uvm_glue.c revision 1.30 1 1.30 thorpej /* $NetBSD: uvm_glue.c,v 1.30 1999/11/13 00:24:38 thorpej Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.5 mrg #include "opt_uvmhist.h"
70 1.15 tron #include "opt_sysv.h"
71 1.5 mrg
72 1.1 mrg /*
73 1.1 mrg * uvm_glue.c: glue functions
74 1.1 mrg */
75 1.1 mrg
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/proc.h>
79 1.1 mrg #include <sys/resourcevar.h>
80 1.1 mrg #include <sys/buf.h>
81 1.1 mrg #include <sys/user.h>
82 1.1 mrg #ifdef SYSVSHM
83 1.1 mrg #include <sys/shm.h>
84 1.1 mrg #endif
85 1.1 mrg
86 1.1 mrg #include <vm/vm.h>
87 1.1 mrg #include <vm/vm_page.h>
88 1.1 mrg #include <vm/vm_kern.h>
89 1.1 mrg
90 1.1 mrg #include <uvm/uvm.h>
91 1.1 mrg
92 1.1 mrg #include <machine/cpu.h>
93 1.1 mrg
94 1.1 mrg /*
95 1.1 mrg * local prototypes
96 1.1 mrg */
97 1.1 mrg
98 1.1 mrg static void uvm_swapout __P((struct proc *));
99 1.1 mrg
100 1.1 mrg /*
101 1.1 mrg * XXXCDC: do these really belong here?
102 1.1 mrg */
103 1.1 mrg
104 1.1 mrg unsigned maxdmap = MAXDSIZ; /* kern_resource.c: RLIMIT_DATA max */
105 1.1 mrg unsigned maxsmap = MAXSSIZ; /* kern_resource.c: RLIMIT_STACK max */
106 1.1 mrg
107 1.1 mrg int readbuffers = 0; /* allow KGDB to read kern buffer pool */
108 1.1 mrg /* XXX: see uvm_kernacc */
109 1.1 mrg
110 1.1 mrg
111 1.1 mrg /*
112 1.28 thorpej * uvm_sleep: atomic unlock and sleep for UVM_UNLOCK_AND_WAIT().
113 1.28 thorpej */
114 1.28 thorpej
115 1.28 thorpej void
116 1.28 thorpej uvm_sleep(event, slock, canintr, msg, timo)
117 1.28 thorpej void *event;
118 1.28 thorpej struct simplelock *slock;
119 1.28 thorpej boolean_t canintr;
120 1.28 thorpej const char *msg;
121 1.28 thorpej int timo;
122 1.28 thorpej {
123 1.28 thorpej int s, pri;
124 1.28 thorpej
125 1.28 thorpej pri = PVM;
126 1.28 thorpej if (canintr)
127 1.28 thorpej pri |= PCATCH;
128 1.28 thorpej
129 1.28 thorpej s = splhigh();
130 1.28 thorpej if (slock != NULL)
131 1.28 thorpej simple_unlock(slock);
132 1.28 thorpej (void) tsleep(event, pri, msg, timo);
133 1.28 thorpej splx(s);
134 1.28 thorpej }
135 1.28 thorpej
136 1.28 thorpej /*
137 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
138 1.1 mrg *
139 1.1 mrg * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
140 1.1 mrg */
141 1.1 mrg
142 1.6 mrg boolean_t
143 1.6 mrg uvm_kernacc(addr, len, rw)
144 1.6 mrg caddr_t addr;
145 1.11 kleink size_t len;
146 1.11 kleink int rw;
147 1.6 mrg {
148 1.6 mrg boolean_t rv;
149 1.13 eeh vaddr_t saddr, eaddr;
150 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
151 1.6 mrg
152 1.6 mrg saddr = trunc_page(addr);
153 1.6 mrg eaddr = round_page(addr+len);
154 1.6 mrg vm_map_lock_read(kernel_map);
155 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
156 1.6 mrg vm_map_unlock_read(kernel_map);
157 1.6 mrg
158 1.6 mrg /*
159 1.6 mrg * XXX there are still some things (e.g. the buffer cache) that
160 1.6 mrg * are managed behind the VM system's back so even though an
161 1.6 mrg * address is accessible in the mind of the VM system, there may
162 1.6 mrg * not be physical pages where the VM thinks there is. This can
163 1.6 mrg * lead to bogus allocation of pages in the kernel address space
164 1.6 mrg * or worse, inconsistencies at the pmap level. We only worry
165 1.6 mrg * about the buffer cache for now.
