Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.171
      1  1.171        ad /*	$NetBSD: uvm_glue.c,v 1.171 2019/12/16 22:47:55 ad Exp $	*/
      2    1.1       mrg 
      3   1.48       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.48       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.147     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     37    1.4       mrg  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.48       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.48       chs  *
     49   1.48       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.48       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.48       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63   1.55     lukem 
     64   1.55     lukem #include <sys/cdefs.h>
     65  1.171        ad __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.171 2019/12/16 22:47:55 ad Exp $");
     66    1.1       mrg 
     67   1.49     lukem #include "opt_kgdb.h"
     68   1.59      yamt #include "opt_kstack.h"
     69    1.5       mrg #include "opt_uvmhist.h"
     70    1.5       mrg 
     71    1.1       mrg /*
     72    1.1       mrg  * uvm_glue.c: glue functions
     73    1.1       mrg  */
     74    1.1       mrg 
     75    1.1       mrg #include <sys/param.h>
     76  1.145     rmind #include <sys/kernel.h>
     77  1.145     rmind 
     78    1.1       mrg #include <sys/systm.h>
     79    1.1       mrg #include <sys/proc.h>
     80    1.1       mrg #include <sys/resourcevar.h>
     81    1.1       mrg #include <sys/buf.h>
     82  1.106      yamt #include <sys/syncobj.h>
     83  1.111        ad #include <sys/cpu.h>
     84  1.114        ad #include <sys/atomic.h>
     85  1.146     rmind #include <sys/lwp.h>
     86  1.164      maxv #include <sys/asan.h>
     87    1.1       mrg 
     88    1.1       mrg #include <uvm/uvm.h>
     89    1.1       mrg 
     90    1.1       mrg /*
     91  1.150     rmind  * uvm_kernacc: test if kernel can access a memory region.
     92    1.1       mrg  *
     93  1.150     rmind  * => Currently used only by /dev/kmem driver (dev/mm.c).
     94    1.1       mrg  */
     95  1.102   thorpej bool
     96  1.150     rmind uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
     97    1.6       mrg {
     98  1.150     rmind 	vaddr_t saddr = trunc_page((vaddr_t)addr);
     99  1.150     rmind 	vaddr_t eaddr = round_page(saddr + len);
    100  1.102   thorpej 	bool rv;
    101    1.6       mrg 
    102    1.6       mrg 	vm_map_lock_read(kernel_map);
    103    1.6       mrg 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    104    1.6       mrg 	vm_map_unlock_read(kernel_map);
    105    1.6       mrg 
    106  1.150     rmind 	return rv;
    107    1.1       mrg }
    108    1.1       mrg 
    109    1.1       mrg #ifdef KGDB
    110    1.1       mrg /*
    111    1.1       mrg  * Change protections on kernel pages from addr to addr+len
    112    1.1       mrg  * (presumably so debugger can plant a breakpoint).
    113    1.1       mrg  *
    114    1.1       mrg  * We force the protection change at the pmap level.  If we were
    115    1.1       mrg  * to use vm_map_protect a change to allow writing would be lazily-
    116    1.1       mrg  * applied meaning we would still take a protection fault, something
    117    1.1       mrg  * we really don't want to do.  It would also fragment the kernel
    118    1.1       mrg  * map unnecessarily.  We cannot use pmap_protect since it also won't
    119    1.1       mrg  * enforce a write-enable request.  Using pmap_enter is the only way
    120    1.1       mrg  * we can ensure the change takes place properly.
    121    1.1       mrg  */
    122    1.6       mrg void
    123  1.104  christos uvm_chgkprot(void *addr, size_t len, int rw)
    124    1.6       mrg {
    125    1.6       mrg 	vm_prot_t prot;
    126   1.13       eeh 	paddr_t pa;
    127   1.13       eeh 	vaddr_t sva, eva;
    128    1.6       mrg 
    129    1.6       mrg 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    130   1.31    kleink 	eva = round_page((vaddr_t)addr + len);
    131   1.31    kleink 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    132    1.6       mrg 		/*
    133    1.6       mrg 		 * Extract physical address for the page.
