uvm_glue.c revision 1.139 1 1.139 matt /* $NetBSD: uvm_glue.c,v 1.139 2009/08/09 22:19:09 matt Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.55 lukem
69 1.55 lukem #include <sys/cdefs.h>
70 1.139 matt __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.139 2009/08/09 22:19:09 matt Exp $");
71 1.1 mrg
72 1.49 lukem #include "opt_kgdb.h"
73 1.59 yamt #include "opt_kstack.h"
74 1.5 mrg #include "opt_uvmhist.h"
75 1.5 mrg
76 1.1 mrg /*
77 1.1 mrg * uvm_glue.c: glue functions
78 1.1 mrg */
79 1.1 mrg
80 1.1 mrg #include <sys/param.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/proc.h>
83 1.1 mrg #include <sys/resourcevar.h>
84 1.1 mrg #include <sys/buf.h>
85 1.1 mrg #include <sys/user.h>
86 1.106 yamt #include <sys/syncobj.h>
87 1.111 ad #include <sys/cpu.h>
88 1.114 ad #include <sys/atomic.h>
89 1.1 mrg
90 1.1 mrg #include <uvm/uvm.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * local prototypes
94 1.1 mrg */
95 1.1 mrg
96 1.139 matt static int uarea_swapin(vaddr_t);
97 1.78 junyoung static void uvm_swapout(struct lwp *);
98 1.1 mrg
99 1.1 mrg /*
100 1.1 mrg * XXXCDC: do these really belong here?
101 1.1 mrg */
102 1.1 mrg
103 1.28 thorpej /*
104 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
105 1.1 mrg *
106 1.83 yamt * - used only by /dev/kmem driver (mem.c)
107 1.1 mrg */
108 1.1 mrg
109 1.102 thorpej bool
110 1.104 christos uvm_kernacc(void *addr, size_t len, int rw)
111 1.6 mrg {
112 1.102 thorpej bool rv;
113 1.13 eeh vaddr_t saddr, eaddr;
114 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115 1.6 mrg
116 1.31 kleink saddr = trunc_page((vaddr_t)addr);
117 1.43 chs eaddr = round_page((vaddr_t)addr + len);
118 1.6 mrg vm_map_lock_read(kernel_map);
119 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 1.6 mrg vm_map_unlock_read(kernel_map);
121 1.6 mrg
122 1.6 mrg return(rv);
123 1.1 mrg }
124 1.1 mrg
125 1.1 mrg #ifdef KGDB
126 1.1 mrg /*
127 1.1 mrg * Change protections on kernel pages from addr to addr+len
128 1.1 mrg * (presumably so debugger can plant a breakpoint).
129 1.1 mrg *
130 1.1 mrg * We force the protection change at the pmap level. If we were
131 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
132 1.1 mrg * applied meaning we would still take a protection fault, something
133 1.1 mrg * we really don't want to do. It would also fragment the kernel
134 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
135 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
136 1.1 mrg * we can ensure the change takes place properly.
137 1.1 mrg */
138 1.6 mrg void
139 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw)
140 1.6 mrg {
141 1.6 mrg vm_prot_t prot;
142 1.13 eeh paddr_t pa;
143 1.13 eeh vaddr_t sva, eva;
144 1.6 mrg
145 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 1.31 kleink eva = round_page((vaddr_t)addr + len);
147 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 1.6 mrg /*
149 1.6 mrg * Extract physical address for the page.
