Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.147
      1  1.147     chuck /*	$NetBSD: uvm_glue.c,v 1.147 2011/02/02 15:25:27 chuck Exp $	*/
      2    1.1       mrg 
      3   1.48       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.48       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.147     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     37    1.4       mrg  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.48       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.48       chs  *
     49   1.48       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.48       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.48       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63   1.55     lukem 
     64   1.55     lukem #include <sys/cdefs.h>
     65  1.147     chuck __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.147 2011/02/02 15:25:27 chuck Exp $");
     66    1.1       mrg 
     67   1.49     lukem #include "opt_kgdb.h"
     68   1.59      yamt #include "opt_kstack.h"
     69    1.5       mrg #include "opt_uvmhist.h"
     70    1.5       mrg 
     71    1.1       mrg /*
     72    1.1       mrg  * uvm_glue.c: glue functions
     73    1.1       mrg  */
     74    1.1       mrg 
     75    1.1       mrg #include <sys/param.h>
     76  1.145     rmind #include <sys/kernel.h>
     77  1.145     rmind 
     78    1.1       mrg #include <sys/systm.h>
     79    1.1       mrg #include <sys/proc.h>
     80    1.1       mrg #include <sys/resourcevar.h>
     81    1.1       mrg #include <sys/buf.h>
     82  1.106      yamt #include <sys/syncobj.h>
     83  1.111        ad #include <sys/cpu.h>
     84  1.114        ad #include <sys/atomic.h>
     85  1.146     rmind #include <sys/lwp.h>
     86    1.1       mrg 
     87    1.1       mrg #include <uvm/uvm.h>
     88    1.1       mrg 
     89    1.1       mrg /*
     90    1.1       mrg  * XXXCDC: do these really belong here?
     91    1.1       mrg  */
     92    1.1       mrg 
     93   1.28   thorpej /*
     94    1.1       mrg  * uvm_kernacc: can the kernel access a region of memory
     95    1.1       mrg  *
     96   1.83      yamt  * - used only by /dev/kmem driver (mem.c)
     97    1.1       mrg  */
     98    1.1       mrg 
     99  1.102   thorpej bool
    100  1.104  christos uvm_kernacc(void *addr, size_t len, int rw)
    101    1.6       mrg {
    102  1.102   thorpej 	bool rv;
    103   1.13       eeh 	vaddr_t saddr, eaddr;
    104    1.6       mrg 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    105    1.6       mrg 
    106   1.31    kleink 	saddr = trunc_page((vaddr_t)addr);
    107   1.43       chs 	eaddr = round_page((vaddr_t)addr + len);
    108    1.6       mrg 	vm_map_lock_read(kernel_map);
    109    1.6       mrg 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    110    1.6       mrg 	vm_map_unlock_read(kernel_map);
    111    1.6       mrg 
    112    1.6       mrg 	return(rv);
    113    1.1       mrg }
    114    1.1       mrg 
    115    1.1       mrg #ifdef KGDB
    116    1.1       mrg /*
    117    1.1       mrg  * Change protections on kernel pages from addr to addr+len
    118    1.1       mrg  * (presumably so debugger can plant a breakpoint).
    119    1.1       mrg  *
    120    1.1       mrg  * We force the protection change at the pmap level.  If we were
    121    1.1       mrg  * to use vm_map_protect a change to allow writing would be lazily-
    122    1.1       mrg  * applied meaning we would still take a protection fault, something
    123    1.1       mrg  * we really don't want to do.  It would also fragment the kernel
    124    1.1       mrg  * map unnecessarily.  We cannot use pmap_protect since it also won't
    125    1.1       mrg  * enforce a write-enable request.  Using pmap_enter is the only way
    126    1.1       mrg  * we can ensure the change takes place properly.
    127    1.1       mrg  */
    128    1.6       mrg void
    129  1.104  christos uvm_chgkprot(void *addr, size_t len, int rw)
    130    1.6       mrg {
    131    1.6       mrg 	vm_prot_t prot;
    132   1.13       eeh 	paddr_t pa;
    133   1.13       eeh 	vaddr_t sva, eva;
    134    1.6       mrg 
    135    1.6       mrg 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    136   1.31    kleink 	eva = round_page((vaddr_t)addr + len);
    137   1.31    kleink 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    138    1.6       mrg 		/*
    139    1.6       mrg 		 * Extract physical address for the page.