    134    1.6       mrg 		 */
    135  1.103   thorpej 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    136  1.123  christos 			panic("%s: invalid page", __func__);
    137   1.30   thorpej 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    138    1.6       mrg 	}
    139   1.51     chris 	pmap_update(pmap_kernel());
    140    1.1       mrg }
    141    1.1       mrg #endif
    142    1.1       mrg 
    143    1.1       mrg /*
    144   1.52       chs  * uvm_vslock: wire user memory for I/O
    145    1.1       mrg  *
    146    1.1       mrg  * - called from physio and sys___sysctl
    147    1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    148    1.1       mrg  */
    149    1.1       mrg 
    150   1.26   thorpej int
    151   1.97       chs uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    152    1.1       mrg {
    153   1.50       chs 	struct vm_map *map;
    154   1.26   thorpej 	vaddr_t start, end;
    155   1.45       chs 	int error;
    156   1.26   thorpej 
    157   1.97       chs 	map = &vs->vm_map;
    158   1.31    kleink 	start = trunc_page((vaddr_t)addr);
    159   1.31    kleink 	end = round_page((vaddr_t)addr + len);
    160   1.93  drochner 	error = uvm_fault_wire(map, start, end, access_type, 0);
    161   1.45       chs 	return error;
    162    1.1       mrg }
    163    1.1       mrg 
    164    1.1       mrg /*
    165   1.52       chs  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    166    1.1       mrg  *
    167    1.1       mrg  * - called from physio and sys___sysctl
    168    1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    169    1.1       mrg  */
    170    1.1       mrg 
    171    1.6       mrg void
    172   1.97       chs uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    173    1.1       mrg {
    174   1.97       chs 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    175   1.43       chs 		round_page((vaddr_t)addr + len));
    176    1.1       mrg }
    177    1.1       mrg 
    178    1.1       mrg /*
    179   1.62   thorpej  * uvm_proc_fork: fork a virtual address space
    180    1.1       mrg  *
    181    1.1       mrg  * - the address space is copied as per parent map's inherit values
    182   1.62   thorpej  */
    183   1.62   thorpej void
    184  1.102   thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    185   1.62   thorpej {
    186   1.62   thorpej 
    187  1.103   thorpej 	if (shared == true) {
    188   1.62   thorpej 		p2->p_vmspace = NULL;
    189   1.62   thorpej 		uvmspace_share(p1, p2);
    190   1.62   thorpej 	} else {
    191   1.62   thorpej 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    192   1.62   thorpej 	}
    193   1.62   thorpej 
    194   1.62   thorpej 	cpu_proc_fork(p1, p2);
    195   1.62   thorpej }
    196   1.62   thorpej 
    197   1.62   thorpej /*
    198   1.62   thorpej  * uvm_lwp_fork: fork a thread
    199   1.62   thorpej  *
    200  1.146     rmind  * - a new PCB structure is allocated for the child process,
    201  1.146     rmind  *	and filled in by MD layer
    202   1.20   thorpej  * - if specified, the child gets a new user stack described by
    203   1.20   thorpej  *	stack and stacksize
    204    1.1       mrg  * - NOTE: the kernel stack may be at a different location in the child
    205    1.1       mrg  *	process, and thus addresses of automatic variables may be invalid
    206   1.62   thorpej  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    207   1.62   thorpej  *	after cpu_lwp_fork returns.
    208    1.1       mrg  */
    209    1.6       mrg void
    210   1.89   thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    211   1.89   thorpej     void (*func)(void *), void *arg)
    212    1.6       mrg {
    213    1.6       mrg 
    214  1.137     rmind 	/* Fill stack with magic number. */
    215   1.63      yamt 	kstack_setup_magic(l2);
    216    1.6       mrg 
    217    1.6       mrg 	/*
    218   1.62   thorpej 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    219   1.62   thorpej  	 * to run.  If this is a normal user fork, the child will exit
    220   1.34   thorpej 	 * directly to user mode via child_return() on its first time
    221   1.34   thorpej 	 * slice and will not return here.  If this is a kernel thread,
    222   1.34   thorpej 	 * the specified entry point will be executed.
