uvm_glue.c revision 1.43 1 1.43 chs /* $NetBSD: uvm_glue.c,v 1.43 2000/11/25 06:27:59 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.5 mrg #include "opt_uvmhist.h"
70 1.15 tron #include "opt_sysv.h"
71 1.5 mrg
72 1.1 mrg /*
73 1.1 mrg * uvm_glue.c: glue functions
74 1.1 mrg */
75 1.1 mrg
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/proc.h>
79 1.1 mrg #include <sys/resourcevar.h>
80 1.1 mrg #include <sys/buf.h>
81 1.1 mrg #include <sys/user.h>
82 1.1 mrg #ifdef SYSVSHM
83 1.1 mrg #include <sys/shm.h>
84 1.1 mrg #endif
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.1 mrg
88 1.1 mrg #include <machine/cpu.h>
89 1.1 mrg
90 1.1 mrg /*
91 1.1 mrg * local prototypes
92 1.1 mrg */
93 1.1 mrg
94 1.1 mrg static void uvm_swapout __P((struct proc *));
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * XXXCDC: do these really belong here?
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg unsigned maxdmap = MAXDSIZ; /* kern_resource.c: RLIMIT_DATA max */
101 1.1 mrg unsigned maxsmap = MAXSSIZ; /* kern_resource.c: RLIMIT_STACK max */
102 1.1 mrg
103 1.1 mrg int readbuffers = 0; /* allow KGDB to read kern buffer pool */
104 1.1 mrg /* XXX: see uvm_kernacc */
105 1.1 mrg
106 1.28 thorpej
107 1.28 thorpej /*
108 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
109 1.1 mrg *
110 1.1 mrg * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
111 1.1 mrg */
112 1.1 mrg
113 1.6 mrg boolean_t
114 1.6 mrg uvm_kernacc(addr, len, rw)
115 1.6 mrg caddr_t addr;
116 1.11 kleink size_t len;
117 1.11 kleink int rw;
118 1.6 mrg {
119 1.6 mrg boolean_t rv;
120 1.13 eeh vaddr_t saddr, eaddr;
121 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
122 1.6 mrg
123 1.31 kleink saddr = trunc_page((vaddr_t)addr);
124 1.43 chs eaddr = round_page((vaddr_t)addr + len);
125 1.6 mrg vm_map_lock_read(kernel_map);
126 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
127 1.6 mrg vm_map_unlock_read(kernel_map);
128 1.6 mrg
129 1.6 mrg /*
130 1.6 mrg * XXX there are still some things (e.g. the buffer cache) that
131 1.6 mrg * are managed behind the VM system's back so even though an
132 1.6 mrg * address is accessible in the mind of the VM system, there may
133 1.6 mrg * not be physical pages where the VM thinks there is. This can
134 1.6 mrg * lead to bogus allocation of pages in the kernel address space
135 1.6 mrg * or worse, inconsistencies at the pmap level. We only worry
136 1.6 mrg * about the buffer cache for now.
137 1.6 mrg */
138 1.13 eeh if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
139 1.13 eeh saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
140 1.6 mrg rv = FALSE;
141 1.6 mrg return(rv);
142 1.1 mrg }
143 1.1 mrg
144 1.1 mrg /*
145 1.1 mrg * uvm_useracc: can the user access it?
146 1.1 mrg *
147 1.1 mrg * - called from physio() and sys___sysctl().
148 1.1 mrg */
149 1.1 mrg
150 1.6 mrg boolean_t
151 1.6 mrg uvm_useracc(addr, len, rw)
152 1.6 mrg caddr_t addr;
153 1.11 kleink size_t len;
154 1.11 kleink int rw;
155 1.1 mrg {
156 1.25 thorpej vm_map_t map;
157 1.6 mrg boolean_t rv;
158 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
159 1.1 mrg
160 1.25 thorpej /* XXX curproc */
161 1.25 thorpej map = &curproc->p_vmspace->vm_map;
162 1.25 thorpej
163 1.25 thorpej vm_map_lock_read(map);
164 1.31 kleink rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
165 1.43 chs round_page((vaddr_t)addr + len), prot);
166 1.25 thorpej vm_map_unlock_read(map);
167 1.25 thorpej
168 1.6 mrg return(rv);
169 1.1 mrg }
170 1.1 mrg
171 1.1 mrg #ifdef KGDB
172 1.1 mrg /*
173 1.1 mrg * Change protections on kernel pages from addr to addr+len
174 1.1 mrg * (presumably so debugger can plant a breakpoint).
