uvm_glue.c revision 1.44.2.1 1 1.44.2.1 nathanw /* $NetBSD: uvm_glue.c,v 1.44.2.1 2001/03/05 22:50:10 nathanw Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.5 mrg #include "opt_uvmhist.h"
70 1.15 tron #include "opt_sysv.h"
71 1.5 mrg
72 1.1 mrg /*
73 1.1 mrg * uvm_glue.c: glue functions
74 1.1 mrg */
75 1.1 mrg
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.44.2.1 nathanw #include <sys/lwp.h>
79 1.1 mrg #include <sys/proc.h>
80 1.1 mrg #include <sys/resourcevar.h>
81 1.1 mrg #include <sys/buf.h>
82 1.1 mrg #include <sys/user.h>
83 1.1 mrg #ifdef SYSVSHM
84 1.1 mrg #include <sys/shm.h>
85 1.1 mrg #endif
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg #include <machine/cpu.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * local prototypes
93 1.1 mrg */
94 1.1 mrg
95 1.44.2.1 nathanw static void uvm_swapout __P((struct lwp *));
96 1.1 mrg
97 1.1 mrg /*
98 1.1 mrg * XXXCDC: do these really belong here?
99 1.1 mrg */
100 1.1 mrg
101 1.1 mrg int readbuffers = 0; /* allow KGDB to read kern buffer pool */
102 1.1 mrg /* XXX: see uvm_kernacc */
103 1.1 mrg
104 1.28 thorpej
105 1.28 thorpej /*
106 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
107 1.1 mrg *
108 1.1 mrg * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
109 1.1 mrg */
110 1.1 mrg
111 1.6 mrg boolean_t
112 1.6 mrg uvm_kernacc(addr, len, rw)
113 1.6 mrg caddr_t addr;
114 1.11 kleink size_t len;
115 1.11 kleink int rw;
116 1.6 mrg {
117 1.6 mrg boolean_t rv;
118 1.13 eeh vaddr_t saddr, eaddr;
119 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120 1.6 mrg
121 1.31 kleink saddr = trunc_page((vaddr_t)addr);
122 1.43 chs eaddr = round_page((vaddr_t)addr + len);
123 1.6 mrg vm_map_lock_read(kernel_map);
124 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 1.6 mrg vm_map_unlock_read(kernel_map);
126 1.6 mrg
127 1.6 mrg /*
128 1.6 mrg * XXX there are still some things (e.g. the buffer cache) that
129 1.6 mrg * are managed behind the VM system's back so even though an
130 1.6 mrg * address is accessible in the mind of the VM system, there may
131 1.6 mrg * not be physical pages where the VM thinks there is. This can
132 1.6 mrg * lead to bogus allocation of pages in the kernel address space
133 1.6 mrg * or worse, inconsistencies at the pmap level. We only worry
134 1.6 mrg * about the buffer cache for now.
135 1.6 mrg */
136 1.13 eeh if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
137 1.13 eeh saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
138 1.6 mrg rv = FALSE;
139 1.6 mrg return(rv);
140 1.1 mrg }
141 1.1 mrg
142 1.1 mrg /*
143 1.1 mrg * uvm_useracc: can the user access it?
144 1.1 mrg *
145 1.1 mrg * - called from physio() and sys___sysctl().
146 1.1 mrg */
147 1.1 mrg
148 1.6 mrg boolean_t
149 1.6 mrg uvm_useracc(addr, len, rw)
150 1.6 mrg caddr_t addr;
151 1.11 kleink size_t len;
152 1.11 kleink int rw;
153 1.1 mrg {
154 1.25 thorpej vm_map_t map;
155 1.6 mrg boolean_t rv;
156 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
157 1.1 mrg
158 1.25 thorpej /* XXX curproc */
159 1.44.2.1 nathanw map = &curproc->l_proc->p_vmspace->vm_map;
160 1.25 thorpej
161 1.25 thorpej vm_map_lock_read(map);
162 1.31 kleink rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
163 1.43 chs round_page((vaddr_t)addr + len), prot);
164 1.25 thorpej vm_map_unlock_read(map);
165 1.25 thorpej
166 1.6 mrg return(rv);
167 1.1 mrg }
168 1.1 mrg
169 1.1 mrg #ifdef KGDB
170 1.1 mrg /*
171 1.1 mrg * Change protections on kernel pages from addr to addr+len
172 1.1 mrg * (presumably so debugger can plant a breakpoint).