    223    1.6       mrg 	 */
    224   1.62   thorpej 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    225  1.138     rmind 
    226  1.138     rmind 	/* Inactive emap for new LWP. */
    227  1.138     rmind 	l2->l_emap_gen = UVM_EMAP_INACTIVE;
    228   1.14   thorpej }
    229   1.14   thorpej 
    230   1.60       chs #ifndef USPACE_ALIGN
    231  1.115      yamt #define	USPACE_ALIGN	0
    232   1.60       chs #endif
    233   1.60       chs 
    234  1.115      yamt static pool_cache_t uvm_uarea_cache;
    235  1.148      matt #if defined(__HAVE_CPU_UAREA_ROUTINES)
    236  1.148      matt static pool_cache_t uvm_uarea_system_cache;
    237  1.148      matt #else
    238  1.148      matt #define uvm_uarea_system_cache uvm_uarea_cache
    239  1.148      matt #endif
    240  1.115      yamt 
    241  1.115      yamt static void *
    242  1.115      yamt uarea_poolpage_alloc(struct pool *pp, int flags)
    243  1.115      yamt {
    244  1.168       chs 
    245  1.168       chs 	KASSERT((flags & PR_WAITOK) != 0);
    246  1.168       chs 
    247  1.163      maxv #if defined(PMAP_MAP_POOLPAGE)
    248  1.168       chs 	while (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    249  1.163      maxv 		struct vm_page *pg;
    250  1.163      maxv 		vaddr_t va;
    251  1.154      para #if defined(PMAP_ALLOC_POOLPAGE)
    252  1.168       chs 		pg = PMAP_ALLOC_POOLPAGE(0);
    253  1.154      para #else
    254  1.168       chs 		pg = uvm_pagealloc(NULL, 0, NULL, 0);
    255  1.163      maxv #endif
    256  1.168       chs 		if (pg == NULL) {
    257  1.168       chs 			uvm_wait("uarea");
    258  1.168       chs 			continue;
    259  1.168       chs 		}
    260  1.163      maxv 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    261  1.165   mlelstv 		KASSERT(va != 0);
    262  1.163      maxv 		return (void *)va;
    263  1.163      maxv 	}
    264  1.163      maxv #endif
    265  1.163      maxv #if defined(__HAVE_CPU_UAREA_ROUTINES)
    266  1.148      matt 	void *va = cpu_uarea_alloc(false);
    267  1.148      matt 	if (va)
    268  1.148      matt 		return (void *)va;
    269  1.163      maxv #endif
    270  1.115      yamt 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    271  1.168       chs 	    USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA);
    272  1.115      yamt }
    273  1.109        ad 
    274  1.115      yamt static void
    275  1.115      yamt uarea_poolpage_free(struct pool *pp, void *addr)
    276  1.115      yamt {
    277  1.154      para #if defined(PMAP_MAP_POOLPAGE)
    278  1.154      para 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    279  1.154      para 		paddr_t pa;
    280  1.154      para 
    281  1.154      para 		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
    282  1.154      para 		KASSERT(pa != 0);
    283  1.154      para 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    284  1.139      matt 		return;
    285  1.139      matt 	}
    286  1.154      para #endif
    287  1.148      matt #if defined(__HAVE_CPU_UAREA_ROUTINES)
    288  1.148      matt 	if (cpu_uarea_free(addr))
    289  1.148      matt 		return;
    290  1.148      matt #endif
    291  1.115      yamt 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    292  1.141     rmind 	    UVM_KMF_WIRED);
    293  1.115      yamt }
    294  1.115      yamt 
    295  1.115      yamt static struct pool_allocator uvm_uarea_allocator = {
    296  1.115      yamt 	.pa_alloc = uarea_poolpage_alloc,
    297  1.115      yamt 	.pa_free = uarea_poolpage_free,
    298  1.115      yamt 	.pa_pagesz = USPACE,
    299  1.115      yamt };
    300  1.115      yamt 
    301  1.148      matt #if defined(__HAVE_CPU_UAREA_ROUTINES)
    302  1.148      matt static void *
    303  1.148      matt uarea_system_poolpage_alloc(struct pool *pp, int flags)
    304  1.148      matt {
    305  1.148      matt 	void * const va = cpu_uarea_alloc(true);
    306  1.151      matt 	if (va != NULL)
    307  1.151      matt 		return va;
    308  1.151      matt 
    309  1.151      matt 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    310  1.151      matt 	    USPACE_ALIGN, UVM_KMF_WIRED |
    311  1.151      matt 	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
    312  1.151      matt 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    313  1.148      matt }
    314  1.148      matt 
    315  1.148      matt static void
    316  1.148      matt uarea_system_poolpage_free(struct pool *pp, void *addr)
    317  1.148      matt {
    318  1.158       chs 	if (cpu_uarea_free(addr))
    319  1.158       chs 		return;
    320  1.158       chs 
    321  1.158       chs 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    322  1.158       chs 	    UVM_KMF_WIRED);
    323  1.148      matt }
    324  1.148      matt 
    325  1.148      matt static struct pool_allocator uvm_uarea_system_allocator = {
    326  1.148      matt 	.pa_alloc = uarea_system_poolpage_alloc,
    327  1.148      matt 	.pa_free = uarea_system_poolpage_free,
    328  1.148      matt 	.pa_pagesz = USPACE,
    329  1.148      matt };
    330  1.148      matt #endif /* __HAVE_CPU_UAREA_ROUTINES */
    331  1.148      matt 
    332  1.115      yamt void
    333  1.115      yamt uvm_uarea_init(void)
    334  1.115      yamt {
    335  1.117      yamt 	int flags = PR_NOTOUCH;
    336  1.115      yamt 
    337  1.116      yamt 	/*
    338  1.116      yamt 	 * specify PR_NOALIGN unless the alignment provided by
    339  1.116      yamt 	 * the backend (USPACE_ALIGN) is sufficient to provide
    340  1.116      yamt 	 * pool page size (UPSACE) alignment.