166 1.6 mrg */
167 1.13 eeh if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
168 1.13 eeh saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
169 1.6 mrg rv = FALSE;
170 1.6 mrg return(rv);
171 1.1 mrg }
172 1.1 mrg
173 1.1 mrg /*
174 1.1 mrg * uvm_useracc: can the user access it?
175 1.1 mrg *
176 1.1 mrg * - called from physio() and sys___sysctl().
177 1.1 mrg */
178 1.1 mrg
179 1.6 mrg boolean_t
180 1.6 mrg uvm_useracc(addr, len, rw)
181 1.6 mrg caddr_t addr;
182 1.11 kleink size_t len;
183 1.11 kleink int rw;
184 1.1 mrg {
185 1.25 thorpej vm_map_t map;
186 1.6 mrg boolean_t rv;
187 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
188 1.1 mrg
189 1.25 thorpej /* XXX curproc */
190 1.25 thorpej map = &curproc->p_vmspace->vm_map;
191 1.25 thorpej
192 1.25 thorpej vm_map_lock_read(map);
193 1.25 thorpej rv = uvm_map_checkprot(map, trunc_page(addr), round_page(addr+len),
194 1.25 thorpej prot);
195 1.25 thorpej vm_map_unlock_read(map);
196 1.25 thorpej
197 1.6 mrg return(rv);
198 1.1 mrg }
199 1.1 mrg
200 1.1 mrg #ifdef KGDB
201 1.1 mrg /*
202 1.1 mrg * Change protections on kernel pages from addr to addr+len
203 1.1 mrg * (presumably so debugger can plant a breakpoint).
204 1.1 mrg *
205 1.1 mrg * We force the protection change at the pmap level. If we were
206 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
207 1.1 mrg * applied meaning we would still take a protection fault, something
208 1.1 mrg * we really don't want to do. It would also fragment the kernel
209 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
210 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
211 1.1 mrg * we can ensure the change takes place properly.
212 1.1 mrg */
213 1.6 mrg void
214 1.6 mrg uvm_chgkprot(addr, len, rw)
215 1.6 mrg register caddr_t addr;
216 1.11 kleink size_t len;
217 1.11 kleink int rw;
218 1.6 mrg {
219 1.6 mrg vm_prot_t prot;
220 1.13 eeh paddr_t pa;
221 1.13 eeh vaddr_t sva, eva;
222 1.6 mrg
223 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
224 1.6 mrg eva = round_page(addr + len);
225 1.6 mrg for (sva = trunc_page(addr); sva < eva; sva += PAGE_SIZE) {
226 1.6 mrg /*
227 1.6 mrg * Extract physical address for the page.
228 1.6 mrg * We use a cheezy hack to differentiate physical
229 1.6 mrg * page 0 from an invalid mapping, not that it
230 1.6 mrg * really matters...
