uvm_glue.c revision 1.138 1 1.138 rmind /* $NetBSD: uvm_glue.c,v 1.138 2009/06/28 15:18:51 rmind Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.55 lukem
69 1.55 lukem #include <sys/cdefs.h>
70 1.138 rmind __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.138 2009/06/28 15:18:51 rmind Exp $");
71 1.1 mrg
72 1.49 lukem #include "opt_kgdb.h"
73 1.59 yamt #include "opt_kstack.h"
74 1.5 mrg #include "opt_uvmhist.h"
75 1.5 mrg
76 1.1 mrg /*
77 1.1 mrg * uvm_glue.c: glue functions
78 1.1 mrg */
79 1.1 mrg
80 1.1 mrg #include <sys/param.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/proc.h>
83 1.1 mrg #include <sys/resourcevar.h>
84 1.1 mrg #include <sys/buf.h>
85 1.1 mrg #include <sys/user.h>
86 1.106 yamt #include <sys/syncobj.h>
87 1.111 ad #include <sys/cpu.h>
88 1.114 ad #include <sys/atomic.h>
89 1.1 mrg
90 1.1 mrg #include <uvm/uvm.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * local prototypes
94 1.1 mrg */
95 1.1 mrg
96 1.78 junyoung static void uvm_swapout(struct lwp *);
97 1.123 christos static int uarea_swapin(vaddr_t);
98 1.1 mrg
99 1.1 mrg /*
100 1.1 mrg * XXXCDC: do these really belong here?
101 1.1 mrg */
102 1.1 mrg
103 1.28 thorpej /*
104 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
105 1.1 mrg *
106 1.83 yamt * - used only by /dev/kmem driver (mem.c)
107 1.1 mrg */
108 1.1 mrg
109 1.102 thorpej bool
110 1.104 christos uvm_kernacc(void *addr, size_t len, int rw)
111 1.6 mrg {
112 1.102 thorpej bool rv;
113 1.13 eeh vaddr_t saddr, eaddr;
114 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115 1.6 mrg
116 1.31 kleink saddr = trunc_page((vaddr_t)addr);
117 1.43 chs eaddr = round_page((vaddr_t)addr + len);
118 1.6 mrg vm_map_lock_read(kernel_map);
119 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 1.6 mrg vm_map_unlock_read(kernel_map);
121 1.6 mrg
122 1.6 mrg return(rv);
123 1.1 mrg }
124 1.1 mrg
125 1.1 mrg #ifdef KGDB
126 1.1 mrg /*
127 1.1 mrg * Change protections on kernel pages from addr to addr+len
128 1.1 mrg * (presumably so debugger can plant a breakpoint).
129 1.1 mrg *
130 1.1 mrg * We force the protection change at the pmap level. If we were
131 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
132 1.1 mrg * applied meaning we would still take a protection fault, something
133 1.1 mrg * we really don't want to do. It would also fragment the kernel
134 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
135 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
136 1.1 mrg * we can ensure the change takes place properly.
137 1.1 mrg */
138 1.6 mrg void
139 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw)
140 1.6 mrg {
141 1.6 mrg vm_prot_t prot;
142 1.13 eeh paddr_t pa;
143 1.13 eeh vaddr_t sva, eva;
144 1.6 mrg
145 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 1.31 kleink eva = round_page((vaddr_t)addr + len);
147 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 1.6 mrg /*
149 1.6 mrg * Extract physical address for the page.