150 1.6 mrg */
151 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 1.123 christos panic("%s: invalid page", __func__);
153 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 1.6 mrg }
155 1.51 chris pmap_update(pmap_kernel());
156 1.1 mrg }
157 1.1 mrg #endif
158 1.1 mrg
159 1.1 mrg /*
160 1.52 chs * uvm_vslock: wire user memory for I/O
161 1.1 mrg *
162 1.1 mrg * - called from physio and sys___sysctl
163 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
164 1.1 mrg */
165 1.1 mrg
166 1.26 thorpej int
167 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 1.1 mrg {
169 1.50 chs struct vm_map *map;
170 1.26 thorpej vaddr_t start, end;
171 1.45 chs int error;
172 1.26 thorpej
173 1.97 chs map = &vs->vm_map;
174 1.31 kleink start = trunc_page((vaddr_t)addr);
175 1.31 kleink end = round_page((vaddr_t)addr + len);
176 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0);
177 1.45 chs return error;
178 1.1 mrg }
179 1.1 mrg
180 1.1 mrg /*
181 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 1.1 mrg *
183 1.1 mrg * - called from physio and sys___sysctl
184 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
185 1.1 mrg */
186 1.1 mrg
187 1.6 mrg void
188 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 1.1 mrg {
190 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 1.43 chs round_page((vaddr_t)addr + len));
192 1.1 mrg }
193 1.1 mrg
194 1.1 mrg /*
195 1.62 thorpej * uvm_proc_fork: fork a virtual address space
196 1.1 mrg *
197 1.1 mrg * - the address space is copied as per parent map's inherit values
198 1.62 thorpej */
199 1.62 thorpej void
200 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 1.62 thorpej {
202 1.62 thorpej
203 1.103 thorpej if (shared == true) {
204 1.62 thorpej p2->p_vmspace = NULL;
205 1.62 thorpej uvmspace_share(p1, p2);
206 1.62 thorpej } else {
207 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 1.62 thorpej }
209 1.62 thorpej
210 1.62 thorpej cpu_proc_fork(p1, p2);
211 1.62 thorpej }
212 1.62 thorpej
213 1.62 thorpej
214 1.62 thorpej /*
215 1.62 thorpej * uvm_lwp_fork: fork a thread
216 1.62 thorpej *
217 1.1 mrg * - a new "user" structure is allocated for the child process
218 1.1 mrg * [filled in by MD layer...]
219 1.20 thorpej * - if specified, the child gets a new user stack described by
220 1.20 thorpej * stack and stacksize
221 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
222 1.1 mrg * process, and thus addresses of automatic variables may be invalid
223 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
224 1.62 thorpej * after cpu_lwp_fork returns.
225 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
226 1.1 mrg * than just hang
227 1.1 mrg */
228 1.6 mrg void
229 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 1.89 thorpej void (*func)(void *), void *arg)
231 1.6 mrg {
232 1.6 mrg
233 1.6 mrg /*
234 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
235 1.62 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
236 1.62 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
237 1.61 chs * to prevent kernel_map fragmentation. If we reused a cached U-area,
238 1.62 thorpej * L_INMEM will already be set and we don't need to do anything.
239 1.21 thorpej *
240 1.61 chs * Note the kernel stack gets read/write accesses right off the bat.
241 1.6 mrg */
242 1.61 chs
243 1.100 pavel if ((l2->l_flag & LW_INMEM) == 0) {
244 1.139 matt #ifdef VMSWAP_UAREA
245 1.94 yamt vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246 1.139 matt int error;
247 1.94 yamt
248 1.123 christos if ((error = uarea_swapin(uarea)) != 0)
249 1.123 christos panic("%s: uvm_fault_wire failed: %d", __func__, error);
250 1.67 scw #ifdef PMAP_UAREA
251 1.67 scw /* Tell the pmap this is a u-area mapping */
252 1.94 yamt PMAP_UAREA(uarea);
253 1.67 scw #endif
254 1.139 matt #endif /* VMSWAP_UAREA */
255 1.100 pavel l2->l_flag |= LW_INMEM;
256 1.61 chs }
257 1.59 yamt
258 1.137 rmind /* Fill stack with magic number. */
259 1.63 yamt kstack_setup_magic(l2);
260 1.6 mrg
261 1.6 mrg /*
262 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
263 1.62 thorpej * to run. If this is a normal user fork, the child will exit
264 1.34 thorpej * directly to user mode via child_return() on its first time
265 1.34 thorpej * slice and will not return here. If this is a kernel thread,
266 1.34 thorpej * the specified entry point will be executed.
