0;
436 1.1 mrg #define SDB_FOLLOW 1
437 1.1 mrg #define SDB_SWAPIN 2
438 1.1 mrg #define SDB_SWAPOUT 4
439 1.1 mrg #endif
440 1.1 mrg
441 1.1 mrg /*
442 1.95 yamt * uvm_swapin: swap in an lwp's u-area.
443 1.107 ad *
444 1.107 ad * - must be called with the LWP's swap lock held.
445 1.107 ad * - naturally, must not be called with l == curlwp
446 1.1 mrg */
447 1.1 mrg
448 1.6 mrg void
449 1.89 thorpej uvm_swapin(struct lwp *l)
450 1.6 mrg {
451 1.98 ad int error;
452 1.6 mrg
453 1.135 yamt KASSERT(mutex_owned(&l->l_swaplock));
454 1.107 ad KASSERT(l != curlwp);
455 1.107 ad
456 1.115 yamt error = uarea_swapin(USER_TO_UAREA(l->l_addr));
457 1.52 chs if (error) {
458 1.123 christos panic("%s: rewiring stack failed: %d", __func__, error);
459 1.52 chs }
460 1.6 mrg
461 1.6 mrg /*
462 1.6 mrg * Some architectures need to be notified when the user area has
463 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
464 1.6 mrg */
465 1.62 thorpej cpu_swapin(l);
466 1.98 ad lwp_lock(l);
467 1.62 thorpej if (l->l_stat == LSRUN)
468 1.106 yamt sched_enqueue(l, false);
469 1.100 pavel l->l_flag |= LW_INMEM;
470 1.62 thorpej l->l_swtime = 0;
471 1.98 ad lwp_unlock(l);
472 1.6 mrg ++uvmexp.swapins;
473 1.1 mrg }
474 1.1 mrg
475 1.1 mrg /*
476 1.99 ad * uvm_kick_scheduler: kick the scheduler into action if not running.
477 1.99 ad *
478 1.99 ad * - called when swapped out processes have been awoken.
479 1.99 ad */
480 1.99 ad
481 1.99 ad void
482 1.99 ad uvm_kick_scheduler(void)
483 1.99 ad {
484 1.99 ad
485 1.103 thorpej if (uvm.swap_running == false)
486 1.101 ad return;
487 1.101 ad
488 1.107 ad mutex_enter(&uvm_scheduler_mutex);
489 1.103 thorpej uvm.scheduler_kicked = true;
490 1.99 ad cv_signal(&uvm.scheduler_cv);
491 1.107 ad mutex_exit(&uvm_scheduler_mutex);
492 1.99 ad }
493 1.99 ad
494 1.99 ad /*
495 1.1 mrg * uvm_scheduler: process zero main loop
496 1.1 mrg *
497 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
498 1.1 mrg * priority.
499 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
500 1.1 mrg */
501 1.1 mrg
502 1.6 mrg void
503 1.89 thorpej uvm_scheduler(void)
504 1.1 mrg {
505 1.62 thorpej struct lwp *l, *ll;
506 1.32 augustss int pri;
507 1.6 mrg int ppri;
508 1.1 mrg
509 1.99 ad l = curlwp;
510 1.99 ad lwp_lock(l);
511 1.113 ad l->l_priority = PRI_VM;
512 1.113 ad l->l_class = SCHED_FIFO;
513 1.99 ad lwp_unlock(l);
514 1.99 ad
515 1.99 ad for (;;) {
516 1.1 mrg #ifdef DEBUG
517 1.107 ad mutex_enter(&uvm_scheduler_mutex);
518 1.99 ad while (!enableswap)
519 1.107 ad cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
520 1.107 ad mutex_exit(&uvm_scheduler_mutex);
521 1.99 ad #endif
522 1.99 ad ll = NULL; /* process to choose */
523 1.99 ad ppri = INT_MIN; /* its priority */
524 1.99 ad
525 1.125 ad mutex_enter(proc_lock);
526 1.99 ad LIST_FOREACH(l, &alllwp, l_list) {
527 1.99 ad /* is it a runnable swapped out process? */
528 1.100 pavel if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
529 1.99 ad pri = l->l_swtime + l->l_slptime -
530 1.99 ad (l->l_proc->p_nice - NZERO) * 8;