150 1.6 mrg */
151 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 1.123 christos panic("%s: invalid page", __func__);
153 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 1.6 mrg }
155 1.51 chris pmap_update(pmap_kernel());
156 1.1 mrg }
157 1.1 mrg #endif
158 1.1 mrg
159 1.1 mrg /*
160 1.52 chs * uvm_vslock: wire user memory for I/O
161 1.1 mrg *
162 1.1 mrg * - called from physio and sys___sysctl
163 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
164 1.1 mrg */
165 1.1 mrg
166 1.26 thorpej int
167 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 1.1 mrg {
169 1.50 chs struct vm_map *map;
170 1.26 thorpej vaddr_t start, end;
171 1.45 chs int error;
172 1.26 thorpej
173 1.97 chs map = &vs->vm_map;
174 1.31 kleink start = trunc_page((vaddr_t)addr);
175 1.31 kleink end = round_page((vaddr_t)addr + len);
176 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0);
177 1.45 chs return error;
178 1.1 mrg }
179 1.1 mrg
180 1.1 mrg /*
181 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 1.1 mrg *
183 1.1 mrg * - called from physio and sys___sysctl
184 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
185 1.1 mrg */
186 1.1 mrg
187 1.6 mrg void
188 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 1.1 mrg {
190 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 1.43 chs round_page((vaddr_t)addr + len));
192 1.1 mrg }
193 1.1 mrg
194 1.1 mrg /*
195 1.62 thorpej * uvm_proc_fork: fork a virtual address space
196 1.1 mrg *
197 1.1 mrg * - the address space is copied as per parent map's inherit values
198 1.62 thorpej */
199 1.62 thorpej void
200 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 1.62 thorpej {
202 1.62 thorpej
203 1.103 thorpej if (shared == true) {
204 1.62 thorpej p2->p_vmspace = NULL;
205 1.62 thorpej uvmspace_share(p1, p2);
206 1.62 thorpej } else {
207 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 1.62 thorpej }
209 1.62 thorpej
210 1.62 thorpej cpu_proc_fork(p1, p2);
211 1.62 thorpej }
212 1.62 thorpej
213 1.62 thorpej
214 1.62 thorpej /*
215 1.62 thorpej * uvm_lwp_fork: fork a thread
216 1.62 thorpej *
217 1.1 mrg * - a new "user" structure is allocated for the child process
218 1.1 mrg * [filled in by MD layer...]
219 1.20 thorpej * - if specified, the child gets a new user stack described by
220 1.20 thorpej * stack and stacksize
221 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
222 1.1 mrg * process, and thus addresses of automatic variables may be invalid
223 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
224 1.62 thorpej * after cpu_lwp_fork returns.
225 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
226 1.1 mrg * than just hang
227 1.1 mrg */
228 1.6 mrg void
229 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 1.89 thorpej void (*func)(void *), void *arg)
231 1.6 mrg {
232 1.45 chs int error;
233 1.6 mrg
234 1.6 mrg /*
235 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
236 1.62 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
237 1.62 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
238 1.61 chs * to prevent kernel_map fragmentation. If we reused a cached U-area,
239 1.62 thorpej * L_INMEM will already be set and we don't need to do anything.
240 1.21 thorpej *
241 1.61 chs * Note the kernel stack gets read/write accesses right off the bat.
242 1.6 mrg */
243 1.61 chs
244 1.100 pavel if ((l2->l_flag & LW_INMEM) == 0) {
245 1.94 yamt vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246 1.94 yamt
247 1.123 christos if ((error = uarea_swapin(uarea)) != 0)
248 1.123 christos panic("%s: uvm_fault_wire failed: %d", __func__, error);
249 1.67 scw #ifdef PMAP_UAREA
250 1.67 scw /* Tell the pmap this is a u-area mapping */
251 1.94 yamt PMAP_UAREA(uarea);
252 1.67 scw #endif
253 1.100 pavel l2->l_flag |= LW_INMEM;
254 1.61 chs }
255 1.59 yamt
256 1.137 rmind /* Fill stack with magic number. */
257 1.63 yamt kstack_setup_magic(l2);
258 1.6 mrg
259 1.6 mrg /*
260 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
261 1.62 thorpej * to run. If this is a normal user fork, the child will exit
262 1.34 thorpej * directly to user mode via child_return() on its first time
263 1.34 thorpej * slice and will not return here. If this is a kernel thread,
264 1.34 thorpej * the specified entry point will be executed.