267 1.6 mrg */
268 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
269 1.138 rmind
270 1.138 rmind /* Inactive emap for new LWP. */
271 1.138 rmind l2->l_emap_gen = UVM_EMAP_INACTIVE;
272 1.14 thorpej }
273 1.14 thorpej
274 1.115 yamt static int
275 1.115 yamt uarea_swapin(vaddr_t addr)
276 1.115 yamt {
277 1.115 yamt
278 1.115 yamt return uvm_fault_wire(kernel_map, addr, addr + USPACE,
279 1.115 yamt VM_PROT_READ | VM_PROT_WRITE, 0);
280 1.115 yamt }
281 1.60 chs
282 1.139 matt #ifdef VMSWAP_UAREA
283 1.115 yamt static void
284 1.115 yamt uarea_swapout(vaddr_t addr)
285 1.60 chs {
286 1.115 yamt
287 1.115 yamt uvm_fault_unwire(kernel_map, addr, addr + USPACE);
288 1.115 yamt }
289 1.139 matt #endif /* VMSWAP_UAREA */
290 1.60 chs
291 1.60 chs #ifndef USPACE_ALIGN
292 1.115 yamt #define USPACE_ALIGN 0
293 1.60 chs #endif
294 1.60 chs
295 1.115 yamt static pool_cache_t uvm_uarea_cache;
296 1.115 yamt
297 1.115 yamt static int
298 1.115 yamt uarea_ctor(void *arg, void *obj, int flags)
299 1.115 yamt {
300 1.139 matt #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
301 1.139 matt if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0)
302 1.139 matt return 0;
303 1.139 matt #endif
304 1.115 yamt KASSERT((flags & PR_WAITOK) != 0);
305 1.115 yamt return uarea_swapin((vaddr_t)obj);
306 1.115 yamt }
307 1.115 yamt
308 1.115 yamt static void *
309 1.115 yamt uarea_poolpage_alloc(struct pool *pp, int flags)
310 1.115 yamt {
311 1.139 matt #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
312 1.139 matt if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
313 1.139 matt struct vm_page *pg;
314 1.139 matt vaddr_t va;
315 1.139 matt
316 1.139 matt pg = uvm_pagealloc(NULL, 0, NULL,
317 1.139 matt ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
318 1.139 matt if (pg == NULL)
319 1.139 matt return NULL;
320 1.139 matt va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
321 1.139 matt if (va == 0)
322 1.139 matt uvm_pagefree(pg);
323 1.139 matt return (void *)va;
324 1.139 matt }
325 1.139 matt #endif
326 1.115 yamt return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
327 1.115 yamt USPACE_ALIGN, UVM_KMF_PAGEABLE |
328 1.115 yamt ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
329 1.115 yamt (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
330 1.115 yamt }
331 1.109 ad
332 1.115 yamt static void
333 1.115 yamt uarea_poolpage_free(struct pool *pp, void *addr)
334 1.115 yamt {
335 1.139 matt #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
336 1.139 matt if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
337 1.139 matt paddr_t pa;
338 1.139 matt
339 1.139 matt pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
340 1.139 matt KASSERT(pa != 0);
341 1.139 matt uvm_pagefree(PHYS_TO_VM_PAGE(pa));
342 1.139 matt return;
343 1.139 matt }
344 1.139 matt #endif
345 1.115 yamt uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
346 1.109 ad UVM_KMF_PAGEABLE);
347 1.115 yamt }
348 1.115 yamt
349 1.115 yamt static struct pool_allocator uvm_uarea_allocator = {
350 1.115 yamt .pa_alloc = uarea_poolpage_alloc,
351 1.115 yamt .pa_free = uarea_poolpage_free,
352 1.115 yamt .pa_pagesz = USPACE,
353 1.115 yamt };
354 1.115 yamt
355 1.115 yamt void
356 1.115 yamt uvm_uarea_init(void)
357 1.115 yamt {
358 1.117 yamt int flags = PR_NOTOUCH;
359 1.115 yamt
360 1.116 yamt /*
361 1.116 yamt * specify PR_NOALIGN unless the alignment provided by
362 1.116 yamt * the backend (USPACE_ALIGN) is sufficient to provide
363 1.116 yamt * pool page size (UPSACE) alignment.