531 1.99 ad if (pri > ppri) { /* higher priority? */
532 1.99 ad ll = l;
533 1.99 ad ppri = pri;
534 1.99 ad }
535 1.6 mrg }
536 1.6 mrg }
537 1.1 mrg #ifdef DEBUG
538 1.99 ad if (swapdebug & SDB_FOLLOW)
539 1.123 christos printf("%s: running, procp %p pri %d\n", __func__, ll,
540 1.99 ad ppri);
541 1.1 mrg #endif
542 1.99 ad /*
543 1.99 ad * Nothing to do, back to sleep
544 1.99 ad */
545 1.99 ad if ((l = ll) == NULL) {
546 1.125 ad mutex_exit(proc_lock);
547 1.107 ad mutex_enter(&uvm_scheduler_mutex);
548 1.103 thorpej if (uvm.scheduler_kicked == false)
549 1.99 ad cv_wait(&uvm.scheduler_cv,
550 1.107 ad &uvm_scheduler_mutex);
551 1.103 thorpej uvm.scheduler_kicked = false;
552 1.107 ad mutex_exit(&uvm_scheduler_mutex);
553 1.99 ad continue;
554 1.99 ad }
555 1.6 mrg
556 1.99 ad /*
557 1.99 ad * we have found swapped out process which we would like
558 1.99 ad * to bring back in.
559 1.99 ad *
560 1.99 ad * XXX: this part is really bogus cuz we could deadlock
561 1.99 ad * on memory despite our feeble check
562 1.99 ad */
563 1.99 ad if (uvmexp.free > atop(USPACE)) {
564 1.1 mrg #ifdef DEBUG
565 1.99 ad if (swapdebug & SDB_SWAPIN)
566 1.99 ad printf("swapin: pid %d(%s)@%p, pri %d "
567 1.99 ad "free %d\n", l->l_proc->p_pid,
568 1.99 ad l->l_proc->p_comm, l->l_addr, ppri,
569 1.99 ad uvmexp.free);
570 1.1 mrg #endif
571 1.107 ad mutex_enter(&l->l_swaplock);
572 1.125 ad mutex_exit(proc_lock);
573 1.99 ad uvm_swapin(l);
574 1.107 ad mutex_exit(&l->l_swaplock);
575 1.107 ad continue;
576 1.99 ad } else {
577 1.99 ad /*
578 1.99 ad * not enough memory, jab the pageout daemon and
579 1.99 ad * wait til the coast is clear
580 1.99 ad */
581 1.125 ad mutex_exit(proc_lock);
582 1.1 mrg #ifdef DEBUG
583 1.99 ad if (swapdebug & SDB_FOLLOW)
584 1.123 christos printf("%s: no room for pid %d(%s),"
585 1.124 yamt " free %d\n", __func__, l->l_proc->p_pid,
586 1.99 ad l->l_proc->p_comm, uvmexp.free);
587 1.1 mrg #endif
588 1.99 ad uvm_wait("schedpwait");
589 1.1 mrg #ifdef DEBUG
590 1.99 ad if (swapdebug & SDB_FOLLOW)
591 1.123 christos printf("%s: room again, free %d\n", __func__,
592 1.99 ad uvmexp.free);
593 1.1 mrg #endif
594 1.99 ad }
595 1.99 ad }
596 1.1 mrg }
597 1.1 mrg
598 1.1 mrg /*
599 1.62 thorpej * swappable: is LWP "l" swappable?
600 1.1 mrg */
601 1.1 mrg
602 1.106 yamt static bool
603 1.106 yamt swappable(struct lwp *l)
604 1.106 yamt {
605 1.106 yamt
606 1.127 ad if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
607 1.127 ad return false;
608 1.127 ad if ((l->l_pflag & LP_RUNNING) != 0)
609 1.106 yamt return false;
610 1.106 yamt if (l->l_holdcnt != 0)
611 1.106 yamt return false;
612 1.133 ad if (l->l_class != SCHED_OTHER)
613 1.133 ad return false;
614 1.106 yamt if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
615 1.106 yamt return false;
616 1.131 ad if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
617 1.130 ad return false;
618 1.106 yamt return true;
619 1.106 yamt }
620 1.1 mrg
621 1.1 mrg /*
622 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
623 1.1 mrg * u-areas.