231 1.6 mrg */
232 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
233 1.6 mrg panic("chgkprot: invalid page");
234 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
235 1.6 mrg }
236 1.1 mrg }
237 1.1 mrg #endif
238 1.1 mrg
239 1.1 mrg /*
240 1.1 mrg * vslock: wire user memory for I/O
241 1.1 mrg *
242 1.1 mrg * - called from physio and sys___sysctl
243 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
244 1.1 mrg */
245 1.1 mrg
246 1.26 thorpej int
247 1.22 thorpej uvm_vslock(p, addr, len, access_type)
248 1.9 thorpej struct proc *p;
249 1.6 mrg caddr_t addr;
250 1.11 kleink size_t len;
251 1.22 thorpej vm_prot_t access_type;
252 1.1 mrg {
253 1.26 thorpej vm_map_t map;
254 1.26 thorpej vaddr_t start, end;
255 1.26 thorpej int rv;
256 1.26 thorpej
257 1.26 thorpej map = &p->p_vmspace->vm_map;
258 1.26 thorpej start = trunc_page(addr);
259 1.26 thorpej end = round_page(addr + len);
260 1.26 thorpej
261 1.26 thorpej rv = uvm_fault_wire(map, start, end, access_type);
262 1.21 thorpej
263 1.26 thorpej return (rv);
264 1.1 mrg }
265 1.1 mrg
266 1.1 mrg /*
267 1.1 mrg * vslock: wire user memory for I/O
268 1.1 mrg *
269 1.1 mrg * - called from physio and sys___sysctl
270 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
271 1.1 mrg */
272 1.1 mrg
273 1.6 mrg void
274 1.9 thorpej uvm_vsunlock(p, addr, len)
275 1.9 thorpej struct proc *p;
276 1.6 mrg caddr_t addr;
277 1.11 kleink size_t len;
278 1.1 mrg {
279 1.23 thorpej uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page(addr),
280 1.6 mrg round_page(addr+len));
281 1.1 mrg }
282 1.1 mrg
283 1.1 mrg /*
284 1.1 mrg * uvm_fork: fork a virtual address space
285 1.1 mrg *
286 1.1 mrg * - the address space is copied as per parent map's inherit values
287 1.1 mrg * - a new "user" structure is allocated for the child process
288 1.1 mrg * [filled in by MD layer...]
289 1.20 thorpej * - if specified, the child gets a new user stack described by
290 1.20 thorpej * stack and stacksize
291 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
292 1.1 mrg * process, and thus addresses of automatic variables may be invalid
293 1.1 mrg * after cpu_fork returns in the child process. We do nothing here
294 1.1 mrg * after cpu_fork returns.
295 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
296 1.1 mrg * than just hang
297 1.1 mrg */
298 1.6 mrg void
299 1.20 thorpej uvm_fork(p1, p2, shared, stack, stacksize)
300 1.6 mrg struct proc *p1, *p2;
301 1.6 mrg boolean_t shared;
302 1.20 thorpej void *stack;
303 1.20 thorpej size_t stacksize;
304 1.6 mrg {
305 1.7 thorpej struct user *up = p2->p_addr;
306 1.6 mrg int rv;
307 1.6 mrg
308 1.6 mrg if (shared == TRUE)
309 1.6 mrg uvmspace_share(p1, p2); /* share vmspace */
310 1.6 mrg else
311 1.6 mrg p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
312 1.1 mrg
313 1.6 mrg /*
314 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
315 1.7 thorpej * and the kernel stack. Wired state is stored in p->p_flag's
316 1.7 thorpej * P_INMEM bit rather than in the vm_map_entry's wired count
317 1.7 thorpej * to prevent kernel_map fragmentation.
318 1.21 thorpej *
319 1.21 thorpej * Note the kernel stack gets read/write accesses right off
320 1.21 thorpej * the bat.
321 1.6 mrg */
322 1.13 eeh rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
323 1.21 thorpej (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
324 1.6 mrg if (rv != KERN_SUCCESS)
325 1.8 thorpej panic("uvm_fork: uvm_fault_wire failed: %d", rv);
326 1.6 mrg
327 1.6 mrg /*
328 1.19 thorpej * p_stats currently points at a field in the user struct. Copy
329 1.19 thorpej * parts of p_stats, and zero out the rest.
330 1.6 mrg */
331 1.6 mrg p2->p_stats = &up->u_stats;
332 1.12 perry memset(&up->u_stats.pstat_startzero, 0,
333 1.1 mrg (unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
334 1.1 mrg (caddr_t)&up->u_stats.pstat_startzero));
335 1.12 perry memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
336 1.1 mrg ((caddr_t)&up->u_stats.pstat_endcopy -
337 1.1 mrg (caddr_t)&up->u_stats.pstat_startcopy));
338 1.6 mrg
339 1.6 mrg /*
340 1.6 mrg * cpu_fork will copy and update the kernel stack and pcb, and make
341 1.6 mrg * the child ready to run. The child will exit directly to user
342 1.6 mrg * mode on its first time slice, and will not return here.