364 1.116 yamt */
365 1.116 yamt
366 1.117 yamt if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
367 1.117 yamt (USPACE_ALIGN % USPACE) != 0) {
368 1.117 yamt flags |= PR_NOALIGN;
369 1.117 yamt }
370 1.117 yamt
371 1.117 yamt uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
372 1.115 yamt "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
373 1.60 chs }
374 1.60 chs
375 1.60 chs /*
376 1.115 yamt * uvm_uarea_alloc: allocate a u-area
377 1.75 jdolecek */
378 1.75 jdolecek
379 1.115 yamt bool
380 1.115 yamt uvm_uarea_alloc(vaddr_t *uaddrp)
381 1.75 jdolecek {
382 1.109 ad
383 1.115 yamt *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
384 1.115 yamt return true;
385 1.75 jdolecek }
386 1.75 jdolecek
387 1.75 jdolecek /*
388 1.115 yamt * uvm_uarea_free: free a u-area
389 1.60 chs */
390 1.60 chs
391 1.60 chs void
392 1.115 yamt uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
393 1.60 chs {
394 1.60 chs
395 1.115 yamt pool_cache_put(uvm_uarea_cache, (void *)uaddr);
396 1.60 chs }
397 1.60 chs
398 1.60 chs /*
399 1.118 yamt * uvm_proc_exit: exit a virtual address space
400 1.80 pk *
401 1.80 pk * - borrow proc0's address space because freeing the vmspace
402 1.80 pk * of the dead process may block.
403 1.80 pk */
404 1.80 pk
405 1.80 pk void
406 1.89 thorpej uvm_proc_exit(struct proc *p)
407 1.80 pk {
408 1.80 pk struct lwp *l = curlwp; /* XXX */
409 1.80 pk struct vmspace *ovm;
410 1.80 pk
411 1.80 pk KASSERT(p == l->l_proc);
412 1.80 pk ovm = p->p_vmspace;
413 1.80 pk
414 1.80 pk /*
415 1.80 pk * borrow proc0's address space.
416 1.80 pk */
417 1.129 ad KPREEMPT_DISABLE(l);
418 1.80 pk pmap_deactivate(l);
419 1.80 pk p->p_vmspace = proc0.p_vmspace;
420 1.80 pk pmap_activate(l);
421 1.129 ad KPREEMPT_ENABLE(l);
422 1.80 pk
423 1.80 pk uvmspace_free(ovm);
424 1.80 pk }
425 1.80 pk
426 1.80 pk void
427 1.80 pk uvm_lwp_exit(struct lwp *l)
428 1.80 pk {
429 1.94 yamt vaddr_t va = USER_TO_UAREA(l->l_addr);
430 1.80 pk
431 1.100 pavel l->l_flag &= ~LW_INMEM;
432 1.113 ad uvm_uarea_free(va, l->l_cpu);
433 1.80 pk l->l_addr = NULL;
434 1.80 pk }
435 1.80 pk
436 1.80 pk /*
437 1.1 mrg * uvm_init_limit: init per-process VM limits
438 1.1 mrg *
439 1.1 mrg * - called for process 0 and then inherited by all others.
440 1.1 mrg */
441 1.60 chs
442 1.6 mrg void
443 1.89 thorpej uvm_init_limits(struct proc *p)
444 1.6 mrg {
445 1.6 mrg
446 1.6 mrg /*
447 1.6 mrg * Set up the initial limits on process VM. Set the maximum
448 1.6 mrg * resident set size to be all of (reasonably) available memory.
449 1.6 mrg * This causes any single, large process to start random page
450 1.6 mrg * replacement once it fills memory.
451 1.6 mrg */
452 1.6 mrg
453 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
454 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
455 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
456 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
457 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
458 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
459 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
460 1.1 mrg }
461 1.1 mrg
462 1.1 mrg #ifdef DEBUG
463 1.1 mrg int enableswap = 1;
464 1.1 mrg int swapdebug = 0;
465 1.1 mrg #define SDB_FOLLOW 1
466 1.1 mrg #define SDB_SWAPIN 2
467 1.1 mrg #define SDB_SWAPOUT 4
468 1.1 mrg #endif
469 1.1 mrg
470 1.1 mrg /*
471 1.95 yamt * uvm_swapin: swap in an lwp's u-area.