624 1.1 mrg *
625 1.1 mrg * - called by the pagedaemon
626 1.1 mrg * - try and swap at least one processs
627 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
628 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
629 1.1 mrg * is swapped, otherwise the longest resident process...
630 1.1 mrg */
631 1.60 chs
632 1.6 mrg void
633 1.89 thorpej uvm_swapout_threads(void)
634 1.1 mrg {
635 1.62 thorpej struct lwp *l;
636 1.62 thorpej struct lwp *outl, *outl2;
637 1.6 mrg int outpri, outpri2;
638 1.6 mrg int didswap = 0;
639 1.48 chs extern int maxslp;
640 1.107 ad bool gotit;
641 1.107 ad
642 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
643 1.1 mrg
644 1.1 mrg #ifdef DEBUG
645 1.6 mrg if (!enableswap)
646 1.6 mrg return;
647 1.1 mrg #endif
648 1.1 mrg
649 1.6 mrg /*
650 1.62 thorpej * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
651 1.62 thorpej * outl2/outpri2: the longest resident thread (its swap time)
652 1.6 mrg */
653 1.62 thorpej outl = outl2 = NULL;
654 1.6 mrg outpri = outpri2 = 0;
655 1.107 ad
656 1.107 ad restart:
657 1.125 ad mutex_enter(proc_lock);
658 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
659 1.81 yamt KASSERT(l->l_proc != NULL);
660 1.107 ad if (!mutex_tryenter(&l->l_swaplock))
661 1.107 ad continue;
662 1.98 ad if (!swappable(l)) {
663 1.107 ad mutex_exit(&l->l_swaplock);
664 1.6 mrg continue;
665 1.98 ad }
666 1.62 thorpej switch (l->l_stat) {
667 1.68 cl case LSONPROC:
668 1.98 ad break;
669 1.69 cl
670 1.62 thorpej case LSRUN:
671 1.62 thorpej if (l->l_swtime > outpri2) {
672 1.62 thorpej outl2 = l;
673 1.62 thorpej outpri2 = l->l_swtime;
674 1.6 mrg }
675 1.98 ad break;
676 1.48 chs
677 1.62 thorpej case LSSLEEP:
678 1.62 thorpej case LSSTOP:
679 1.62 thorpej if (l->l_slptime >= maxslp) {
680 1.125 ad mutex_exit(proc_lock);
681 1.62 thorpej uvm_swapout(l);
682 1.107 ad /*
683 1.107 ad * Locking in the wrong direction -
684 1.107 ad * try to prevent the LWP from exiting.
685 1.107 ad */
686 1.125 ad gotit = mutex_tryenter(proc_lock);
687 1.107 ad mutex_exit(&l->l_swaplock);
688 1.6 mrg didswap++;
689 1.107 ad if (!gotit)
690 1.107 ad goto restart;
691 1.98 ad continue;
692 1.62 thorpej } else if (l->l_slptime > outpri) {
693 1.62 thorpej outl = l;
694 1.62 thorpej outpri = l->l_slptime;
695 1.6 mrg }
696 1.98 ad break;
697 1.6 mrg }
698 1.107 ad mutex_exit(&l->l_swaplock);
699 1.6 mrg }
700 1.107 ad
701 1.6 mrg /*
702 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
703 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
704 1.6 mrg * if we are real low on memory since we don't gain much by doing
705 1.6 mrg * it (USPACE bytes).