    140    1.6       mrg 		 */
    141  1.103   thorpej 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    142  1.123  christos 			panic("%s: invalid page", __func__);
    143   1.30   thorpej 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    144    1.6       mrg 	}
    145   1.51     chris 	pmap_update(pmap_kernel());
    146    1.1       mrg }
    147    1.1       mrg #endif
    148    1.1       mrg 
    149    1.1       mrg /*
    150   1.52       chs  * uvm_vslock: wire user memory for I/O
    151    1.1       mrg  *
    152    1.1       mrg  * - called from physio and sys___sysctl
    153    1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    154    1.1       mrg  */
    155    1.1       mrg 
    156   1.26   thorpej int
    157   1.97       chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    158    1.1       mrg {
    159   1.50       chs 	struct vm_map *map;
    160   1.26   thorpej 	vaddr_t start, end;
    161   1.45       chs 	int error;
    162   1.26   thorpej 
    163   1.97       chs 	map = &vs->vm_map;
    164   1.31    kleink 	start = trunc_page((vaddr_t)addr);
    165   1.31    kleink 	end = round_page((vaddr_t)addr + len);
    166   1.93  drochner 	error = uvm_fault_wire(map, start, end, access_type, 0);
    167   1.45       chs 	return error;
    168    1.1       mrg }
    169    1.1       mrg 
    170    1.1       mrg /*
    171   1.52       chs  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    172    1.1       mrg  *
    173    1.1       mrg  * - called from physio and sys___sysctl
    174    1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    175    1.1       mrg  */
    176    1.1       mrg 
    177    1.6       mrg void
    178   1.97       chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    179    1.1       mrg {
    180   1.97       chs 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    181   1.43       chs 		round_page((vaddr_t)addr + len));
    182    1.1       mrg }
    183    1.1       mrg 
    184    1.1       mrg /*
    185   1.62   thorpej  * uvm_proc_fork: fork a virtual address space
    186    1.1       mrg  *
    187    1.1       mrg  * - the address space is copied as per parent map's inherit values
    188   1.62   thorpej  */
    189   1.62   thorpej void
    190  1.102   thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    191   1.62   thorpej {
    192   1.62   thorpej 
    193  1.103   thorpej 	if (shared == true) {
    194   1.62   thorpej 		p2->p_vmspace = NULL;
    195   1.62   thorpej 		uvmspace_share(p1, p2);
    196   1.62   thorpej 	} else {
    197   1.62   thorpej 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    198   1.62   thorpej 	}
    199   1.62   thorpej 
    200   1.62   thorpej 	cpu_proc_fork(p1, p2);
    201   1.62   thorpej }
    202   1.62   thorpej 
    203   1.62   thorpej /*
    204   1.62   thorpej  * uvm_lwp_fork: fork a thread
    205   1.62   thorpej  *
    206  1.146     rmind  * - a new PCB structure is allocated for the child process,
    207  1.146     rmind  *	and filled in by MD layer
    208   1.20   thorpej  * - if specified, the child gets a new user stack described by
    209   1.20   thorpej  *	stack and stacksize
    210    1.1       mrg  * - NOTE: the kernel stack may be at a different location in the child
    211    1.1       mrg  *	process, and thus addresses of automatic variables may be invalid
    212   1.62   thorpej  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    213   1.62   thorpej  *	after cpu_lwp_fork returns.
    214    1.1       mrg  */
    215    1.6       mrg void
    216   1.89   thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    217   1.89   thorpej     void (*func)(void *), void *arg)
    218    1.6       mrg {
    219    1.6       mrg 
    220  1.137     rmind 	/* Fill stack with magic number. */
    221   1.63      yamt 	kstack_setup_magic(l2);
    222    1.6       mrg 
    223    1.6       mrg 	/*
    224   1.62   thorpej 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    225   1.62   thorpej  	 * to run.  If this is a normal user fork, the child will exit
    226   1.34   thorpej 	 * directly to user mode via child_return() on its first time
    227   1.34   thorpej 	 * slice and will not return here.  If this is a kernel thread,
    228   1.34   thorpej 	 * the specified entry point will be executed.