343 1.6 mrg */
344 1.20 thorpej cpu_fork(p1, p2, stack, stacksize);
345 1.14 thorpej }
346 1.14 thorpej
347 1.14 thorpej /*
348 1.14 thorpej * uvm_exit: exit a virtual address space
349 1.14 thorpej *
350 1.14 thorpej * - the process passed to us is a dead (pre-zombie) process; we
351 1.14 thorpej * are running on a different context now (the reaper).
352 1.14 thorpej * - we must run in a separate thread because freeing the vmspace
353 1.14 thorpej * of the dead process may block.
354 1.14 thorpej */
355 1.14 thorpej void
356 1.14 thorpej uvm_exit(p)
357 1.14 thorpej struct proc *p;
358 1.14 thorpej {
359 1.14 thorpej
360 1.14 thorpej uvmspace_free(p->p_vmspace);
361 1.14 thorpej uvm_km_free(kernel_map, (vaddr_t)p->p_addr, USPACE);
362 1.1 mrg }
363 1.1 mrg
364 1.1 mrg /*
365 1.1 mrg * uvm_init_limit: init per-process VM limits
366 1.1 mrg *
367 1.1 mrg * - called for process 0 and then inherited by all others.
368 1.1 mrg */
369 1.6 mrg void
370 1.6 mrg uvm_init_limits(p)
371 1.6 mrg struct proc *p;
372 1.6 mrg {
373 1.6 mrg
374 1.6 mrg /*
375 1.6 mrg * Set up the initial limits on process VM. Set the maximum
376 1.6 mrg * resident set size to be all of (reasonably) available memory.
377 1.6 mrg * This causes any single, large process to start random page
378 1.6 mrg * replacement once it fills memory.
379 1.6 mrg */
380 1.6 mrg
381 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
382 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
383 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
384 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
385 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
386 1.1 mrg }
387 1.1 mrg
388 1.1 mrg #ifdef DEBUG
389 1.1 mrg int enableswap = 1;
390 1.1 mrg int swapdebug = 0;
391 1.1 mrg #define SDB_FOLLOW 1
392 1.1 mrg #define SDB_SWAPIN 2
393 1.1 mrg #define SDB_SWAPOUT 4
394 1.1 mrg #endif
395 1.1 mrg
396 1.1 mrg /*
397 1.1 mrg * uvm_swapin: swap in a process's u-area.
398 1.1 mrg */
399 1.1 mrg
400 1.6 mrg void
401 1.6 mrg uvm_swapin(p)
402 1.6 mrg struct proc *p;
403 1.6 mrg {
404 1.13 eeh vaddr_t addr;
405 1.6 mrg int s;
406 1.6 mrg
407 1.13 eeh addr = (vaddr_t)p->p_addr;
408 1.6 mrg /* make P_INMEM true */
409 1.21 thorpej uvm_fault_wire(kernel_map, addr, addr + USPACE,
410 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
411 1.6 mrg
412 1.6 mrg /*
413 1.6 mrg * Some architectures need to be notified when the user area has
414 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
415 1.6 mrg */
416 1.6 mrg cpu_swapin(p);
417 1.6 mrg s = splstatclock();
418 1.6 mrg if (p->p_stat == SRUN)
419 1.6 mrg setrunqueue(p);
420 1.6 mrg p->p_flag |= P_INMEM;
421 1.6 mrg splx(s);
422 1.6 mrg p->p_swtime = 0;
423 1.6 mrg ++uvmexp.swapins;
424 1.1 mrg }
425 1.1 mrg
426 1.1 mrg /*
427 1.1 mrg * uvm_scheduler: process zero main loop
428 1.1 mrg *
429 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
430 1.1 mrg * priority.