265 1.6 mrg */
266 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
267 1.138 rmind
268 1.138 rmind /* Inactive emap for new LWP. */
269 1.138 rmind l2->l_emap_gen = UVM_EMAP_INACTIVE;
270 1.14 thorpej }
271 1.14 thorpej
272 1.115 yamt static int
273 1.115 yamt uarea_swapin(vaddr_t addr)
274 1.115 yamt {
275 1.115 yamt
276 1.115 yamt return uvm_fault_wire(kernel_map, addr, addr + USPACE,
277 1.115 yamt VM_PROT_READ | VM_PROT_WRITE, 0);
278 1.115 yamt }
279 1.60 chs
280 1.115 yamt static void
281 1.115 yamt uarea_swapout(vaddr_t addr)
282 1.60 chs {
283 1.115 yamt
284 1.115 yamt uvm_fault_unwire(kernel_map, addr, addr + USPACE);
285 1.115 yamt }
286 1.60 chs
287 1.60 chs #ifndef USPACE_ALIGN
288 1.115 yamt #define USPACE_ALIGN 0
289 1.60 chs #endif
290 1.60 chs
291 1.115 yamt static pool_cache_t uvm_uarea_cache;
292 1.115 yamt
293 1.115 yamt static int
294 1.115 yamt uarea_ctor(void *arg, void *obj, int flags)
295 1.115 yamt {
296 1.115 yamt
297 1.115 yamt KASSERT((flags & PR_WAITOK) != 0);
298 1.115 yamt return uarea_swapin((vaddr_t)obj);
299 1.115 yamt }
300 1.115 yamt
301 1.115 yamt static void *
302 1.115 yamt uarea_poolpage_alloc(struct pool *pp, int flags)
303 1.115 yamt {
304 1.115 yamt
305 1.115 yamt return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
306 1.115 yamt USPACE_ALIGN, UVM_KMF_PAGEABLE |
307 1.115 yamt ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
308 1.115 yamt (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
309 1.115 yamt }
310 1.109 ad
311 1.115 yamt static void
312 1.115 yamt uarea_poolpage_free(struct pool *pp, void *addr)
313 1.115 yamt {
314 1.109 ad
315 1.115 yamt uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
316 1.109 ad UVM_KMF_PAGEABLE);
317 1.115 yamt }
318 1.115 yamt
319 1.115 yamt static struct pool_allocator uvm_uarea_allocator = {
320 1.115 yamt .pa_alloc = uarea_poolpage_alloc,
321 1.115 yamt .pa_free = uarea_poolpage_free,
322 1.115 yamt .pa_pagesz = USPACE,
323 1.115 yamt };
324 1.115 yamt
325 1.115 yamt void
326 1.115 yamt uvm_uarea_init(void)
327 1.115 yamt {
328 1.117 yamt int flags = PR_NOTOUCH;
329 1.115 yamt
330 1.116 yamt /*
331 1.116 yamt * specify PR_NOALIGN unless the alignment provided by
332 1.116 yamt * the backend (USPACE_ALIGN) is sufficient to provide
333 1.116 yamt * pool page size (UPSACE) alignment.
334 1.116 yamt */
335 1.116 yamt
336 1.117 yamt if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
337 1.117 yamt (USPACE_ALIGN % USPACE) != 0) {
338 1.117 yamt flags |= PR_NOALIGN;
339 1.117 yamt }
340 1.117 yamt
341 1.117 yamt uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
342 1.115 yamt "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
343 1.60 chs }
344 1.60 chs
345 1.60 chs /*
346 1.115 yamt * uvm_uarea_alloc: allocate a u-area
347 1.75 jdolecek */
348 1.75 jdolecek
349 1.115 yamt bool
350 1.115 yamt uvm_uarea_alloc(vaddr_t *uaddrp)
351 1.75 jdolecek {
352 1.109 ad
353 1.115 yamt *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
354 1.115 yamt return true;
355 1.75 jdolecek }
356 1.75 jdolecek
357 1.75 jdolecek /*
358 1.115 yamt * uvm_uarea_free: free a u-area
359 1.60 chs */
360 1.60 chs
361 1.60 chs void
362 1.115 yamt uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
363 1.60 chs {
364 1.60 chs
365 1.115 yamt pool_cache_put(uvm_uarea_cache, (void *)uaddr);
366 1.60 chs }
367 1.60 chs
368 1.60 chs /*
369 1.118 yamt * uvm_proc_exit: exit a virtual address space
370 1.80 pk *
371 1.80 pk * - borrow proc0's address space because freeing the vmspace
372 1.80 pk * of the dead process may block.