173 1.1 mrg *
174 1.1 mrg * We force the protection change at the pmap level. If we were
175 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
176 1.1 mrg * applied meaning we would still take a protection fault, something
177 1.1 mrg * we really don't want to do. It would also fragment the kernel
178 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
179 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
180 1.1 mrg * we can ensure the change takes place properly.
181 1.1 mrg */
182 1.6 mrg void
183 1.6 mrg uvm_chgkprot(addr, len, rw)
184 1.32 augustss caddr_t addr;
185 1.11 kleink size_t len;
186 1.11 kleink int rw;
187 1.6 mrg {
188 1.6 mrg vm_prot_t prot;
189 1.13 eeh paddr_t pa;
190 1.13 eeh vaddr_t sva, eva;
191 1.6 mrg
192 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
193 1.31 kleink eva = round_page((vaddr_t)addr + len);
194 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
195 1.6 mrg /*
196 1.6 mrg * Extract physical address for the page.
197 1.6 mrg * We use a cheezy hack to differentiate physical
198 1.6 mrg * page 0 from an invalid mapping, not that it
199 1.6 mrg * really matters...
200 1.6 mrg */
201 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
202 1.6 mrg panic("chgkprot: invalid page");
203 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
204 1.6 mrg }
205 1.1 mrg }
206 1.1 mrg #endif
207 1.1 mrg
208 1.1 mrg /*
209 1.1 mrg * vslock: wire user memory for I/O
210 1.1 mrg *
211 1.1 mrg * - called from physio and sys___sysctl
212 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
213 1.1 mrg */
214 1.1 mrg
215 1.26 thorpej int
216 1.22 thorpej uvm_vslock(p, addr, len, access_type)
217 1.9 thorpej struct proc *p;
218 1.6 mrg caddr_t addr;
219 1.11 kleink size_t len;
220 1.22 thorpej vm_prot_t access_type;
221 1.1 mrg {
222 1.26 thorpej vm_map_t map;
223 1.26 thorpej vaddr_t start, end;
224 1.26 thorpej int rv;
225 1.26 thorpej
226 1.26 thorpej map = &p->p_vmspace->vm_map;
227 1.31 kleink start = trunc_page((vaddr_t)addr);
228 1.31 kleink end = round_page((vaddr_t)addr + len);
229 1.26 thorpej
230 1.26 thorpej rv = uvm_fault_wire(map, start, end, access_type);
231 1.21 thorpej
232 1.26 thorpej return (rv);
233 1.1 mrg }
234 1.1 mrg
235 1.1 mrg /*
236 1.1 mrg * vslock: wire user memory for I/O
237 1.1 mrg *
238 1.1 mrg * - called from physio and sys___sysctl
239 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
240 1.1 mrg */
241 1.1 mrg
242 1.6 mrg void
243 1.9 thorpej uvm_vsunlock(p, addr, len)
244 1.9 thorpej struct proc *p;
245 1.6 mrg caddr_t addr;
246 1.11 kleink size_t len;
247 1.1 mrg {
248 1.43 chs uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
249 1.43 chs round_page((vaddr_t)addr + len));
250 1.1 mrg }
251 1.1 mrg
252 1.1 mrg /*
253 1.44.2.1 nathanw * uvm_proc_fork: fork a virtual address space
254 1.1 mrg *
255 1.1 mrg * - the address space is copied as per parent map's inherit values
256 1.44.2.1 nathanw */
257 1.44.2.1 nathanw void
258 1.44.2.1 nathanw uvm_proc_fork(p1, p2, shared)
259 1.44.2.1 nathanw struct proc *p1, *p2;
260 1.44.2.1 nathanw boolean_t shared;
261 1.44.2.1 nathanw {
262 1.44.2.1 nathanw
263 1.44.2.1 nathanw if (shared == TRUE) {
264 1.44.2.1 nathanw p2->p_vmspace = NULL;
265 1.44.2.1 nathanw uvmspace_share(p1, p2); /* share vmspace */
266 1.44.2.1 nathanw } else {
267 1.44.2.1 nathanw p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
268 1.44.2.1 nathanw }
269 1.44.2.1 nathanw }
270 1.44.2.1 nathanw
271 1.44.2.1 nathanw
272 1.44.2.1 nathanw /*
273 1.44.2.1 nathanw * uvm_lwp_fork: fork a thread
274 1.44.2.1 nathanw *
275 1.1 mrg * - a new "user" structure is allocated for the child process
276 1.1 mrg * [filled in by MD layer...]