431 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
432 1.1 mrg */
433 1.1 mrg
434 1.6 mrg void
435 1.6 mrg uvm_scheduler()
436 1.1 mrg {
437 1.6 mrg register struct proc *p;
438 1.6 mrg register int pri;
439 1.6 mrg struct proc *pp;
440 1.6 mrg int ppri;
441 1.6 mrg UVMHIST_FUNC("uvm_scheduler"); UVMHIST_CALLED(maphist);
442 1.1 mrg
443 1.1 mrg loop:
444 1.1 mrg #ifdef DEBUG
445 1.6 mrg while (!enableswap)
446 1.6 mrg tsleep((caddr_t)&proc0, PVM, "noswap", 0);
447 1.1 mrg #endif
448 1.6 mrg pp = NULL; /* process to choose */
449 1.6 mrg ppri = INT_MIN; /* its priority */
450 1.29 thorpej proclist_lock_read();
451 1.6 mrg for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
452 1.6 mrg
453 1.6 mrg /* is it a runnable swapped out process? */
454 1.6 mrg if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
455 1.6 mrg pri = p->p_swtime + p->p_slptime -
456 1.6 mrg (p->p_nice - NZERO) * 8;
457 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
458 1.6 mrg pp = p;
459 1.6 mrg ppri = pri;
460 1.6 mrg }
461 1.6 mrg }
462 1.6 mrg }
463 1.28 thorpej proclist_unlock_read();
464 1.1 mrg
465 1.1 mrg #ifdef DEBUG
466 1.6 mrg if (swapdebug & SDB_FOLLOW)
467 1.6 mrg printf("scheduler: running, procp %p pri %d\n", pp, ppri);
468 1.1 mrg #endif
469 1.6 mrg /*
470 1.6 mrg * Nothing to do, back to sleep
471 1.6 mrg */
472 1.6 mrg if ((p = pp) == NULL) {
473 1.6 mrg tsleep((caddr_t)&proc0, PVM, "scheduler", 0);
474 1.6 mrg goto loop;
475 1.6 mrg }
476 1.6 mrg
477 1.6 mrg /*
478 1.6 mrg * we have found swapped out process which we would like to bring
479 1.6 mrg * back in.
480 1.6 mrg *
481 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
482 1.6 mrg * despite our feeble check
483 1.6 mrg */
484 1.6 mrg if (uvmexp.free > atop(USPACE)) {
485 1.1 mrg #ifdef DEBUG
486 1.6 mrg if (swapdebug & SDB_SWAPIN)
487 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
488 1.1 mrg p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
489 1.1 mrg #endif
490 1.6 mrg uvm_swapin(p);
491 1.6 mrg goto loop;
492 1.6 mrg }
493 1.6 mrg /*
494 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
495 1.6 mrg * is clear
496 1.6 mrg */
497 1.1 mrg #ifdef DEBUG
498 1.6 mrg if (swapdebug & SDB_FOLLOW)
499 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
500 1.1 mrg p->p_pid, p->p_comm, uvmexp.free);
501 1.1 mrg #endif
502 1.6 mrg (void) splhigh();
503 1.6 mrg uvm_wait("schedpwait");
504 1.6 mrg (void) spl0();
505 1.1 mrg #ifdef DEBUG
506 1.6 mrg if (swapdebug & SDB_FOLLOW)
507 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
508 1.1 mrg #endif
509 1.6 mrg goto loop;
510 1.1 mrg }
511 1.1 mrg
512 1.1 mrg /*
513 1.1 mrg * swappable: is process "p" swappable?
514 1.1 mrg */
515 1.1 mrg
516 1.1 mrg #define swappable(p) \
517 1.1 mrg (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
518 1.1 mrg (p)->p_holdcnt == 0)
519 1.1 mrg
520 1.1 mrg /*
521 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
522 1.1 mrg * u-areas.
523 1.1 mrg *
524 1.1 mrg * - called by the pagedaemon
525 1.1 mrg * - try and swap at least one processs
526 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
527 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
528 1.1 mrg * is swapped, otherwise the longest resident process...