175 1.1 mrg *
176 1.1 mrg * We force the protection change at the pmap level. If we were
177 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
178 1.1 mrg * applied meaning we would still take a protection fault, something
179 1.1 mrg * we really don't want to do. It would also fragment the kernel
180 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
181 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
182 1.1 mrg * we can ensure the change takes place properly.
183 1.1 mrg */
184 1.6 mrg void
185 1.6 mrg uvm_chgkprot(addr, len, rw)
186 1.32 augustss caddr_t addr;
187 1.11 kleink size_t len;
188 1.11 kleink int rw;
189 1.6 mrg {
190 1.6 mrg vm_prot_t prot;
191 1.13 eeh paddr_t pa;
192 1.13 eeh vaddr_t sva, eva;
193 1.6 mrg
194 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
195 1.31 kleink eva = round_page((vaddr_t)addr + len);
196 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
197 1.6 mrg /*
198 1.6 mrg * Extract physical address for the page.
199 1.6 mrg * We use a cheezy hack to differentiate physical
200 1.6 mrg * page 0 from an invalid mapping, not that it
201 1.6 mrg * really matters...
202 1.6 mrg */
203 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
204 1.6 mrg panic("chgkprot: invalid page");
205 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
206 1.6 mrg }
207 1.1 mrg }
208 1.1 mrg #endif
209 1.1 mrg
210 1.1 mrg /*
211 1.1 mrg * vslock: wire user memory for I/O
212 1.1 mrg *
213 1.1 mrg * - called from physio and sys___sysctl
214 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
215 1.1 mrg */
216 1.1 mrg
217 1.26 thorpej int
218 1.22 thorpej uvm_vslock(p, addr, len, access_type)
219 1.9 thorpej struct proc *p;
220 1.6 mrg caddr_t addr;
221 1.11 kleink size_t len;
222 1.22 thorpej vm_prot_t access_type;
223 1.1 mrg {
224 1.26 thorpej vm_map_t map;
225 1.26 thorpej vaddr_t start, end;
226 1.26 thorpej int rv;
227 1.26 thorpej
228 1.26 thorpej map = &p->p_vmspace->vm_map;
229 1.31 kleink start = trunc_page((vaddr_t)addr);
230 1.31 kleink end = round_page((vaddr_t)addr + len);
231 1.26 thorpej
232 1.26 thorpej rv = uvm_fault_wire(map, start, end, access_type);
233 1.21 thorpej
234 1.26 thorpej return (rv);
235 1.1 mrg }
236 1.1 mrg
237 1.1 mrg /*
238 1.1 mrg * vslock: wire user memory for I/O
239 1.1 mrg *
240 1.1 mrg * - called from physio and sys___sysctl
241 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
242 1.1 mrg */
243 1.1 mrg
244 1.6 mrg void
245 1.9 thorpej uvm_vsunlock(p, addr, len)
246 1.9 thorpej struct proc *p;
247 1.6 mrg caddr_t addr;
248 1.11 kleink size_t len;
249 1.1 mrg {
250 1.43 chs uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
251 1.43 chs round_page((vaddr_t)addr + len));
252 1.1 mrg }
253 1.1 mrg
254 1.1 mrg /*
255 1.1 mrg * uvm_fork: fork a virtual address space
256 1.1 mrg *
257 1.1 mrg * - the address space is copied as per parent map's inherit values
258 1.1 mrg * - a new "user" structure is allocated for the child process
259 1.1 mrg * [filled in by MD layer...]