    229    1.6       mrg 	 */
    230   1.62   thorpej 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    231  1.138     rmind 
    232  1.138     rmind 	/* Inactive emap for new LWP. */
    233  1.138     rmind 	l2->l_emap_gen = UVM_EMAP_INACTIVE;
    234   1.14   thorpej }
    235   1.14   thorpej 
    236   1.60       chs #ifndef USPACE_ALIGN
    237  1.115      yamt #define	USPACE_ALIGN	0
    238   1.60       chs #endif
    239   1.60       chs 
    240  1.115      yamt static pool_cache_t uvm_uarea_cache;
    241  1.115      yamt 
    242  1.115      yamt static void *
    243  1.115      yamt uarea_poolpage_alloc(struct pool *pp, int flags)
    244  1.115      yamt {
    245  1.141     rmind #if defined(PMAP_MAP_POOLPAGE)
    246  1.139      matt 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    247  1.139      matt 		struct vm_page *pg;
    248  1.139      matt 		vaddr_t va;
    249  1.139      matt 
    250  1.139      matt 		pg = uvm_pagealloc(NULL, 0, NULL,
    251  1.139      matt 		   ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
    252  1.139      matt 		if (pg == NULL)
    253  1.139      matt 			return NULL;
    254  1.139      matt 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    255  1.139      matt 		if (va == 0)
    256  1.139      matt 			uvm_pagefree(pg);
    257  1.139      matt 		return (void *)va;
    258  1.139      matt 	}
    259  1.139      matt #endif
    260  1.115      yamt 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    261  1.141     rmind 	    USPACE_ALIGN, UVM_KMF_WIRED |
    262  1.141     rmind 	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
    263  1.115      yamt 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    264  1.115      yamt }
    265  1.109        ad 
    266  1.115      yamt static void
    267  1.115      yamt uarea_poolpage_free(struct pool *pp, void *addr)
    268  1.115      yamt {
    269  1.141     rmind #if defined(PMAP_MAP_POOLPAGE)
    270  1.139      matt 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    271  1.139      matt 		paddr_t pa;
    272  1.139      matt 
    273  1.139      matt 		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
    274  1.139      matt 		KASSERT(pa != 0);
    275  1.139      matt 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    276  1.139      matt 		return;
    277  1.139      matt 	}
    278  1.139      matt #endif
    279  1.115      yamt 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    280  1.141     rmind 	    UVM_KMF_WIRED);
    281  1.115      yamt }
    282  1.115      yamt 
    283  1.115      yamt static struct pool_allocator uvm_uarea_allocator = {
    284  1.115      yamt 	.pa_alloc = uarea_poolpage_alloc,
    285  1.115      yamt 	.pa_free = uarea_poolpage_free,
    286  1.115      yamt 	.pa_pagesz = USPACE,
    287  1.115      yamt };
    288  1.115      yamt 
    289  1.115      yamt void
    290  1.115      yamt uvm_uarea_init(void)
    291  1.115      yamt {
    292  1.117      yamt 	int flags = PR_NOTOUCH;
    293  1.115      yamt 
    294  1.116      yamt 	/*
    295  1.116      yamt 	 * specify PR_NOALIGN unless the alignment provided by
    296  1.116      yamt 	 * the backend (USPACE_ALIGN) is sufficient to provide
    297  1.116      yamt 	 * pool page size (UPSACE) alignment.
    298  1.116      yamt 	 */
    299  1.116      yamt 
    300  1.117      yamt 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    301  1.117      yamt 	    (USPACE_ALIGN % USPACE) != 0) {
    302  1.117      yamt 		flags |= PR_NOALIGN;
    303  1.117      yamt 	}
    304  1.117      yamt 
    305  1.117      yamt 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    306  1.141     rmind 	    "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
    307   1.60       chs }
    308   1.60       chs 
    309   1.60       chs /*
    310  1.115      yamt  * uvm_uarea_alloc: allocate a u-area
    311   1.75  jdolecek  */
    312   1.75  jdolecek 
    313  1.141     rmind vaddr_t
    314  1.141     rmind uvm_uarea_alloc(void)
    315   1.75  jdolecek {
    316  1.109        ad 
    317  1.141     rmind 	return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    318   1.75  jdolecek }
    319   1.75  jdolecek 
    320   1.75  jdolecek /*
    321  1.115      yamt  * uvm_uarea_free: free a u-area
    322   1.60       chs  */
    323   1.60       chs 
    324   1.60       chs void
    325  1.141     rmind uvm_uarea_free(vaddr_t uaddr)
    326   1.60       chs {
    327   1.60       chs 
    328  1.115      yamt 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    329   1.60       chs }
    330   1.60       chs 
    331  1.142     rmind vaddr_t
    332  1.142     rmind uvm_lwp_getuarea(lwp_t *l)
    333  1.142     rmind {
    334  1.142     rmind 
    335  1.146     rmind 	return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
    336  1.142     rmind }
    337  1.142     rmind 
    338  1.142     rmind void
    339  1.142     rmind uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
    340  1.142     rmind {
    341  1.142     rmind 
    342  1.146     rmind 	l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
    343  1.142     rmind }
    344  1.142     rmind 
    345   1.60       chs /*
    346  1.118      yamt  * uvm_proc_exit: exit a virtual address space
    347   1.80        pk  *
    348   1.80        pk  * - borrow proc0's address space because freeing the vmspace
    349   1.80        pk  *   of the dead process may block.