472 1.107 ad *
473 1.107 ad * - must be called with the LWP's swap lock held.
474 1.107 ad * - naturally, must not be called with l == curlwp
475 1.1 mrg */
476 1.1 mrg
477 1.6 mrg void
478 1.89 thorpej uvm_swapin(struct lwp *l)
479 1.6 mrg {
480 1.139 matt #ifdef VMSWAP_UAREA
481 1.98 ad int error;
482 1.139 matt #endif
483 1.6 mrg
484 1.135 yamt KASSERT(mutex_owned(&l->l_swaplock));
485 1.107 ad KASSERT(l != curlwp);
486 1.107 ad
487 1.139 matt #ifdef VMSWAP_UAREA
488 1.115 yamt error = uarea_swapin(USER_TO_UAREA(l->l_addr));
489 1.52 chs if (error) {
490 1.123 christos panic("%s: rewiring stack failed: %d", __func__, error);
491 1.52 chs }
492 1.6 mrg
493 1.6 mrg /*
494 1.6 mrg * Some architectures need to be notified when the user area has
495 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
496 1.6 mrg */
497 1.62 thorpej cpu_swapin(l);
498 1.139 matt #endif
499 1.98 ad lwp_lock(l);
500 1.62 thorpej if (l->l_stat == LSRUN)
501 1.106 yamt sched_enqueue(l, false);
502 1.100 pavel l->l_flag |= LW_INMEM;
503 1.62 thorpej l->l_swtime = 0;
504 1.98 ad lwp_unlock(l);
505 1.6 mrg ++uvmexp.swapins;
506 1.1 mrg }
507 1.1 mrg
508 1.1 mrg /*
509 1.99 ad * uvm_kick_scheduler: kick the scheduler into action if not running.
510 1.99 ad *
511 1.99 ad * - called when swapped out processes have been awoken.
512 1.99 ad */
513 1.99 ad
514 1.99 ad void
515 1.99 ad uvm_kick_scheduler(void)
516 1.99 ad {
517 1.99 ad
518 1.103 thorpej if (uvm.swap_running == false)
519 1.101 ad return;
520 1.101 ad
521 1.107 ad mutex_enter(&uvm_scheduler_mutex);
522 1.103 thorpej uvm.scheduler_kicked = true;
523 1.99 ad cv_signal(&uvm.scheduler_cv);
524 1.107 ad mutex_exit(&uvm_scheduler_mutex);
525 1.99 ad }
526 1.99 ad
527 1.99 ad /*
528 1.1 mrg * uvm_scheduler: process zero main loop
529 1.1 mrg *
530 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
531 1.1 mrg * priority.
532 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
533 1.1 mrg */
534 1.1 mrg
535 1.6 mrg void
536 1.89 thorpej uvm_scheduler(void)
537 1.1 mrg {
538 1.62 thorpej struct lwp *l, *ll;
539 1.32 augustss int pri;
540 1.6 mrg int ppri;
541 1.1 mrg
542 1.99 ad l = curlwp;
543 1.99 ad lwp_lock(l);
544 1.113 ad l->l_priority = PRI_VM;
545 1.113 ad l->l_class = SCHED_FIFO;
546 1.99 ad lwp_unlock(l);
547 1.99 ad
548 1.99 ad for (;;) {
549 1.1 mrg #ifdef DEBUG
550 1.107 ad mutex_enter(&uvm_scheduler_mutex);
551 1.99 ad while (!enableswap)
552 1.107 ad cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
553 1.107 ad mutex_exit(&uvm_scheduler_mutex);
554 1.99 ad #endif
555 1.99 ad ll = NULL; /* process to choose */
556 1.99 ad ppri = INT_MIN; /* its priority */
557 1.99 ad
558 1.125 ad mutex_enter(proc_lock);
559 1.99 ad LIST_FOREACH(l, &alllwp, l_list) {
560 1.99 ad /* is it a runnable swapped out process? */
561 1.100 pavel if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
562 1.99 ad pri = l->l_swtime + l->l_slptime -
563 1.99 ad (l->l_proc->p_nice - NZERO) * 8;
564 1.99 ad if (pri > ppri) { /* higher priority? */
