uvm_glue.c revision 1.160 1 1.160 matt /* $NetBSD: uvm_glue.c,v 1.160 2012/09/01 00:26:37 matt Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.147 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
37 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.48 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.48 chs *
49 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.48 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.55 lukem
64 1.55 lukem #include <sys/cdefs.h>
65 1.160 matt __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.160 2012/09/01 00:26:37 matt Exp $");
66 1.1 mrg
67 1.49 lukem #include "opt_kgdb.h"
68 1.59 yamt #include "opt_kstack.h"
69 1.5 mrg #include "opt_uvmhist.h"
70 1.5 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_glue.c: glue functions
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.145 rmind #include <sys/kernel.h>
77 1.145 rmind
78 1.1 mrg #include <sys/systm.h>
79 1.1 mrg #include <sys/proc.h>
80 1.1 mrg #include <sys/resourcevar.h>
81 1.1 mrg #include <sys/buf.h>
82 1.106 yamt #include <sys/syncobj.h>
83 1.111 ad #include <sys/cpu.h>
84 1.114 ad #include <sys/atomic.h>
85 1.146 rmind #include <sys/lwp.h>
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.150 rmind * uvm_kernacc: test if kernel can access a memory region.
91 1.1 mrg *
92 1.150 rmind * => Currently used only by /dev/kmem driver (dev/mm.c).
93 1.1 mrg */
94 1.102 thorpej bool
95 1.150 rmind uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
96 1.6 mrg {
97 1.150 rmind vaddr_t saddr = trunc_page((vaddr_t)addr);
98 1.150 rmind vaddr_t eaddr = round_page(saddr + len);
99 1.102 thorpej bool rv;
100 1.6 mrg
101 1.6 mrg vm_map_lock_read(kernel_map);
102 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
103 1.6 mrg vm_map_unlock_read(kernel_map);
104 1.6 mrg
105 1.150 rmind return rv;
106 1.1 mrg }
107 1.1 mrg
108 1.1 mrg #ifdef KGDB
109 1.1 mrg /*
110 1.1 mrg * Change protections on kernel pages from addr to addr+len
111 1.1 mrg * (presumably so debugger can plant a breakpoint).
112 1.1 mrg *
113 1.1 mrg * We force the protection change at the pmap level. If we were
114 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
115 1.1 mrg * applied meaning we would still take a protection fault, something
116 1.1 mrg * we really don't want to do. It would also fragment the kernel
117 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
118 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
119 1.1 mrg * we can ensure the change takes place properly.
120 1.1 mrg */
121 1.6 mrg void
122 1.104 christos uvm_chgkprot(void *addr, size_t len, int rw)
123 1.6 mrg {
124 1.6 mrg vm_prot_t prot;
125 1.13 eeh paddr_t pa;
126 1.13 eeh vaddr_t sva, eva;
127 1.6 mrg
128 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
129 1.31 kleink eva = round_page((vaddr_t)addr + len);
130 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
131 1.6 mrg /*
132 1.6 mrg * Extract physical address for the page.
133 1.6 mrg */
134 1.103 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == false)
135 1.123 christos panic("%s: invalid page", __func__);
136 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
137 1.6 mrg }
138 1.51 chris pmap_update(pmap_kernel());
139 1.1 mrg }
140 1.1 mrg #endif
141 1.1 mrg
142 1.1 mrg /*
143 1.52 chs * uvm_vslock: wire user memory for I/O
144 1.1 mrg *
145 1.1 mrg * - called from physio and sys___sysctl
146 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
147 1.1 mrg */
148 1.1 mrg
149 1.26 thorpej int
150 1.97 chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
151 1.1 mrg {
152 1.50 chs struct vm_map *map;
153 1.26 thorpej vaddr_t start, end;
154 1.45 chs int error;
155 1.26 thorpej
156 1.97 chs map = &vs->vm_map;
157 1.31 kleink start = trunc_page((vaddr_t)addr);
158 1.31 kleink end = round_page((vaddr_t)addr + len);
159 1.93 drochner error = uvm_fault_wire(map, start, end, access_type, 0);
160 1.45 chs return error;
161 1.1 mrg }
162 1.1 mrg
163 1.1 mrg /*
164 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
165 1.1 mrg *
166 1.1 mrg * - called from physio and sys___sysctl
167 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
168 1.1 mrg */
169 1.1 mrg
170 1.6 mrg void
171 1.97 chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
172 1.1 mrg {
173 1.97 chs uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
174 1.43 chs round_page((vaddr_t)addr + len));
175 1.1 mrg }
176 1.1 mrg
177 1.1 mrg /*
178 1.62 thorpej * uvm_proc_fork: fork a virtual address space
179 1.1 mrg *
180 1.1 mrg * - the address space is copied as per parent map's inherit values
181 1.62 thorpej */
182 1.62 thorpej void
183 1.102 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
184 1.62 thorpej {
185 1.62 thorpej
186 1.103 thorpej if (shared == true) {
187 1.62 thorpej p2->p_vmspace = NULL;
188 1.62 thorpej uvmspace_share(p1, p2);
189 1.62 thorpej } else {
190 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
191 1.62 thorpej }
192 1.62 thorpej
193 1.62 thorpej cpu_proc_fork(p1, p2);
194 1.62 thorpej }
195 1.62 thorpej
196 1.62 thorpej /*
197 1.62 thorpej * uvm_lwp_fork: fork a thread
198 1.62 thorpej *
199 1.146 rmind * - a new PCB structure is allocated for the child process,
200 1.146 rmind * and filled in by MD layer
201 1.20 thorpej * - if specified, the child gets a new user stack described by
202 1.20 thorpej * stack and stacksize
203 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
204 1.1 mrg * process, and thus addresses of automatic variables may be invalid
205 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
206 1.62 thorpej * after cpu_lwp_fork returns.