373 1.80 pk */
374 1.80 pk
375 1.80 pk void
376 1.89 thorpej uvm_proc_exit(struct proc *p)
377 1.80 pk {
378 1.80 pk struct lwp *l = curlwp; /* XXX */
379 1.80 pk struct vmspace *ovm;
380 1.80 pk
381 1.80 pk KASSERT(p == l->l_proc);
382 1.80 pk ovm = p->p_vmspace;
383 1.80 pk
384 1.80 pk /*
385 1.80 pk * borrow proc0's address space.
386 1.80 pk */
387 1.129 ad KPREEMPT_DISABLE(l);
388 1.80 pk pmap_deactivate(l);
389 1.80 pk p->p_vmspace = proc0.p_vmspace;
390 1.80 pk pmap_activate(l);
391 1.129 ad KPREEMPT_ENABLE(l);
392 1.80 pk
393 1.80 pk uvmspace_free(ovm);
394 1.80 pk }
395 1.80 pk
396 1.80 pk void
397 1.80 pk uvm_lwp_exit(struct lwp *l)
398 1.80 pk {
399 1.94 yamt vaddr_t va = USER_TO_UAREA(l->l_addr);
400 1.80 pk
401 1.100 pavel l->l_flag &= ~LW_INMEM;
402 1.113 ad uvm_uarea_free(va, l->l_cpu);
403 1.80 pk l->l_addr = NULL;
404 1.80 pk }
405 1.80 pk
406 1.80 pk /*
407 1.1 mrg * uvm_init_limit: init per-process VM limits
408 1.1 mrg *
409 1.1 mrg * - called for process 0 and then inherited by all others.
410 1.1 mrg */
411 1.60 chs
412 1.6 mrg void
413 1.89 thorpej uvm_init_limits(struct proc *p)
414 1.6 mrg {
415 1.6 mrg
416 1.6 mrg /*
417 1.6 mrg * Set up the initial limits on process VM. Set the maximum
418 1.6 mrg * resident set size to be all of (reasonably) available memory.
419 1.6 mrg * This causes any single, large process to start random page
420 1.6 mrg * replacement once it fills memory.
421 1.6 mrg */
422 1.6 mrg
423 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
424 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
425 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
426 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
427 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
428 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
429 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
430 1.1 mrg }
431 1.1 mrg
432 1.1 mrg #ifdef DEBUG
433 1.1 mrg int enableswap = 1;
434 1.1 mrg int swapdebug = 0;
435 1.1 mrg #define SDB_FOLLOW 1
436 1.1 mrg #define SDB_SWAPIN 2
437 1.1 mrg #define SDB_SWAPOUT 4
438 1.1 mrg #endif
439 1.1 mrg
440 1.1 mrg /*
441 1.95 yamt * uvm_swapin: swap in an lwp's u-area.
442 1.107 ad *
443 1.107 ad * - must be called with the LWP's swap lock held.