565 1.99 ad ll = l;
566 1.99 ad ppri = pri;
567 1.99 ad }
568 1.6 mrg }
569 1.6 mrg }
570 1.1 mrg #ifdef DEBUG
571 1.99 ad if (swapdebug & SDB_FOLLOW)
572 1.123 christos printf("%s: running, procp %p pri %d\n", __func__, ll,
573 1.99 ad ppri);
574 1.1 mrg #endif
575 1.99 ad /*
576 1.99 ad * Nothing to do, back to sleep
577 1.99 ad */
578 1.99 ad if ((l = ll) == NULL) {
579 1.125 ad mutex_exit(proc_lock);
580 1.107 ad mutex_enter(&uvm_scheduler_mutex);
581 1.103 thorpej if (uvm.scheduler_kicked == false)
582 1.99 ad cv_wait(&uvm.scheduler_cv,
583 1.107 ad &uvm_scheduler_mutex);
584 1.103 thorpej uvm.scheduler_kicked = false;
585 1.107 ad mutex_exit(&uvm_scheduler_mutex);
586 1.99 ad continue;
587 1.99 ad }
588 1.6 mrg
589 1.99 ad /*
590 1.99 ad * we have found swapped out process which we would like
591 1.99 ad * to bring back in.
592 1.99 ad *
593 1.99 ad * XXX: this part is really bogus cuz we could deadlock
594 1.99 ad * on memory despite our feeble check
595 1.99 ad */
596 1.99 ad if (uvmexp.free > atop(USPACE)) {
597 1.1 mrg #ifdef DEBUG
598 1.99 ad if (swapdebug & SDB_SWAPIN)
599 1.99 ad printf("swapin: pid %d(%s)@%p, pri %d "
600 1.99 ad "free %d\n", l->l_proc->p_pid,
601 1.99 ad l->l_proc->p_comm, l->l_addr, ppri,
602 1.99 ad uvmexp.free);
603 1.1 mrg #endif
604 1.107 ad mutex_enter(&l->l_swaplock);
605 1.125 ad mutex_exit(proc_lock);
606 1.99 ad uvm_swapin(l);
607 1.107 ad mutex_exit(&l->l_swaplock);
608 1.107 ad continue;
609 1.99 ad } else {
610 1.99 ad /*
611 1.99 ad * not enough memory, jab the pageout daemon and
612 1.99 ad * wait til the coast is clear
613 1.99 ad */
614 1.125 ad mutex_exit(proc_lock);
615 1.1 mrg #ifdef DEBUG
616 1.99 ad if (swapdebug & SDB_FOLLOW)
617 1.123 christos printf("%s: no room for pid %d(%s),"
618 1.124 yamt " free %d\n", __func__, l->l_proc->p_pid,
619 1.99 ad l->l_proc->p_comm, uvmexp.free);
620 1.1 mrg #endif
621 1.99 ad uvm_wait("schedpwait");
622 1.1 mrg #ifdef DEBUG
623 1.99 ad if (swapdebug & SDB_FOLLOW)
624 1.123 christos printf("%s: room again, free %d\n", __func__,
625 1.99 ad uvmexp.free);
626 1.1 mrg #endif
627 1.99 ad }
628 1.99 ad }
629 1.1 mrg }
630 1.1 mrg
631 1.1 mrg /*
632 1.62 thorpej * swappable: is LWP "l" swappable?
633 1.1 mrg */
634 1.1 mrg
635 1.106 yamt static bool
636 1.106 yamt swappable(struct lwp *l)
637 1.106 yamt {
638 1.106 yamt
639 1.127 ad if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
640 1.127 ad return false;
641 1.127 ad if ((l->l_pflag & LP_RUNNING) != 0)
642 1.106 yamt return false;
643 1.106 yamt if (l->l_holdcnt != 0)
644 1.106 yamt return false;
645 1.133 ad if (l->l_class != SCHED_OTHER)
646 1.133 ad return false;
647 1.106 yamt if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
648 1.106 yamt return false;
649 1.131 ad if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
650 1.130 ad return false;
651 1.106 yamt return true;
652 1.106 yamt }
653 1.1 mrg
654 1.1 mrg /*
655 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
656 1.1 mrg * u-areas.