277 1.20 thorpej * - if specified, the child gets a new user stack described by
278 1.20 thorpej * stack and stacksize
279 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
280 1.1 mrg * process, and thus addresses of automatic variables may be invalid
281 1.1 mrg * after cpu_fork returns in the child process. We do nothing here
282 1.1 mrg * after cpu_fork returns.
283 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
284 1.1 mrg * than just hang
285 1.1 mrg */
286 1.6 mrg void
287 1.44.2.1 nathanw uvm_lwp_fork(l1, l2, stack, stacksize, func, arg)
288 1.44.2.1 nathanw struct lwp *l1, *l2;
289 1.20 thorpej void *stack;
290 1.20 thorpej size_t stacksize;
291 1.34 thorpej void (*func) __P((void *));
292 1.34 thorpej void *arg;
293 1.6 mrg {
294 1.44.2.1 nathanw struct user *up = l2->l_addr;
295 1.6 mrg int rv;
296 1.6 mrg
297 1.6 mrg /*
298 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
299 1.7 thorpej * and the kernel stack. Wired state is stored in p->p_flag's
300 1.7 thorpej * P_INMEM bit rather than in the vm_map_entry's wired count
301 1.7 thorpej * to prevent kernel_map fragmentation.
302 1.21 thorpej *
303 1.21 thorpej * Note the kernel stack gets read/write accesses right off
304 1.21 thorpej * the bat.
305 1.6 mrg */
306 1.13 eeh rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
307 1.21 thorpej (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
308 1.6 mrg if (rv != KERN_SUCCESS)
309 1.8 thorpej panic("uvm_fork: uvm_fault_wire failed: %d", rv);
310 1.6 mrg
311 1.6 mrg /*
312 1.34 thorpej * cpu_fork() copy and update the pcb, and make the child ready
313 1.44.2.1 nathanw * to run. If this is a normal user fork, the child will exit
314 1.34 thorpej * directly to user mode via child_return() on its first time
315 1.34 thorpej * slice and will not return here. If this is a kernel thread,
316 1.34 thorpej * the specified entry point will be executed.
317 1.6 mrg */
318 1.44.2.1 nathanw cpu_fork(l1, l2, stack, stacksize, func, arg);
319 1.14 thorpej }
320 1.14 thorpej
321 1.14 thorpej /*
322 1.14 thorpej * uvm_exit: exit a virtual address space
323 1.14 thorpej *
324 1.14 thorpej * - the process passed to us is a dead (pre-zombie) process; we
325 1.14 thorpej * are running on a different context now (the reaper).
326 1.14 thorpej * - we must run in a separate thread because freeing the vmspace
327 1.14 thorpej * of the dead process may block.
328 1.14 thorpej */
329 1.14 thorpej void
330 1.44.2.1 nathanw uvm_proc_exit(p)
331 1.14 thorpej struct proc *p;
332 1.14 thorpej {
333 1.14 thorpej uvmspace_free(p->p_vmspace);
334 1.44.2.1 nathanw }
335 1.44.2.1 nathanw
336 1.44.2.1 nathanw void
337 1.44.2.1 nathanw uvm_lwp_exit(l)
338 1.44.2.1 nathanw struct lwp *l;
339 1.44.2.1 nathanw {
340 1.44.2.1 nathanw vaddr_t va = (vaddr_t)l->l_addr;
341 1.44.2.1 nathanw
342 1.43 chs uvm_fault_unwire(kernel_map, va, va + USPACE);
343 1.43 chs uvm_km_free(kernel_map, va, USPACE);
344 1.44.2.1 nathanw
345 1.44.2.1 nathanw l->l_flag &= ~L_INMEM;
346 1.44.2.1 nathanw l->l_addr = NULL;
347 1.1 mrg }
348 1.1 mrg
349 1.1 mrg /*
350 1.1 mrg * uvm_init_limit: init per-process VM limits
351 1.1 mrg *
352 1.1 mrg * - called for process 0 and then inherited by all others.