444 1.107 ad * - naturally, must not be called with l == curlwp
445 1.1 mrg */
446 1.1 mrg
447 1.6 mrg void
448 1.89 thorpej uvm_swapin(struct lwp *l)
449 1.6 mrg {
450 1.98 ad int error;
451 1.6 mrg
452 1.135 yamt KASSERT(mutex_owned(&l->l_swaplock));
453 1.107 ad KASSERT(l != curlwp);
454 1.107 ad
455 1.115 yamt error = uarea_swapin(USER_TO_UAREA(l->l_addr));
456 1.52 chs if (error) {
457 1.123 christos panic("%s: rewiring stack failed: %d", __func__, error);
458 1.52 chs }
459 1.6 mrg
460 1.6 mrg /*
461 1.6 mrg * Some architectures need to be notified when the user area has
462 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
463 1.6 mrg */
464 1.62 thorpej cpu_swapin(l);
465 1.98 ad lwp_lock(l);
466 1.62 thorpej if (l->l_stat == LSRUN)
467 1.106 yamt sched_enqueue(l, false);
468 1.100 pavel l->l_flag |= LW_INMEM;
469 1.62 thorpej l->l_swtime = 0;
470 1.98 ad lwp_unlock(l);
471 1.6 mrg ++uvmexp.swapins;
472 1.1 mrg }
473 1.1 mrg
474 1.1 mrg /*
475 1.99 ad * uvm_kick_scheduler: kick the scheduler into action if not running.
476 1.99 ad *
477 1.99 ad * - called when swapped out processes have been awoken.
478 1.99 ad */
479 1.99 ad
480 1.99 ad void
481 1.99 ad uvm_kick_scheduler(void)
482 1.99 ad {
483 1.99 ad
484 1.103 thorpej if (uvm.swap_running == false)
485 1.101 ad return;
486 1.101 ad
487 1.107 ad mutex_enter(&uvm_scheduler_mutex);
488 1.103 thorpej uvm.scheduler_kicked = true;
489 1.99 ad cv_signal(&uvm.scheduler_cv);
490 1.107 ad mutex_exit(&uvm_scheduler_mutex);
491 1.99 ad }
492 1.99 ad
493 1.99 ad /*
494 1.1 mrg * uvm_scheduler: process zero main loop
495 1.1 mrg *
496 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
497 1.1 mrg * priority.
498 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
499 1.1 mrg */
500 1.1 mrg
501 1.6 mrg void
502 1.89 thorpej uvm_scheduler(void)
503 1.1 mrg {
504 1.62 thorpej struct lwp *l, *ll;
505 1.32 augustss int pri;
506 1.6 mrg int ppri;
507 1.1 mrg
508 1.99 ad l = curlwp;
509 1.99 ad lwp_lock(l);
510 1.113 ad l->l_priority = PRI_VM;
511 1.113 ad l->l_class = SCHED_FIFO;
512 1.99 ad lwp_unlock(l);
513 1.99 ad
514 1.99 ad for (;;) {
515 1.1 mrg #ifdef DEBUG
516 1.107 ad mutex_enter(&uvm_scheduler_mutex);
517 1.99 ad while (!enableswap)
518 1.107 ad cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
519 1.107 ad mutex_exit(&uvm_scheduler_mutex);
520 1.99 ad #endif
521 1.99 ad ll = NULL; /* process to choose */
522 1.99 ad ppri = INT_MIN; /* its priority */
523 1.99 ad
524 1.125 ad mutex_enter(proc_lock);
525 1.99 ad LIST_FOREACH(l, &alllwp, l_list) {
526 1.99 ad /* is it a runnable swapped out process? */
527 1.100 pavel if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
528 1.99 ad pri = l->l_swtime + l->l_slptime -
529 1.99 ad (l->l_proc->p_nice - NZERO) * 8;
530 1.99 ad if (pri > ppri) { /* higher priority? */
531 1.99 ad ll = l;
532 1.99 ad ppri = pri;
533 1.99 ad }
534 1.6 mrg }
535 1.6 mrg }
536 1.1 mrg #ifdef DEBUG
537 1.99 ad if (swapdebug & SDB_FOLLOW)
538 1.123 christos printf("%s: running, procp %p pri %d\n", __func__, ll,
539 1.99 ad ppri);
540 1.1 mrg #endif
541 1.99 ad /*
542 1.99 ad * Nothing to do, back to sleep
543 1.99 ad */
544 1.99 ad if ((l = ll) == NULL) {
545 1.125 ad mutex_exit(proc_lock);
546 1.107 ad mutex_enter(&uvm_scheduler_mutex);
547 1.103 thorpej if (uvm.scheduler_kicked == false)
548 1.99 ad cv_wait(&uvm.scheduler_cv,
549 1.107 ad &uvm_scheduler_mutex);
550 1.103 thorpej uvm.scheduler_kicked = false;
551 1.107 ad mutex_exit(&uvm_scheduler_mutex);
552 1.99 ad continue;
553 1.99 ad }
554 1.6 mrg
555 1.99 ad /*
556 1.99 ad * we have found swapped out process which we would like
557 1.99 ad * to bring back in.