260 1.20 thorpej * - if specified, the child gets a new user stack described by
261 1.20 thorpej * stack and stacksize
262 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
263 1.1 mrg * process, and thus addresses of automatic variables may be invalid
264 1.1 mrg * after cpu_fork returns in the child process. We do nothing here
265 1.1 mrg * after cpu_fork returns.
266 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
267 1.1 mrg * than just hang
268 1.1 mrg */
269 1.6 mrg void
270 1.34 thorpej uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
271 1.6 mrg struct proc *p1, *p2;
272 1.6 mrg boolean_t shared;
273 1.20 thorpej void *stack;
274 1.20 thorpej size_t stacksize;
275 1.34 thorpej void (*func) __P((void *));
276 1.34 thorpej void *arg;
277 1.6 mrg {
278 1.7 thorpej struct user *up = p2->p_addr;
279 1.6 mrg int rv;
280 1.6 mrg
281 1.42 thorpej if (shared == TRUE) {
282 1.42 thorpej p2->p_vmspace = NULL;
283 1.6 mrg uvmspace_share(p1, p2); /* share vmspace */
284 1.42 thorpej } else
285 1.6 mrg p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
286 1.1 mrg
287 1.6 mrg /*
288 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
289 1.7 thorpej * and the kernel stack. Wired state is stored in p->p_flag's
290 1.7 thorpej * P_INMEM bit rather than in the vm_map_entry's wired count
291 1.7 thorpej * to prevent kernel_map fragmentation.
292 1.21 thorpej *
293 1.21 thorpej * Note the kernel stack gets read/write accesses right off
294 1.21 thorpej * the bat.
295 1.6 mrg */
296 1.13 eeh rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
297 1.21 thorpej (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
298 1.6 mrg if (rv != KERN_SUCCESS)
299 1.8 thorpej panic("uvm_fork: uvm_fault_wire failed: %d", rv);
300 1.6 mrg
301 1.6 mrg /*
302 1.19 thorpej * p_stats currently points at a field in the user struct. Copy
303 1.19 thorpej * parts of p_stats, and zero out the rest.
304 1.6 mrg */
305 1.6 mrg p2->p_stats = &up->u_stats;
306 1.12 perry memset(&up->u_stats.pstat_startzero, 0,
307 1.43 chs ((caddr_t)&up->u_stats.pstat_endzero -
308 1.43 chs (caddr_t)&up->u_stats.pstat_startzero));
309 1.12 perry memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
310 1.43 chs ((caddr_t)&up->u_stats.pstat_endcopy -
311 1.43 chs (caddr_t)&up->u_stats.pstat_startcopy));
312 1.6 mrg
313 1.6 mrg /*
314 1.34 thorpej * cpu_fork() copy and update the pcb, and make the child ready
315 1.34 thorpej * to run. If this is a normal user fork, the child will exit
316 1.34 thorpej * directly to user mode via child_return() on its first time
317 1.34 thorpej * slice and will not return here. If this is a kernel thread,
318 1.34 thorpej * the specified entry point will be executed.
319 1.6 mrg */
320 1.34 thorpej cpu_fork(p1, p2, stack, stacksize, func, arg);
321 1.14 thorpej }
322 1.14 thorpej
323 1.14 thorpej /*
324 1.14 thorpej * uvm_exit: exit a virtual address space
325 1.14 thorpej *
326 1.14 thorpej * - the process passed to us is a dead (pre-zombie) process; we
327 1.14 thorpej * are running on a different context now (the reaper).
328 1.14 thorpej * - we must run in a separate thread because freeing the vmspace
329 1.14 thorpej * of the dead process may block.