353 1.1 mrg */
354 1.6 mrg void
355 1.6 mrg uvm_init_limits(p)
356 1.6 mrg struct proc *p;
357 1.6 mrg {
358 1.6 mrg
359 1.6 mrg /*
360 1.6 mrg * Set up the initial limits on process VM. Set the maximum
361 1.6 mrg * resident set size to be all of (reasonably) available memory.
362 1.6 mrg * This causes any single, large process to start random page
363 1.6 mrg * replacement once it fills memory.
364 1.6 mrg */
365 1.6 mrg
366 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
367 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
368 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
369 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
370 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
371 1.1 mrg }
372 1.1 mrg
373 1.1 mrg #ifdef DEBUG
374 1.1 mrg int enableswap = 1;
375 1.1 mrg int swapdebug = 0;
376 1.1 mrg #define SDB_FOLLOW 1
377 1.1 mrg #define SDB_SWAPIN 2
378 1.1 mrg #define SDB_SWAPOUT 4
379 1.1 mrg #endif
380 1.1 mrg
381 1.1 mrg /*
382 1.1 mrg * uvm_swapin: swap in a process's u-area.
383 1.1 mrg */
384 1.1 mrg
385 1.6 mrg void
386 1.44.2.1 nathanw uvm_swapin(l)
387 1.44.2.1 nathanw struct lwp *l;
388 1.6 mrg {
389 1.13 eeh vaddr_t addr;
390 1.6 mrg int s;
391 1.6 mrg
392 1.44.2.1 nathanw addr = (vaddr_t)l->l_addr;
393 1.44.2.1 nathanw /* make L_INMEM true */
394 1.21 thorpej uvm_fault_wire(kernel_map, addr, addr + USPACE,
395 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
396 1.6 mrg
397 1.6 mrg /*
398 1.6 mrg * Some architectures need to be notified when the user area has
399 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
400 1.6 mrg */
401 1.44.2.1 nathanw cpu_swapin(l);
402 1.41 enami SCHED_LOCK(s);
403 1.44.2.1 nathanw if (l->l_stat == LSRUN)
404 1.44.2.1 nathanw setrunqueue(l);
405 1.44.2.1 nathanw l->l_flag |= L_INMEM;
406 1.41 enami SCHED_UNLOCK(s);
407 1.44.2.1 nathanw l->l_swtime = 0;
408 1.6 mrg ++uvmexp.swapins;
409 1.1 mrg }
410 1.1 mrg
411 1.1 mrg /*
412 1.1 mrg * uvm_scheduler: process zero main loop
413 1.1 mrg *
414 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
415 1.1 mrg * priority.
416 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
417 1.1 mrg */
418 1.1 mrg
419 1.6 mrg void
420 1.6 mrg uvm_scheduler()
421 1.1 mrg {
422 1.44.2.1 nathanw struct lwp *l, *ll;
423 1.32 augustss int pri;
424 1.6 mrg int ppri;
425 1.1 mrg
426 1.1 mrg loop:
427 1.1 mrg #ifdef DEBUG
428 1.6 mrg while (!enableswap)
429 1.43 chs tsleep(&proc0, PVM, "noswap", 0);
430 1.1 mrg #endif
431 1.44.2.1 nathanw ll = NULL; /* process to choose */
432 1.6 mrg ppri = INT_MIN; /* its priority */
433 1.29 thorpej proclist_lock_read();
434 1.6 mrg
435 1.44.2.1 nathanw LIST_FOREACH(l, &alllwp, l_list) {
436 1.6 mrg /* is it a runnable swapped out process? */
437 1.44.2.1 nathanw if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
438 1.44.2.1 nathanw pri = l->l_swtime + l->l_slptime -
439 1.44.2.1 nathanw (l->l_proc->p_nice - NZERO) * 8;
440 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
441 1.44.2.1 nathanw ll = l;
442 1.6 mrg ppri = pri;
443 1.6 mrg }
444 1.6 mrg }
445 1.6 mrg }
446 1.39 sommerfe /*
447 1.39 sommerfe * XXXSMP: possible unlock/sleep race between here and the
448 1.39 sommerfe * "scheduler" tsleep below..