207 1.1 mrg */
208 1.6 mrg void
209 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
210 1.89 thorpej void (*func)(void *), void *arg)
211 1.6 mrg {
212 1.6 mrg
213 1.137 rmind /* Fill stack with magic number. */
214 1.63 yamt kstack_setup_magic(l2);
215 1.6 mrg
216 1.6 mrg /*
217 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
218 1.62 thorpej * to run. If this is a normal user fork, the child will exit
219 1.34 thorpej * directly to user mode via child_return() on its first time
220 1.34 thorpej * slice and will not return here. If this is a kernel thread,
221 1.34 thorpej * the specified entry point will be executed.
222 1.6 mrg */
223 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
224 1.138 rmind
225 1.138 rmind /* Inactive emap for new LWP. */
226 1.138 rmind l2->l_emap_gen = UVM_EMAP_INACTIVE;
227 1.14 thorpej }
228 1.14 thorpej
229 1.60 chs #ifndef USPACE_ALIGN
230 1.115 yamt #define USPACE_ALIGN 0
231 1.60 chs #endif
232 1.60 chs
233 1.115 yamt static pool_cache_t uvm_uarea_cache;
234 1.148 matt #if defined(__HAVE_CPU_UAREA_ROUTINES)
235 1.148 matt static pool_cache_t uvm_uarea_system_cache;
236 1.148 matt #else
237 1.148 matt #define uvm_uarea_system_cache uvm_uarea_cache
238 1.148 matt #endif
239 1.115 yamt
240 1.115 yamt static void *
241 1.115 yamt uarea_poolpage_alloc(struct pool *pp, int flags)
242 1.115 yamt {
243 1.154 para #if defined(PMAP_MAP_POOLPAGE)
244 1.154 para if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
245 1.154 para struct vm_page *pg;
246 1.154 para vaddr_t va;
247 1.154 para
248 1.154 para #if defined(PMAP_ALLOC_POOLPAGE)
249 1.154 para pg = PMAP_ALLOC_POOLPAGE(
250 1.154 para ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
251 1.154 para #else
252 1.154 para pg = uvm_pagealloc(NULL, 0, NULL,
253 1.154 para ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
254 1.154 para #endif
255 1.154 para if (pg == NULL)
256 1.154 para return NULL;
257 1.154 para va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
258 1.154 para if (va == 0)
259 1.154 para uvm_pagefree(pg);
260 1.154 para return (void *)va;
261 1.139 matt }
262 1.154 para #endif
263 1.148 matt #if defined(__HAVE_CPU_UAREA_ROUTINES)
264 1.148 matt void *va = cpu_uarea_alloc(false);
265 1.148 matt if (va)
266 1.148 matt return (void *)va;
267 1.148 matt #endif
268 1.115 yamt return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
269 1.141 rmind USPACE_ALIGN, UVM_KMF_WIRED |
270 1.141 rmind ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
271 1.115 yamt (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
272 1.115 yamt }
273 1.109 ad
274 1.115 yamt static void
275 1.115 yamt uarea_poolpage_free(struct pool *pp, void *addr)
276 1.115 yamt {
277 1.154 para #if defined(PMAP_MAP_POOLPAGE)
278 1.154 para if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
279 1.154 para paddr_t pa;
280 1.154 para
281 1.154 para pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
282 1.154 para KASSERT(pa != 0);
283 1.154 para uvm_pagefree(PHYS_TO_VM_PAGE(pa));
284 1.139 matt return;
285 1.139 matt }
286 1.154 para #endif
287 1.148 matt #if defined(__HAVE_CPU_UAREA_ROUTINES)
288 1.148 matt if (cpu_uarea_free(addr))
289 1.148 matt return;
290 1.148 matt #endif
291 1.115 yamt uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
292 1.141 rmind UVM_KMF_WIRED);
293 1.115 yamt }
294 1.115 yamt
295 1.115 yamt static struct pool_allocator uvm_uarea_allocator = {
296 1.115 yamt .pa_alloc = uarea_poolpage_alloc,
297 1.115 yamt .pa_free = uarea_poolpage_free,
298 1.115 yamt .pa_pagesz = USPACE,
299 1.115 yamt };
300 1.115 yamt
301 1.148 matt #if defined(__HAVE_CPU_UAREA_ROUTINES)
302 1.148 matt static void *
303 1.148 matt uarea_system_poolpage_alloc(struct pool *pp, int flags)
304 1.148 matt {
305 1.148 matt void * const va = cpu_uarea_alloc(true);