330 1.14 thorpej */
331 1.14 thorpej void
332 1.14 thorpej uvm_exit(p)
333 1.14 thorpej struct proc *p;
334 1.14 thorpej {
335 1.43 chs vaddr_t va = (vaddr_t)p->p_addr;
336 1.14 thorpej
337 1.14 thorpej uvmspace_free(p->p_vmspace);
338 1.43 chs p->p_flag &= ~P_INMEM;
339 1.43 chs uvm_fault_unwire(kernel_map, va, va + USPACE);
340 1.43 chs uvm_km_free(kernel_map, va, USPACE);
341 1.36 simonb p->p_addr = NULL;
342 1.1 mrg }
343 1.1 mrg
344 1.1 mrg /*
345 1.1 mrg * uvm_init_limit: init per-process VM limits
346 1.1 mrg *
347 1.1 mrg * - called for process 0 and then inherited by all others.
348 1.1 mrg */
349 1.6 mrg void
350 1.6 mrg uvm_init_limits(p)
351 1.6 mrg struct proc *p;
352 1.6 mrg {
353 1.6 mrg
354 1.6 mrg /*
355 1.6 mrg * Set up the initial limits on process VM. Set the maximum
356 1.6 mrg * resident set size to be all of (reasonably) available memory.
357 1.6 mrg * This causes any single, large process to start random page
358 1.6 mrg * replacement once it fills memory.
359 1.6 mrg */
360 1.6 mrg
361 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
362 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
363 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
364 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
365 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
366 1.1 mrg }
367 1.1 mrg
368 1.1 mrg #ifdef DEBUG
369 1.1 mrg int enableswap = 1;
370 1.1 mrg int swapdebug = 0;
371 1.1 mrg #define SDB_FOLLOW 1
372 1.1 mrg #define SDB_SWAPIN 2
373 1.1 mrg #define SDB_SWAPOUT 4
374 1.1 mrg #endif
375 1.1 mrg
376 1.1 mrg /*
377 1.1 mrg * uvm_swapin: swap in a process's u-area.
378 1.1 mrg */
379 1.1 mrg
380 1.6 mrg void
381 1.6 mrg uvm_swapin(p)
382 1.6 mrg struct proc *p;
383 1.6 mrg {
384 1.13 eeh vaddr_t addr;
385 1.6 mrg int s;
386 1.6 mrg
387 1.13 eeh addr = (vaddr_t)p->p_addr;
388 1.6 mrg /* make P_INMEM true */
389 1.21 thorpej uvm_fault_wire(kernel_map, addr, addr + USPACE,
390 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
391 1.6 mrg
392 1.6 mrg /*
393 1.6 mrg * Some architectures need to be notified when the user area has
394 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
395 1.6 mrg */
396 1.6 mrg cpu_swapin(p);
397 1.41 enami SCHED_LOCK(s);
398 1.6 mrg if (p->p_stat == SRUN)
399 1.6 mrg setrunqueue(p);
400 1.6 mrg p->p_flag |= P_INMEM;
401 1.41 enami SCHED_UNLOCK(s);
402 1.6 mrg p->p_swtime = 0;
403 1.6 mrg ++uvmexp.swapins;
404 1.1 mrg }
405 1.1 mrg
406 1.1 mrg /*
407 1.1 mrg * uvm_scheduler: process zero main loop
408 1.1 mrg *
409 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
410 1.1 mrg * priority.
411 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
412 1.1 mrg */
413 1.1 mrg
414 1.6 mrg void
415 1.6 mrg uvm_scheduler()
416 1.1 mrg {
417 1.32 augustss struct proc *p;
418 1.32 augustss int pri;
419 1.6 mrg struct proc *pp;
420 1.6 mrg int ppri;
421 1.1 mrg
422 1.1 mrg loop:
423 1.1 mrg #ifdef DEBUG
424 1.6 mrg while (!enableswap)
425 1.43 chs tsleep(&proc0, PVM, "noswap", 0);
426 1.1 mrg #endif
427 1.6 mrg pp = NULL; /* process to choose */
428 1.6 mrg ppri = INT_MIN; /* its priority */
429 1.29 thorpej proclist_lock_read();
430 1.43 chs LIST_FOREACH(p, &allproc, p_list) {
431 1.6 mrg
432 1.6 mrg /* is it a runnable swapped out process? */
433 1.6 mrg if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
434 1.6 mrg pri = p->p_swtime + p->p_slptime -
435 1.6 mrg (p->p_nice - NZERO) * 8;
436 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
437 1.6 mrg pp = p;
438 1.6 mrg ppri = pri;
439 1.6 mrg }
440 1.6 mrg }
441 1.6 mrg }
442 1.39 sommerfe /*
443 1.39 sommerfe * XXXSMP: possible unlock/sleep race between here and the
444 1.39 sommerfe * "scheduler" tsleep below..