558 1.99 ad *
559 1.99 ad * XXX: this part is really bogus cuz we could deadlock
560 1.99 ad * on memory despite our feeble check
561 1.99 ad */
562 1.99 ad if (uvmexp.free > atop(USPACE)) {
563 1.1 mrg #ifdef DEBUG
564 1.99 ad if (swapdebug & SDB_SWAPIN)
565 1.99 ad printf("swapin: pid %d(%s)@%p, pri %d "
566 1.99 ad "free %d\n", l->l_proc->p_pid,
567 1.99 ad l->l_proc->p_comm, l->l_addr, ppri,
568 1.99 ad uvmexp.free);
569 1.1 mrg #endif
570 1.107 ad mutex_enter(&l->l_swaplock);
571 1.125 ad mutex_exit(proc_lock);
572 1.99 ad uvm_swapin(l);
573 1.107 ad mutex_exit(&l->l_swaplock);
574 1.107 ad continue;
575 1.99 ad } else {
576 1.99 ad /*
577 1.99 ad * not enough memory, jab the pageout daemon and
578 1.99 ad * wait til the coast is clear
579 1.99 ad */
580 1.125 ad mutex_exit(proc_lock);
581 1.1 mrg #ifdef DEBUG
582 1.99 ad if (swapdebug & SDB_FOLLOW)
583 1.123 christos printf("%s: no room for pid %d(%s),"
584 1.124 yamt " free %d\n", __func__, l->l_proc->p_pid,
585 1.99 ad l->l_proc->p_comm, uvmexp.free);
586 1.1 mrg #endif
587 1.99 ad uvm_wait("schedpwait");
588 1.1 mrg #ifdef DEBUG
589 1.99 ad if (swapdebug & SDB_FOLLOW)
590 1.123 christos printf("%s: room again, free %d\n", __func__,
591 1.99 ad uvmexp.free);
592 1.1 mrg #endif
593 1.99 ad }
594 1.99 ad }
595 1.1 mrg }
596 1.1 mrg
597 1.1 mrg /*
598 1.62 thorpej * swappable: is LWP "l" swappable?
599 1.1 mrg */
600 1.1 mrg
601 1.106 yamt static bool
602 1.106 yamt swappable(struct lwp *l)
603 1.106 yamt {
604 1.106 yamt
605 1.127 ad if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
606 1.127 ad return false;
607 1.127 ad if ((l->l_pflag & LP_RUNNING) != 0)
608 1.106 yamt return false;
609 1.106 yamt if (l->l_holdcnt != 0)
610 1.106 yamt return false;
611 1.133 ad if (l->l_class != SCHED_OTHER)
612 1.133 ad return false;
613 1.106 yamt if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
614 1.106 yamt return false;
615 1.131 ad if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
616 1.130 ad return false;
617 1.106 yamt return true;
618 1.106 yamt }
619 1.1 mrg
620 1.1 mrg /*
621 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
622 1.1 mrg * u-areas.
623 1.1 mrg *
624 1.1 mrg * - called by the pagedaemon
625 1.1 mrg * - try and swap at least one processs
626 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
627 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
628 1.1 mrg * is swapped, otherwise the longest resident process...