657 1.1 mrg *
658 1.1 mrg * - called by the pagedaemon
659 1.1 mrg * - try and swap at least one processs
660 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
661 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
662 1.1 mrg * is swapped, otherwise the longest resident process...
663 1.1 mrg */
664 1.60 chs
665 1.6 mrg void
666 1.89 thorpej uvm_swapout_threads(void)
667 1.1 mrg {
668 1.62 thorpej struct lwp *l;
669 1.62 thorpej struct lwp *outl, *outl2;
670 1.6 mrg int outpri, outpri2;
671 1.6 mrg int didswap = 0;
672 1.48 chs extern int maxslp;
673 1.107 ad bool gotit;
674 1.107 ad
675 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
676 1.1 mrg
677 1.1 mrg #ifdef DEBUG
678 1.6 mrg if (!enableswap)
679 1.6 mrg return;
680 1.1 mrg #endif
681 1.1 mrg
682 1.6 mrg /*
683 1.62 thorpej * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
684 1.62 thorpej * outl2/outpri2: the longest resident thread (its swap time)
685 1.6 mrg */
686 1.62 thorpej outl = outl2 = NULL;
687 1.6 mrg outpri = outpri2 = 0;
688 1.107 ad
689 1.107 ad restart:
690 1.125 ad mutex_enter(proc_lock);
691 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
692 1.81 yamt KASSERT(l->l_proc != NULL);
693 1.107 ad if (!mutex_tryenter(&l->l_swaplock))
694 1.107 ad continue;
695 1.98 ad if (!swappable(l)) {
696 1.107 ad mutex_exit(&l->l_swaplock);
697 1.6 mrg continue;
698 1.98 ad }
699 1.62 thorpej switch (l->l_stat) {
700 1.68 cl case LSONPROC:
701 1.98 ad break;
702 1.69 cl
703 1.62 thorpej case LSRUN:
704 1.62 thorpej if (l->l_swtime > outpri2) {
705 1.62 thorpej outl2 = l;
706 1.62 thorpej outpri2 = l->l_swtime;
707 1.6 mrg }
708 1.98 ad break;
709 1.48 chs
710 1.62 thorpej case LSSLEEP:
711 1.62 thorpej case LSSTOP:
712 1.62 thorpej if (l->l_slptime >= maxslp) {
713 1.125 ad mutex_exit(proc_lock);
714 1.62 thorpej uvm_swapout(l);
715 1.107 ad /*
716 1.107 ad * Locking in the wrong direction -
717 1.107 ad * try to prevent the LWP from exiting.
718 1.107 ad */
719 1.125 ad gotit = mutex_tryenter(proc_lock);
720 1.107 ad mutex_exit(&l->l_swaplock);
721 1.6 mrg didswap++;
722 1.107 ad if (!gotit)
723 1.107 ad goto restart;
724 1.98 ad continue;
725 1.62 thorpej } else if (l->l_slptime > outpri) {
726 1.62 thorpej outl = l;
727 1.62 thorpej outpri = l->l_slptime;
728 1.6 mrg }
729 1.98 ad break;
730 1.6 mrg }
731 1.107 ad mutex_exit(&l->l_swaplock);
732 1.6 mrg }
733 1.107 ad
734 1.6 mrg /*
735 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
736 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
737 1.6 mrg * if we are real low on memory since we don't gain much by doing
738 1.6 mrg * it (USPACE bytes).
739 1.6 mrg */
740 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
741 1.62 thorpej if ((l = outl) == NULL)
742 1.62 thorpej l = outl2;
743 1.1 mrg #ifdef DEBUG
744 1.6 mrg if (swapdebug & SDB_SWAPOUT)
745 1.139 matt printf(__func__ ": no duds, try procp %p\n", l);
746 1.1 mrg #endif
747 1.98 ad if (l) {
748 1.107 ad mutex_enter(&l->l_swaplock);
749 1.125 ad mutex_exit(proc_lock);
750 1.107 ad if (swappable(l))
751 1.107 ad uvm_swapout(l);
752 1.107 ad mutex_exit(&l->l_swaplock);
753 1.107 ad return;
754 1.98 ad }
755 1.6 mrg }
756 1.98 ad
757 1.125 ad mutex_exit(proc_lock);
758 1.1 mrg }
759 1.1 mrg
760 1.1 mrg /*
761 1.62 thorpej * uvm_swapout: swap out lwp "l"
762 1.1 mrg *
763 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
764 1.1 mrg * the pmap.