445 1.39 sommerfe */
446 1.28 thorpej proclist_unlock_read();
447 1.1 mrg
448 1.1 mrg #ifdef DEBUG
449 1.6 mrg if (swapdebug & SDB_FOLLOW)
450 1.6 mrg printf("scheduler: running, procp %p pri %d\n", pp, ppri);
451 1.1 mrg #endif
452 1.6 mrg /*
453 1.6 mrg * Nothing to do, back to sleep
454 1.6 mrg */
455 1.6 mrg if ((p = pp) == NULL) {
456 1.43 chs tsleep(&proc0, PVM, "scheduler", 0);
457 1.6 mrg goto loop;
458 1.6 mrg }
459 1.6 mrg
460 1.6 mrg /*
461 1.6 mrg * we have found swapped out process which we would like to bring
462 1.6 mrg * back in.
463 1.6 mrg *
464 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
465 1.6 mrg * despite our feeble check
466 1.6 mrg */
467 1.6 mrg if (uvmexp.free > atop(USPACE)) {
468 1.1 mrg #ifdef DEBUG
469 1.6 mrg if (swapdebug & SDB_SWAPIN)
470 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
471 1.1 mrg p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
472 1.1 mrg #endif
473 1.6 mrg uvm_swapin(p);
474 1.6 mrg goto loop;
475 1.6 mrg }
476 1.6 mrg /*
477 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
478 1.6 mrg * is clear
479 1.6 mrg */
480 1.1 mrg #ifdef DEBUG
481 1.6 mrg if (swapdebug & SDB_FOLLOW)
482 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
483 1.1 mrg p->p_pid, p->p_comm, uvmexp.free);
484 1.1 mrg #endif
485 1.6 mrg uvm_wait("schedpwait");
486 1.1 mrg #ifdef DEBUG
487 1.6 mrg if (swapdebug & SDB_FOLLOW)
488 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
489 1.1 mrg #endif
490 1.6 mrg goto loop;
491 1.1 mrg }
492 1.1 mrg
493 1.1 mrg /*
494 1.1 mrg * swappable: is process "p" swappable?
495 1.1 mrg */
496 1.1 mrg
497 1.1 mrg #define swappable(p) \
498 1.1 mrg (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
499 1.1 mrg (p)->p_holdcnt == 0)
500 1.1 mrg
501 1.1 mrg /*
502 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
503 1.1 mrg * u-areas.
504 1.1 mrg *
505 1.1 mrg * - called by the pagedaemon
506 1.1 mrg * - try and swap at least one processs
507 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
508 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
509 1.1 mrg * is swapped, otherwise the longest resident process...