706 1.6 mrg */
707 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
708 1.62 thorpej if ((l = outl) == NULL)
709 1.62 thorpej l = outl2;
710 1.1 mrg #ifdef DEBUG
711 1.6 mrg if (swapdebug & SDB_SWAPOUT)
712 1.123 christos printf("%s: no duds, try procp %p\n", __func__, l);
713 1.1 mrg #endif
714 1.98 ad if (l) {
715 1.107 ad mutex_enter(&l->l_swaplock);
716 1.125 ad mutex_exit(proc_lock);
717 1.107 ad if (swappable(l))
718 1.107 ad uvm_swapout(l);
719 1.107 ad mutex_exit(&l->l_swaplock);
720 1.107 ad return;
721 1.98 ad }
722 1.6 mrg }
723 1.98 ad
724 1.125 ad mutex_exit(proc_lock);
725 1.1 mrg }
726 1.1 mrg
727 1.1 mrg /*
728 1.62 thorpej * uvm_swapout: swap out lwp "l"
729 1.1 mrg *
730 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
731 1.1 mrg * the pmap.
732 1.107 ad * - must be called with l->l_swaplock held.
733 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
734 1.1 mrg */
735 1.1 mrg
736 1.6 mrg static void
737 1.89 thorpej uvm_swapout(struct lwp *l)
738 1.1 mrg {
739 1.132 ad struct vm_map *map;
740 1.132 ad
741 1.107 ad KASSERT(mutex_owned(&l->l_swaplock));
742 1.98 ad
743 1.1 mrg #ifdef DEBUG
744 1.6 mrg if (swapdebug & SDB_SWAPOUT)
745 1.123 christos printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
746 1.123 christos __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
747 1.123 christos l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
748 1.1 mrg #endif
749 1.1 mrg
750 1.6 mrg /*
751 1.6 mrg * Mark it as (potentially) swapped out.
752 1.6 mrg */
753 1.107 ad lwp_lock(l);
754 1.106 yamt if (!swappable(l)) {
755 1.69 cl KDASSERT(l->l_cpu != curcpu());
756 1.98 ad lwp_unlock(l);
757 1.68 cl return;
758 1.68 cl }
759 1.100 pavel l->l_flag &= ~LW_INMEM;
760 1.98 ad l->l_swtime = 0;
761 1.62 thorpej if (l->l_stat == LSRUN)
762 1.106 yamt sched_dequeue(l);
763 1.98 ad lwp_unlock(l);
764 1.119 ad l->l_ru.ru_nswap++;
765 1.6 mrg ++uvmexp.swapouts;
766 1.68 cl
767 1.68 cl /*
768 1.68 cl * Do any machine-specific actions necessary before swapout.
769 1.68 cl * This can include saving floating point state, etc.
770 1.68 cl */
771 1.68 cl cpu_swapout(l);
772 1.43 chs
773 1.43 chs /*
774 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
775 1.43 chs */
776 1.115 yamt uarea_swapout(USER_TO_UAREA(l->l_addr));
777 1.132 ad map = &l->l_proc->p_vmspace->vm_map;
778 1.132 ad if (vm_map_lock_try(map)) {
779 1.132 ad pmap_collect(vm_map_pmap(map));
780 1.132 ad vm_map_unlock(map);
781 1.132 ad }
782 1.107 ad }
783 1.107 ad
784 1.107 ad /*
785 1.107 ad * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
786 1.107 ad * back into memory if it is currently swapped.
787 1.107 ad */
788 1.107 ad
789 1.107 ad void
790 1.107 ad uvm_lwp_hold(struct lwp *l)
791 1.107 ad {
792 1.107 ad
793 1.114 ad if (l == curlwp) {
794 1.114 ad atomic_inc_uint(&l->l_holdcnt);
795 1.114 ad } else {
796 1.114 ad mutex_enter(&l->l_swaplock);
797 1.114 ad if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
798 1.114 ad (l->l_flag & LW_INMEM) == 0)
799 1.114 ad uvm_swapin(l);
800 1.114 ad mutex_exit(&l->l_swaplock);
801 1.114 ad }
802 1.107 ad }
803 1.107 ad
804 1.107 ad /*
805 1.107 ad * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
806 1.107 ad * drops to zero, it's eligable to be swapped.
807 1.107 ad */
808 1.107 ad
809 1.107 ad void
810 1.107 ad uvm_lwp_rele(struct lwp *l)
811 1.107 ad {
812 1.107 ad
813 1.107 ad KASSERT(l->l_holdcnt != 0);
814 1.98 ad
815 1.114 ad atomic_dec_uint(&l->l_holdcnt);
816 1.1 mrg }
817