    341  1.116      yamt 	 */
    342  1.116      yamt 
    343  1.117      yamt 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    344  1.117      yamt 	    (USPACE_ALIGN % USPACE) != 0) {
    345  1.117      yamt 		flags |= PR_NOALIGN;
    346  1.117      yamt 	}
    347  1.117      yamt 
    348  1.117      yamt 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    349  1.141     rmind 	    "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
    350  1.149  drochner #if defined(__HAVE_CPU_UAREA_ROUTINES)
    351  1.149  drochner 	uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
    352  1.149  drochner 	    0, flags, "uareasys", &uvm_uarea_system_allocator,
    353  1.149  drochner 	    IPL_NONE, NULL, NULL, NULL);
    354  1.149  drochner #endif
    355   1.60       chs }
    356   1.60       chs 
    357   1.60       chs /*
    358  1.115      yamt  * uvm_uarea_alloc: allocate a u-area
    359   1.75  jdolecek  */
    360   1.75  jdolecek 
    361  1.141     rmind vaddr_t
    362  1.141     rmind uvm_uarea_alloc(void)
    363   1.75  jdolecek {
    364  1.109        ad 
    365  1.141     rmind 	return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    366   1.75  jdolecek }
    367   1.75  jdolecek 
    368  1.148      matt vaddr_t
    369  1.160      matt uvm_uarea_system_alloc(struct cpu_info *ci)
    370  1.148      matt {
    371  1.160      matt #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    372  1.160      matt 	if (__predict_false(ci != NULL))
    373  1.160      matt 		return cpu_uarea_alloc_idlelwp(ci);
    374  1.160      matt #endif
    375  1.148      matt 
    376  1.148      matt 	return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
    377  1.148      matt }
    378  1.148      matt 
    379   1.75  jdolecek /*
    380  1.115      yamt  * uvm_uarea_free: free a u-area
    381   1.60       chs  */
    382   1.60       chs 
    383   1.60       chs void
    384  1.141     rmind uvm_uarea_free(vaddr_t uaddr)
    385   1.60       chs {
    386   1.60       chs 
    387  1.167      maxv 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    388  1.115      yamt 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    389   1.60       chs }
    390   1.60       chs 
    391  1.148      matt void
    392  1.148      matt uvm_uarea_system_free(vaddr_t uaddr)
    393  1.148      matt {
    394  1.148      matt 
    395  1.167      maxv 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    396  1.148      matt 	pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
    397  1.148      matt }
    398  1.148      matt 
    399  1.142     rmind vaddr_t
    400  1.142     rmind uvm_lwp_getuarea(lwp_t *l)
    401  1.142     rmind {
    402  1.142     rmind 
    403  1.146     rmind 	return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
    404  1.142     rmind }
    405  1.142     rmind 
    406  1.142     rmind void
    407  1.142     rmind uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
    408  1.142     rmind {
    409  1.142     rmind 
    410  1.146     rmind 	l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
    411  1.142     rmind }
    412  1.142     rmind 
    413   1.60       chs /*
    414  1.118      yamt  * uvm_proc_exit: exit a virtual address space
    415   1.80        pk  *
    416   1.80        pk  * - borrow proc0's address space because freeing the vmspace
    417   1.80        pk  *   of the dead process may block.