510 1.1 mrg */
511 1.6 mrg void
512 1.6 mrg uvm_swapout_threads()
513 1.1 mrg {
514 1.32 augustss struct proc *p;
515 1.6 mrg struct proc *outp, *outp2;
516 1.6 mrg int outpri, outpri2;
517 1.6 mrg int didswap = 0;
518 1.6 mrg extern int maxslp;
519 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
520 1.1 mrg
521 1.1 mrg #ifdef DEBUG
522 1.6 mrg if (!enableswap)
523 1.6 mrg return;
524 1.1 mrg #endif
525 1.1 mrg
526 1.6 mrg /*
527 1.6 mrg * outp/outpri : stop/sleep process with largest sleeptime < maxslp
528 1.6 mrg * outp2/outpri2: the longest resident process (its swap time)
529 1.6 mrg */
530 1.6 mrg outp = outp2 = NULL;
531 1.6 mrg outpri = outpri2 = 0;
532 1.29 thorpej proclist_lock_read();
533 1.43 chs LIST_FOREACH(p, &allproc, p_list) {
534 1.6 mrg if (!swappable(p))
535 1.6 mrg continue;
536 1.6 mrg switch (p->p_stat) {
537 1.6 mrg case SRUN:
538 1.33 thorpej case SONPROC:
539 1.6 mrg if (p->p_swtime > outpri2) {
540 1.6 mrg outp2 = p;
541 1.6 mrg outpri2 = p->p_swtime;
542 1.6 mrg }
543 1.6 mrg continue;
544 1.1 mrg
545 1.6 mrg case SSLEEP:
546 1.6 mrg case SSTOP:
547 1.6 mrg if (p->p_slptime >= maxslp) {
548 1.43 chs uvm_swapout(p);
549 1.6 mrg didswap++;
550 1.6 mrg } else if (p->p_slptime > outpri) {
551 1.6 mrg outp = p;
552 1.6 mrg outpri = p->p_slptime;
553 1.6 mrg }
554 1.6 mrg continue;
555 1.6 mrg }
556 1.6 mrg }
557 1.28 thorpej proclist_unlock_read();
558 1.6 mrg
559 1.6 mrg /*
560 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
561 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
562 1.6 mrg * if we are real low on memory since we don't gain much by doing
563 1.6 mrg * it (USPACE bytes).
564 1.6 mrg */
565 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
566 1.6 mrg if ((p = outp) == NULL)
567 1.6 mrg p = outp2;
568 1.1 mrg #ifdef DEBUG
569 1.6 mrg if (swapdebug & SDB_SWAPOUT)
570 1.6 mrg printf("swapout_threads: no duds, try procp %p\n", p);
571 1.1 mrg #endif
572 1.6 mrg if (p)
573 1.6 mrg uvm_swapout(p);
574 1.6 mrg }
575 1.43 chs pmap_update();
576 1.1 mrg }
577 1.1 mrg
578 1.1 mrg /*
579 1.1 mrg * uvm_swapout: swap out process "p"
580 1.1 mrg *
581 1.1 mrg * - currently "swapout" means "unwire U-area" and "pmap_collect()"
582 1.1 mrg * the pmap.
583 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
584 1.1 mrg */
585 1.1 mrg
586 1.6 mrg static void
587 1.6 mrg uvm_swapout(p)
588 1.32 augustss struct proc *p;
589 1.1 mrg {
590 1.13 eeh vaddr_t addr;
591 1.6 mrg int s;
592 1.1 mrg
593 1.1 mrg #ifdef DEBUG
594 1.6 mrg if (swapdebug & SDB_SWAPOUT)
595 1.6 mrg printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
596 1.1 mrg p->p_pid, p->p_comm, p->p_addr, p->p_stat,
597 1.1 mrg p->p_slptime, uvmexp.free);
598 1.1 mrg #endif
599 1.1 mrg
600 1.6 mrg /*
601 1.6 mrg * Do any machine-specific actions necessary before swapout.
602 1.6 mrg * This can include saving floating point state, etc.
603 1.6 mrg */
604 1.6 mrg cpu_swapout(p);
605 1.6 mrg
606 1.6 mrg /*
607 1.6 mrg * Mark it as (potentially) swapped out.
608 1.6 mrg */
609 1.41 enami SCHED_LOCK(s);
610 1.6 mrg p->p_flag &= ~P_INMEM;
611 1.6 mrg if (p->p_stat == SRUN)
612 1.6 mrg remrunqueue(p);
613 1.41 enami SCHED_UNLOCK(s);
614 1.6 mrg p->p_swtime = 0;
615 1.6 mrg ++uvmexp.swapouts;
616 1.43 chs
617 1.43 chs /*
618 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
619 1.43 chs */
620 1.43 chs addr = (vaddr_t)p->p_addr;
621 1.43 chs uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
622 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
623 1.1 mrg }
624 1.1 mrg
625