449 1.39 sommerfe */
450 1.28 thorpej proclist_unlock_read();
451 1.1 mrg
452 1.1 mrg #ifdef DEBUG
453 1.6 mrg if (swapdebug & SDB_FOLLOW)
454 1.44.2.1 nathanw printf("scheduler: running, procp %p pri %d\n", ll, ppri);
455 1.1 mrg #endif
456 1.6 mrg /*
457 1.6 mrg * Nothing to do, back to sleep
458 1.6 mrg */
459 1.44.2.1 nathanw if ((l = ll) == NULL) {
460 1.43 chs tsleep(&proc0, PVM, "scheduler", 0);
461 1.6 mrg goto loop;
462 1.6 mrg }
463 1.6 mrg
464 1.6 mrg /*
465 1.6 mrg * we have found swapped out process which we would like to bring
466 1.6 mrg * back in.
467 1.6 mrg *
468 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
469 1.6 mrg * despite our feeble check
470 1.6 mrg */
471 1.6 mrg if (uvmexp.free > atop(USPACE)) {
472 1.1 mrg #ifdef DEBUG
473 1.6 mrg if (swapdebug & SDB_SWAPIN)
474 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
475 1.44.2.1 nathanw l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free);
476 1.1 mrg #endif
477 1.44.2.1 nathanw uvm_swapin(l);
478 1.6 mrg goto loop;
479 1.6 mrg }
480 1.6 mrg /*
481 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
482 1.6 mrg * is clear
483 1.6 mrg */
484 1.1 mrg #ifdef DEBUG
485 1.6 mrg if (swapdebug & SDB_FOLLOW)
486 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
487 1.44.2.1 nathanw l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free);
488 1.1 mrg #endif
489 1.6 mrg uvm_wait("schedpwait");
490 1.1 mrg #ifdef DEBUG
491 1.6 mrg if (swapdebug & SDB_FOLLOW)
492 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
493 1.1 mrg #endif
494 1.6 mrg goto loop;
495 1.1 mrg }
496 1.1 mrg
497 1.1 mrg /*
498 1.44.2.1 nathanw * swappable: is LWP "l" swappable?
499 1.1 mrg */
500 1.1 mrg
501 1.44.2.1 nathanw #define swappable(l) \
502 1.44.2.1 nathanw (((l)->l_flag & (L_INMEM)) && \
503 1.44.2.1 nathanw ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) && \
504 1.44.2.1 nathanw (l)->l_holdcnt == 0)
505 1.1 mrg
506 1.1 mrg /*
507 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
508 1.1 mrg * u-areas.
509 1.1 mrg *
510 1.1 mrg * - called by the pagedaemon
511 1.1 mrg * - try and swap at least one processs
512 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
513 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
514 1.1 mrg * is swapped, otherwise the longest resident process...
515 1.1 mrg */
516 1.6 mrg void
517 1.6 mrg uvm_swapout_threads()
518 1.1 mrg {
519 1.44.2.1 nathanw struct lwp *l;
520 1.44.2.1 nathanw struct lwp *outl, *outl2;
521 1.6 mrg int outpri, outpri2;
522 1.6 mrg int didswap = 0;
523 1.6 mrg extern int maxslp;
524 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
525 1.1 mrg
526 1.1 mrg #ifdef DEBUG
527 1.6 mrg if (!enableswap)
528 1.6 mrg return;
529 1.1 mrg #endif
530 1.1 mrg
531 1.6 mrg /*
532 1.44.2.1 nathanw * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
533 1.44.2.1 nathanw * outl2/outpri2: the longest resident thread (its swap time)
534 1.6 mrg */
535 1.44.2.1 nathanw outl = outl2 = NULL;
536 1.6 mrg outpri = outpri2 = 0;
537 1.29 thorpej proclist_lock_read();
538 1.44.2.1 nathanw LIST_FOREACH(l, &alllwp, l_list) {
539 1.44.2.1 nathanw if (!swappable(l))
540 1.6 mrg continue;
541 1.44.2.1 nathanw switch (l->l_stat) {
542 1.44.2.1 nathanw case LSRUN:
543 1.44.2.1 nathanw case LSONPROC:
544 1.44.2.1 nathanw if (l->l_swtime > outpri2) {
545 1.44.2.1 nathanw outl2 = l;
546 1.44.2.1 nathanw outpri2 = l->l_swtime;
547 1.6 mrg }
548 1.6 mrg continue;
549 1.1 mrg
550 1.44.2.1 nathanw case LSSLEEP:
551 1.44.2.1 nathanw case LSSTOP:
552 1.44.2.1 nathanw if (l->l_slptime >= maxslp) {
553 1.44.2.1 nathanw uvm_swapout(l);
554 1.6 mrg didswap++;
555 1.44.2.1 nathanw } else if (l->l_slptime > outpri) {
556 1.44.2.1 nathanw outl = l;
557 1.44.2.1 nathanw outpri = l->l_slptime;
558 1.6 mrg }
559 1.6 mrg continue;
560 1.6 mrg }
561 1.6 mrg }
562 1.28 thorpej proclist_unlock_read();
563 1.6 mrg
564 1.6 mrg /*
565 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
566 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
567 1.6 mrg * if we are real low on memory since we don't gain much by doing
568 1.6 mrg * it (USPACE bytes).