306 1.151 matt if (va != NULL)
307 1.151 matt return va;
308 1.151 matt
309 1.151 matt return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
310 1.151 matt USPACE_ALIGN, UVM_KMF_WIRED |
311 1.151 matt ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
312 1.151 matt (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
313 1.148 matt }
314 1.148 matt
315 1.148 matt static void
316 1.148 matt uarea_system_poolpage_free(struct pool *pp, void *addr)
317 1.148 matt {
318 1.158 chs if (cpu_uarea_free(addr))
319 1.158 chs return;
320 1.158 chs
321 1.158 chs uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
322 1.158 chs UVM_KMF_WIRED);
323 1.148 matt }
324 1.148 matt
325 1.148 matt static struct pool_allocator uvm_uarea_system_allocator = {
326 1.148 matt .pa_alloc = uarea_system_poolpage_alloc,
327 1.148 matt .pa_free = uarea_system_poolpage_free,
328 1.148 matt .pa_pagesz = USPACE,
329 1.148 matt };
330 1.148 matt #endif /* __HAVE_CPU_UAREA_ROUTINES */
331 1.148 matt
332 1.115 yamt void
333 1.115 yamt uvm_uarea_init(void)
334 1.115 yamt {
335 1.117 yamt int flags = PR_NOTOUCH;
336 1.115 yamt
337 1.116 yamt /*
338 1.116 yamt * specify PR_NOALIGN unless the alignment provided by
339 1.116 yamt * the backend (USPACE_ALIGN) is sufficient to provide
340 1.116 yamt * pool page size (UPSACE) alignment.
341 1.116 yamt */
342 1.116 yamt
343 1.117 yamt if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
344 1.117 yamt (USPACE_ALIGN % USPACE) != 0) {
345 1.117 yamt flags |= PR_NOALIGN;
346 1.117 yamt }
347 1.117 yamt
348 1.117 yamt uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
349 1.141 rmind "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
350 1.149 drochner #if defined(__HAVE_CPU_UAREA_ROUTINES)
351 1.149 drochner uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
352 1.149 drochner 0, flags, "uareasys", &uvm_uarea_system_allocator,
353 1.149 drochner IPL_NONE, NULL, NULL, NULL);
354 1.149 drochner #endif
355 1.60 chs }
356 1.60 chs
357 1.60 chs /*
358 1.115 yamt * uvm_uarea_alloc: allocate a u-area
359 1.75 jdolecek */
360 1.75 jdolecek
361 1.141 rmind vaddr_t
362 1.141 rmind uvm_uarea_alloc(void)
363 1.75 jdolecek {
364 1.109 ad
365 1.141 rmind return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
366 1.75 jdolecek }
367 1.75 jdolecek
368 1.148 matt vaddr_t
369 1.160 matt uvm_uarea_system_alloc(struct cpu_info *ci)
370 1.148 matt {
371 1.160 matt #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
372 1.160 matt if (__predict_false(ci != NULL))
373 1.160 matt return cpu_uarea_alloc_idlelwp(ci);
374 1.160 matt #endif
375 1.148 matt
376 1.148 matt return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
377 1.148 matt }
378 1.148 matt
379 1.75 jdolecek /*
380 1.115 yamt * uvm_uarea_free: free a u-area
381 1.60 chs */
382 1.60 chs
383 1.60 chs void
384 1.141 rmind uvm_uarea_free(vaddr_t uaddr)
385 1.60 chs {
386 1.60 chs
387 1.115 yamt pool_cache_put(uvm_uarea_cache, (void *)uaddr);
388 1.60 chs }
389 1.60 chs
390 1.148 matt void
391 1.148 matt uvm_uarea_system_free(vaddr_t uaddr)
392 1.148 matt {
393 1.148 matt
394 1.148 matt pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
395 1.148 matt }
396 1.148 matt
397 1.142 rmind vaddr_t
398 1.142 rmind uvm_lwp_getuarea(lwp_t *l)
399 1.142 rmind {
400 1.142 rmind
401 1.146 rmind return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
402 1.142 rmind }
403 1.142 rmind
404 1.142 rmind void
405 1.142 rmind uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
406 1.142 rmind {
407 1.142 rmind
408 1.146 rmind l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
409 1.142 rmind }
410 1.142 rmind
411 1.60 chs /*
412 1.118 yamt * uvm_proc_exit: exit a virtual address space
413 1.80 pk *
414 1.80 pk * - borrow proc0's address space because freeing the vmspace
415 1.80 pk * of the dead process may block.