    418   1.80        pk  */
    419   1.80        pk 
    420   1.80        pk void
    421   1.89   thorpej uvm_proc_exit(struct proc *p)
    422   1.80        pk {
    423   1.80        pk 	struct lwp *l = curlwp; /* XXX */
    424   1.80        pk 	struct vmspace *ovm;
    425   1.80        pk 
    426   1.80        pk 	KASSERT(p == l->l_proc);
    427   1.80        pk 	ovm = p->p_vmspace;
    428  1.159    martin 	KASSERT(ovm != NULL);
    429  1.159    martin 
    430  1.159    martin 	if (__predict_false(ovm == proc0.p_vmspace))
    431  1.159    martin 		return;
    432   1.80        pk 
    433   1.80        pk 	/*
    434   1.80        pk 	 * borrow proc0's address space.
    435   1.80        pk 	 */
    436  1.161  uebayasi 	kpreempt_disable();
    437  1.159    martin 	pmap_deactivate(l);
    438   1.80        pk 	p->p_vmspace = proc0.p_vmspace;
    439   1.80        pk 	pmap_activate(l);
    440  1.161  uebayasi 	kpreempt_enable();
    441   1.80        pk 
    442  1.159    martin 	uvmspace_free(ovm);
    443   1.80        pk }
    444   1.80        pk 
    445   1.80        pk void
    446   1.80        pk uvm_lwp_exit(struct lwp *l)
    447   1.80        pk {
    448  1.143     rmind 	vaddr_t va = uvm_lwp_getuarea(l);
    449  1.148      matt 	bool system = (l->l_flag & LW_SYSTEM) != 0;
    450   1.80        pk 
    451  1.148      matt 	if (system)
    452  1.148      matt 		uvm_uarea_system_free(va);
    453  1.148      matt 	else
    454  1.148      matt 		uvm_uarea_free(va);
    455  1.143     rmind #ifdef DIAGNOSTIC
    456  1.143     rmind 	uvm_lwp_setuarea(l, (vaddr_t)NULL);
    457  1.143     rmind #endif
    458   1.80        pk }
    459   1.80        pk 
    460   1.80        pk /*
    461    1.1       mrg  * uvm_init_limit: init per-process VM limits
    462    1.1       mrg  *
    463    1.1       mrg  * - called for process 0 and then inherited by all others.
    464    1.1       mrg  */
    465   1.60       chs 
    466    1.6       mrg void
    467   1.89   thorpej uvm_init_limits(struct proc *p)
    468    1.6       mrg {
    469    1.6       mrg 
    470    1.6       mrg 	/*
    471    1.6       mrg 	 * Set up the initial limits on process VM.  Set the maximum
    472    1.6       mrg 	 * resident set size to be all of (reasonably) available memory.
    473    1.6       mrg 	 * This causes any single, large process to start random page
    474    1.6       mrg 	 * replacement once it fills memory.
    475    1.6       mrg 	 */
    476    1.6       mrg 
    477    1.6       mrg 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    478   1.79        pk 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    479    1.6       mrg 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    480   1.79        pk 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    481  1.136       mrg 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
    482  1.136       mrg 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
    483  1.144       jym 	p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
    484  1.144       jym 	    VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    485    1.1       mrg }
    486    1.1       mrg 
    487   1.99        ad /*
    488  1.141     rmind  * uvm_scheduler: process zero main loop.
    489    1.1       mrg  */
    490  1.145     rmind 
    491  1.145     rmind extern struct loadavg averunnable;
    492  1.145     rmind 
    493    1.6       mrg void
    494   1.89   thorpej uvm_scheduler(void)
    495    1.1       mrg {
    496  1.141     rmind 	lwp_t *l = curlwp;
    497    1.1       mrg 
    498   1.99        ad 	lwp_lock(l);
    499  1.113        ad 	l->l_class = SCHED_FIFO;
    500  1.170        ad 	lwp_changepri(l, PRI_VM);
    501   1.99        ad 	lwp_unlock(l);
    502   1.99        ad 
    503   1.99        ad 	for (;;) {
    504  1.171        ad 		/* Update legacy stats for post-mortem debugging. */
    505  1.171        ad 		uvm_update_uvmexp();
    506  1.145     rmind 		sched_pstats();
    507  1.145     rmind 		(void)kpause("uvm", false, hz, NULL);
    508  1.114        ad 	}
    509  1.107        ad }
    510