529 1.1 mrg */
530 1.6 mrg void
531 1.6 mrg uvm_swapout_threads()
532 1.1 mrg {
533 1.6 mrg register struct proc *p;
534 1.6 mrg struct proc *outp, *outp2;
535 1.6 mrg int outpri, outpri2;
536 1.6 mrg int didswap = 0;
537 1.6 mrg extern int maxslp;
538 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
539 1.1 mrg
540 1.1 mrg #ifdef DEBUG
541 1.6 mrg if (!enableswap)
542 1.6 mrg return;
543 1.1 mrg #endif
544 1.1 mrg
545 1.6 mrg /*
546 1.6 mrg * outp/outpri : stop/sleep process with largest sleeptime < maxslp
547 1.6 mrg * outp2/outpri2: the longest resident process (its swap time)
548 1.6 mrg */
549 1.6 mrg outp = outp2 = NULL;
550 1.6 mrg outpri = outpri2 = 0;
551 1.29 thorpej proclist_lock_read();
552 1.6 mrg for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
553 1.6 mrg if (!swappable(p))
554 1.6 mrg continue;
555 1.6 mrg switch (p->p_stat) {
556 1.6 mrg case SRUN:
557 1.6 mrg if (p->p_swtime > outpri2) {
558 1.6 mrg outp2 = p;
559 1.6 mrg outpri2 = p->p_swtime;
560 1.6 mrg }
561 1.6 mrg continue;
562 1.1 mrg
563 1.6 mrg case SSLEEP:
564 1.6 mrg case SSTOP:
565 1.6 mrg if (p->p_slptime >= maxslp) {
566 1.6 mrg uvm_swapout(p); /* zap! */
567 1.6 mrg didswap++;
568 1.6 mrg } else if (p->p_slptime > outpri) {
569 1.6 mrg outp = p;
570 1.6 mrg outpri = p->p_slptime;
571 1.6 mrg }
572 1.6 mrg continue;
573 1.6 mrg }
574 1.6 mrg }
575 1.28 thorpej proclist_unlock_read();
576 1.6 mrg
577 1.6 mrg /*
578 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
579 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
580 1.6 mrg * if we are real low on memory since we don't gain much by doing
581 1.6 mrg * it (USPACE bytes).
582 1.6 mrg */
583 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
584 1.6 mrg if ((p = outp) == NULL)
585 1.6 mrg p = outp2;
586 1.1 mrg #ifdef DEBUG
587 1.6 mrg if (swapdebug & SDB_SWAPOUT)
588 1.6 mrg printf("swapout_threads: no duds, try procp %p\n", p);
589 1.1 mrg #endif
590 1.6 mrg if (p)
591 1.6 mrg uvm_swapout(p);
592 1.6 mrg }
593 1.1 mrg }
594 1.1 mrg
595 1.1 mrg /*
596 1.1 mrg * uvm_swapout: swap out process "p"
597 1.1 mrg *
598 1.1 mrg * - currently "swapout" means "unwire U-area" and "pmap_collect()"
599 1.1 mrg * the pmap.
600 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
601 1.1 mrg */
602 1.1 mrg
603 1.6 mrg static void
604 1.6 mrg uvm_swapout(p)
605 1.6 mrg register struct proc *p;
606 1.1 mrg {
607 1.13 eeh vaddr_t addr;
608 1.6 mrg int s;
609 1.1 mrg
610 1.1 mrg #ifdef DEBUG
611 1.6 mrg if (swapdebug & SDB_SWAPOUT)
612 1.6 mrg printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
613 1.1 mrg p->p_pid, p->p_comm, p->p_addr, p->p_stat,
614 1.1 mrg p->p_slptime, uvmexp.free);
615 1.1 mrg #endif
616 1.1 mrg
617 1.6 mrg /*
618 1.6 mrg * Do any machine-specific actions necessary before swapout.
619 1.6 mrg * This can include saving floating point state, etc.
620 1.6 mrg */
621 1.6 mrg cpu_swapout(p);
622 1.6 mrg
623 1.6 mrg /*
624 1.6 mrg * Unwire the to-be-swapped process's user struct and kernel stack.
625 1.6 mrg */
626 1.13 eeh addr = (vaddr_t)p->p_addr;
627 1.23 thorpej uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
628 1.6 mrg pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
629 1.6 mrg
630 1.6 mrg /*
631 1.6 mrg * Mark it as (potentially) swapped out.
632 1.6 mrg */
633 1.6 mrg s = splstatclock();
634 1.6 mrg p->p_flag &= ~P_INMEM;
635 1.6 mrg if (p->p_stat == SRUN)
636 1.6 mrg remrunqueue(p);
637 1.6 mrg splx(s);
638 1.6 mrg p->p_swtime = 0;
639 1.6 mrg ++uvmexp.swapouts;
640 1.1 mrg }
641 1.1 mrg
642