569 1.6 mrg */
570 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
571 1.44.2.1 nathanw if ((l = outl) == NULL)
572 1.44.2.1 nathanw l = outl2;
573 1.1 mrg #ifdef DEBUG
574 1.6 mrg if (swapdebug & SDB_SWAPOUT)
575 1.44.2.1 nathanw printf("swapout_threads: no duds, try procp %p\n", l);
576 1.1 mrg #endif
577 1.44.2.1 nathanw if (l)
578 1.44.2.1 nathanw uvm_swapout(l);
579 1.6 mrg }
580 1.43 chs pmap_update();
581 1.1 mrg }
582 1.1 mrg
583 1.1 mrg /*
584 1.44.2.1 nathanw * uvm_swapout: swap out lwp "l"
585 1.1 mrg *
586 1.1 mrg * - currently "swapout" means "unwire U-area" and "pmap_collect()"
587 1.1 mrg * the pmap.
588 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
589 1.1 mrg */
590 1.1 mrg
591 1.6 mrg static void
592 1.44.2.1 nathanw uvm_swapout(l)
593 1.44.2.1 nathanw struct lwp *l;
594 1.1 mrg {
595 1.13 eeh vaddr_t addr;
596 1.6 mrg int s;
597 1.44.2.1 nathanw struct proc *p = l->l_proc;
598 1.1 mrg
599 1.1 mrg #ifdef DEBUG
600 1.6 mrg if (swapdebug & SDB_SWAPOUT)
601 1.6 mrg printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
602 1.44.2.1 nathanw p->p_pid, p->p_comm, l->l_addr, l->l_stat,
603 1.44.2.1 nathanw l->l_slptime, uvmexp.free);
604 1.1 mrg #endif
605 1.1 mrg
606 1.6 mrg /*
607 1.6 mrg * Do any machine-specific actions necessary before swapout.
608 1.6 mrg * This can include saving floating point state, etc.
609 1.6 mrg */
610 1.44.2.1 nathanw cpu_swapout(l);
611 1.44.2.1 nathanw
612 1.44.2.1 nathanw /*
613 1.44.2.1 nathanw * Unwire the to-be-swapped process's user struct and kernel stack.
614 1.44.2.1 nathanw */
615 1.44.2.1 nathanw addr = (vaddr_t)l->l_addr;
616 1.44.2.1 nathanw uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
617 1.44.2.1 nathanw pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
618 1.6 mrg
619 1.6 mrg /*
620 1.6 mrg * Mark it as (potentially) swapped out.
621 1.6 mrg */
622 1.41 enami SCHED_LOCK(s);
623 1.44.2.1 nathanw s = splstatclock();
624 1.44.2.1 nathanw l->l_flag &= ~L_INMEM;
625 1.44.2.1 nathanw if (l->l_stat == LSRUN)
626 1.44.2.1 nathanw remrunqueue(l);
627 1.41 enami SCHED_UNLOCK(s);
628 1.44.2.1 nathanw l->l_swtime = 0;
629 1.6 mrg ++uvmexp.swapouts;
630 1.43 chs
631 1.43 chs /*
632 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
633 1.43 chs */
634 1.44.2.1 nathanw addr = (vaddr_t)l->l_addr;
635 1.43 chs uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
636 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
637 1.1 mrg }
638 1.1 mrg
639