629 1.1 mrg */
630 1.60 chs
631 1.6 mrg void
632 1.89 thorpej uvm_swapout_threads(void)
633 1.1 mrg {
634 1.62 thorpej struct lwp *l;
635 1.62 thorpej struct lwp *outl, *outl2;
636 1.6 mrg int outpri, outpri2;
637 1.6 mrg int didswap = 0;
638 1.48 chs extern int maxslp;
639 1.107 ad bool gotit;
640 1.107 ad
641 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
642 1.1 mrg
643 1.1 mrg #ifdef DEBUG
644 1.6 mrg if (!enableswap)
645 1.6 mrg return;
646 1.1 mrg #endif
647 1.1 mrg
648 1.6 mrg /*
649 1.62 thorpej * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
650 1.62 thorpej * outl2/outpri2: the longest resident thread (its swap time)
651 1.6 mrg */
652 1.62 thorpej outl = outl2 = NULL;
653 1.6 mrg outpri = outpri2 = 0;
654 1.107 ad
655 1.107 ad restart:
656 1.125 ad mutex_enter(proc_lock);
657 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
658 1.81 yamt KASSERT(l->l_proc != NULL);
659 1.107 ad if (!mutex_tryenter(&l->l_swaplock))
660 1.107 ad continue;
661 1.98 ad if (!swappable(l)) {
662 1.107 ad mutex_exit(&l->l_swaplock);
663 1.6 mrg continue;
664 1.98 ad }
665 1.62 thorpej switch (l->l_stat) {
666 1.68 cl case LSONPROC:
667 1.98 ad break;
668 1.69 cl
669 1.62 thorpej case LSRUN:
670 1.62 thorpej if (l->l_swtime > outpri2) {
671 1.62 thorpej outl2 = l;
672 1.62 thorpej outpri2 = l->l_swtime;
673 1.6 mrg }
674 1.98 ad break;
675 1.48 chs
676 1.62 thorpej case LSSLEEP:
677 1.62 thorpej case LSSTOP:
678 1.62 thorpej if (l->l_slptime >= maxslp) {
679 1.125 ad mutex_exit(proc_lock);
680 1.62 thorpej uvm_swapout(l);
681 1.107 ad /*
682 1.107 ad * Locking in the wrong direction -
683 1.107 ad * try to prevent the LWP from exiting.
684 1.107 ad */
685 1.125 ad gotit = mutex_tryenter(proc_lock);
686 1.107 ad mutex_exit(&l->l_swaplock);
687 1.6 mrg didswap++;
688 1.107 ad if (!gotit)
689 1.107 ad goto restart;
690 1.98 ad continue;
691 1.62 thorpej } else if (l->l_slptime > outpri) {
692 1.62 thorpej outl = l;
693 1.62 thorpej outpri = l->l_slptime;
694 1.6 mrg }
695 1.98 ad break;
696 1.6 mrg }
697 1.107 ad mutex_exit(&l->l_swaplock);
698 1.6 mrg }
699 1.107 ad
700 1.6 mrg /*
701 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
702 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
703 1.6 mrg * if we are real low on memory since we don't gain much by doing
704 1.6 mrg * it (USPACE bytes).
705 1.6 mrg */
706 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
707 1.62 thorpej if ((l = outl) == NULL)
708 1.62 thorpej l = outl2;
709 1.1 mrg #ifdef DEBUG
710 1.6 mrg if (swapdebug & SDB_SWAPOUT)
711 1.123 christos printf("%s: no duds, try procp %p\n", __func__, l);
712 1.1 mrg #endif
713 1.98 ad if (l) {
714 1.107 ad mutex_enter(&l->l_swaplock);
715 1.125 ad mutex_exit(proc_lock);
716 1.107 ad if (swappable(l))
717 1.107 ad uvm_swapout(l);
718 1.107 ad mutex_exit(&l->l_swaplock);
719 1.107 ad return;
720 1.98 ad }
721 1.6 mrg }
722 1.98 ad
723 1.125 ad mutex_exit(proc_lock);
724 1.1 mrg }
725 1.1 mrg
726 1.1 mrg /*
727 1.62 thorpej * uvm_swapout: swap out lwp "l"
728 1.1 mrg *
729 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
730 1.1 mrg * the pmap.