765 1.107 ad * - must be called with l->l_swaplock held.
766 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
767 1.1 mrg */
768 1.1 mrg
769 1.6 mrg static void
770 1.89 thorpej uvm_swapout(struct lwp *l)
771 1.1 mrg {
772 1.132 ad struct vm_map *map;
773 1.132 ad
774 1.107 ad KASSERT(mutex_owned(&l->l_swaplock));
775 1.98 ad
776 1.1 mrg #ifdef DEBUG
777 1.6 mrg if (swapdebug & SDB_SWAPOUT)
778 1.123 christos printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
779 1.123 christos __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
780 1.123 christos l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
781 1.1 mrg #endif
782 1.1 mrg
783 1.6 mrg /*
784 1.6 mrg * Mark it as (potentially) swapped out.
785 1.6 mrg */
786 1.107 ad lwp_lock(l);
787 1.106 yamt if (!swappable(l)) {
788 1.69 cl KDASSERT(l->l_cpu != curcpu());
789 1.98 ad lwp_unlock(l);
790 1.68 cl return;
791 1.68 cl }
792 1.100 pavel l->l_flag &= ~LW_INMEM;
793 1.98 ad l->l_swtime = 0;
794 1.62 thorpej if (l->l_stat == LSRUN)
795 1.106 yamt sched_dequeue(l);
796 1.98 ad lwp_unlock(l);
797 1.119 ad l->l_ru.ru_nswap++;
798 1.6 mrg ++uvmexp.swapouts;
799 1.68 cl
800 1.139 matt #ifdef VMSWAP_UAREA
801 1.68 cl /*
802 1.68 cl * Do any machine-specific actions necessary before swapout.
803 1.68 cl * This can include saving floating point state, etc.
804 1.68 cl */
805 1.68 cl cpu_swapout(l);
806 1.43 chs
807 1.43 chs /*
808 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
809 1.43 chs */
810 1.115 yamt uarea_swapout(USER_TO_UAREA(l->l_addr));
811 1.139 matt #endif
812 1.132 ad map = &l->l_proc->p_vmspace->vm_map;
813 1.132 ad if (vm_map_lock_try(map)) {
814 1.132 ad pmap_collect(vm_map_pmap(map));
815 1.132 ad vm_map_unlock(map);
816 1.132 ad }
817 1.107 ad }
818 1.107 ad
819 1.107 ad /*
820 1.107 ad * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
821 1.107 ad * back into memory if it is currently swapped.
822 1.107 ad */
823 1.107 ad
824 1.107 ad void
825 1.107 ad uvm_lwp_hold(struct lwp *l)
826 1.107 ad {
827 1.107 ad
828 1.114 ad if (l == curlwp) {
829 1.114 ad atomic_inc_uint(&l->l_holdcnt);
830 1.114 ad } else {
831 1.114 ad mutex_enter(&l->l_swaplock);
832 1.114 ad if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
833 1.114 ad (l->l_flag & LW_INMEM) == 0)
834 1.114 ad uvm_swapin(l);
835 1.114 ad mutex_exit(&l->l_swaplock);
836 1.114 ad }
837 1.107 ad }
838 1.107 ad
839 1.107 ad /*
840 1.107 ad * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
841 1.107 ad * drops to zero, it's eligable to be swapped.
842 1.107 ad */
843 1.107 ad
844 1.107 ad void
845 1.107 ad uvm_lwp_rele(struct lwp *l)
846 1.107 ad {
847 1.107 ad
848 1.107 ad KASSERT(l->l_holdcnt != 0);
849 1.98 ad
850 1.114 ad atomic_dec_uint(&l->l_holdcnt);
851 1.1 mrg }
852