416 1.80 pk */
417 1.80 pk
418 1.80 pk void
419 1.89 thorpej uvm_proc_exit(struct proc *p)
420 1.80 pk {
421 1.80 pk struct lwp *l = curlwp; /* XXX */
422 1.80 pk struct vmspace *ovm;
423 1.80 pk
424 1.80 pk KASSERT(p == l->l_proc);
425 1.80 pk ovm = p->p_vmspace;
426 1.159 martin KASSERT(ovm != NULL);
427 1.159 martin
428 1.159 martin if (__predict_false(ovm == proc0.p_vmspace))
429 1.159 martin return;
430 1.80 pk
431 1.80 pk /*
432 1.80 pk * borrow proc0's address space.
433 1.80 pk */
434 1.129 ad KPREEMPT_DISABLE(l);
435 1.159 martin pmap_deactivate(l);
436 1.80 pk p->p_vmspace = proc0.p_vmspace;
437 1.80 pk pmap_activate(l);
438 1.129 ad KPREEMPT_ENABLE(l);
439 1.80 pk
440 1.159 martin uvmspace_free(ovm);
441 1.80 pk }
442 1.80 pk
443 1.80 pk void
444 1.80 pk uvm_lwp_exit(struct lwp *l)
445 1.80 pk {
446 1.143 rmind vaddr_t va = uvm_lwp_getuarea(l);
447 1.148 matt bool system = (l->l_flag & LW_SYSTEM) != 0;
448 1.80 pk
449 1.148 matt if (system)
450 1.148 matt uvm_uarea_system_free(va);
451 1.148 matt else
452 1.148 matt uvm_uarea_free(va);
453 1.143 rmind #ifdef DIAGNOSTIC
454 1.143 rmind uvm_lwp_setuarea(l, (vaddr_t)NULL);
455 1.143 rmind #endif
456 1.80 pk }
457 1.80 pk
458 1.80 pk /*
459 1.1 mrg * uvm_init_limit: init per-process VM limits
460 1.1 mrg *
461 1.1 mrg * - called for process 0 and then inherited by all others.
462 1.1 mrg */
463 1.60 chs
464 1.6 mrg void
465 1.89 thorpej uvm_init_limits(struct proc *p)
466 1.6 mrg {
467 1.6 mrg
468 1.6 mrg /*
469 1.6 mrg * Set up the initial limits on process VM. Set the maximum
470 1.6 mrg * resident set size to be all of (reasonably) available memory.
471 1.6 mrg * This causes any single, large process to start random page
472 1.6 mrg * replacement once it fills memory.
473 1.6 mrg */
474 1.6 mrg
475 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
476 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
477 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
478 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
479 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
480 1.136 mrg p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
481 1.144 jym p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
482 1.144 jym VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
483 1.1 mrg }
484 1.1 mrg
485 1.99 ad /*
486 1.141 rmind * uvm_scheduler: process zero main loop.
487 1.1 mrg */
488 1.145 rmind
489 1.145 rmind extern struct loadavg averunnable;
490 1.145 rmind
491 1.6 mrg void
492 1.89 thorpej uvm_scheduler(void)
493 1.1 mrg {
494 1.141 rmind lwp_t *l = curlwp;
495 1.1 mrg
496 1.99 ad lwp_lock(l);
497 1.113 ad l->l_priority = PRI_VM;
498 1.113 ad l->l_class = SCHED_FIFO;
499 1.99 ad lwp_unlock(l);
500 1.99 ad
501 1.99 ad for (;;) {
502 1.145 rmind sched_pstats();
503 1.145 rmind (void)kpause("uvm", false, hz, NULL);
504 1.114 ad }
505 1.107 ad }
506