    350   1.80        pk  */
    351   1.80        pk 
    352   1.80        pk void
    353   1.89   thorpej uvm_proc_exit(struct proc *p)
    354   1.80        pk {
    355   1.80        pk 	struct lwp *l = curlwp; /* XXX */
    356   1.80        pk 	struct vmspace *ovm;
    357   1.80        pk 
    358   1.80        pk 	KASSERT(p == l->l_proc);
    359   1.80        pk 	ovm = p->p_vmspace;
    360   1.80        pk 
    361   1.80        pk 	/*
    362   1.80        pk 	 * borrow proc0's address space.
    363   1.80        pk 	 */
    364  1.129        ad 	KPREEMPT_DISABLE(l);
    365   1.80        pk 	pmap_deactivate(l);
    366   1.80        pk 	p->p_vmspace = proc0.p_vmspace;
    367   1.80        pk 	pmap_activate(l);
    368  1.129        ad 	KPREEMPT_ENABLE(l);
    369   1.80        pk 
    370   1.80        pk 	uvmspace_free(ovm);
    371   1.80        pk }
    372   1.80        pk 
    373   1.80        pk void
    374   1.80        pk uvm_lwp_exit(struct lwp *l)
    375   1.80        pk {
    376  1.143     rmind 	vaddr_t va = uvm_lwp_getuarea(l);
    377   1.80        pk 
    378  1.141     rmind 	uvm_uarea_free(va);
    379  1.143     rmind #ifdef DIAGNOSTIC
    380  1.143     rmind 	uvm_lwp_setuarea(l, (vaddr_t)NULL);
    381  1.143     rmind #endif
    382   1.80        pk }
    383   1.80        pk 
    384   1.80        pk /*
    385    1.1       mrg  * uvm_init_limit: init per-process VM limits
    386    1.1       mrg  *
    387    1.1       mrg  * - called for process 0 and then inherited by all others.
    388    1.1       mrg  */
    389   1.60       chs 
    390    1.6       mrg void
    391   1.89   thorpej uvm_init_limits(struct proc *p)
    392    1.6       mrg {
    393    1.6       mrg 
    394    1.6       mrg 	/*
    395    1.6       mrg 	 * Set up the initial limits on process VM.  Set the maximum
    396    1.6       mrg 	 * resident set size to be all of (reasonably) available memory.
    397    1.6       mrg 	 * This causes any single, large process to start random page
    398    1.6       mrg 	 * replacement once it fills memory.
    399    1.6       mrg 	 */
    400    1.6       mrg 
    401    1.6       mrg 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    402   1.79        pk 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    403    1.6       mrg 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    404   1.79        pk 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    405  1.136       mrg 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
    406  1.136       mrg 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
    407  1.144       jym 	p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
    408  1.144       jym 	    VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    409    1.1       mrg }
    410    1.1       mrg 
    411   1.99        ad /*
    412  1.141     rmind  * uvm_scheduler: process zero main loop.
    413    1.1       mrg  */
    414  1.145     rmind 
    415  1.145     rmind extern struct loadavg averunnable;
    416  1.145     rmind 
    417    1.6       mrg void
    418   1.89   thorpej uvm_scheduler(void)
    419    1.1       mrg {
    420  1.141     rmind 	lwp_t *l = curlwp;
    421    1.1       mrg 
    422   1.99        ad 	lwp_lock(l);
    423  1.113        ad 	l->l_priority = PRI_VM;
    424  1.113        ad 	l->l_class = SCHED_FIFO;
    425   1.99        ad 	lwp_unlock(l);
    426   1.99        ad 
    427   1.99        ad 	for (;;) {
    428  1.145     rmind 		sched_pstats();
    429  1.145     rmind 		(void)kpause("uvm", false, hz, NULL);
    430  1.114        ad 	}
    431  1.107        ad }
    432