731 1.107 ad * - must be called with l->l_swaplock held.
732 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
733 1.1 mrg */
734 1.1 mrg
735 1.6 mrg static void
736 1.89 thorpej uvm_swapout(struct lwp *l)
737 1.1 mrg {
738 1.132 ad struct vm_map *map;
739 1.132 ad
740 1.107 ad KASSERT(mutex_owned(&l->l_swaplock));
741 1.98 ad
742 1.1 mrg #ifdef DEBUG
743 1.6 mrg if (swapdebug & SDB_SWAPOUT)
744 1.123 christos printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
745 1.123 christos __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
746 1.123 christos l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
747 1.1 mrg #endif
748 1.1 mrg
749 1.6 mrg /*
750 1.6 mrg * Mark it as (potentially) swapped out.
751 1.6 mrg */
752 1.107 ad lwp_lock(l);
753 1.106 yamt if (!swappable(l)) {
754 1.69 cl KDASSERT(l->l_cpu != curcpu());
755 1.98 ad lwp_unlock(l);
756 1.68 cl return;
757 1.68 cl }
758 1.100 pavel l->l_flag &= ~LW_INMEM;
759 1.98 ad l->l_swtime = 0;
760 1.62 thorpej if (l->l_stat == LSRUN)
761 1.106 yamt sched_dequeue(l);
762 1.98 ad lwp_unlock(l);
763 1.119 ad l->l_ru.ru_nswap++;
764 1.6 mrg ++uvmexp.swapouts;
765 1.68 cl
766 1.68 cl /*
767 1.68 cl * Do any machine-specific actions necessary before swapout.
768 1.68 cl * This can include saving floating point state, etc.
769 1.68 cl */
770 1.68 cl cpu_swapout(l);
771 1.43 chs
772 1.43 chs /*
773 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
774 1.43 chs */
775 1.115 yamt uarea_swapout(USER_TO_UAREA(l->l_addr));
776 1.132 ad map = &l->l_proc->p_vmspace->vm_map;
777 1.132 ad if (vm_map_lock_try(map)) {
778 1.132 ad pmap_collect(vm_map_pmap(map));
779 1.132 ad vm_map_unlock(map);
780 1.132 ad }
781 1.107 ad }
782 1.107 ad
783 1.107 ad /*
784 1.107 ad * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
785 1.107 ad * back into memory if it is currently swapped.
786 1.107 ad */
787 1.107 ad
788 1.107 ad void
789 1.107 ad uvm_lwp_hold(struct lwp *l)
790 1.107 ad {
791 1.107 ad
792 1.114 ad if (l == curlwp) {
793 1.114 ad atomic_inc_uint(&l->l_holdcnt);
794 1.114 ad } else {
795 1.114 ad mutex_enter(&l->l_swaplock);
796 1.114 ad if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
797 1.114 ad (l->l_flag & LW_INMEM) == 0)
798 1.114 ad uvm_swapin(l);
799 1.114 ad mutex_exit(&l->l_swaplock);
800 1.114 ad }
801 1.107 ad }
802 1.107 ad
803 1.107 ad /*
804 1.107 ad * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
805 1.107 ad * drops to zero, it's eligable to be swapped.
806 1.107 ad */
807 1.107 ad
808 1.107 ad void
809 1.107 ad uvm_lwp_rele(struct lwp *l)
810 1.107 ad {
811 1.107 ad
812 1.107 ad KASSERT(l->l_holdcnt != 0);
813 1.98 ad
814 1.114 ad atomic_dec_uint(&l->l_holdcnt);
815 1.1 mrg }
816