uvm_glue.c revision 1.44.2.14 1 1.44.2.14 nathanw /* $NetBSD: uvm_glue.c,v 1.44.2.14 2002/06/24 22:12:50 nathanw Exp $ */
2 1.1 mrg
3 1.44.2.4 nathanw /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.44.2.4 nathanw * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.44.2.4 nathanw * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.44.2.4 nathanw *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.44.2.4 nathanw *
54 1.44.2.4 nathanw * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.44.2.4 nathanw * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.44.2.4 nathanw *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.44.2.8 nathanw #include <sys/cdefs.h>
70 1.44.2.14 nathanw __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.44.2.14 2002/06/24 22:12:50 nathanw Exp $");
71 1.44.2.8 nathanw
72 1.44.2.4 nathanw #include "opt_kgdb.h"
73 1.15 tron #include "opt_sysv.h"
74 1.44.2.4 nathanw #include "opt_uvmhist.h"
75 1.5 mrg
76 1.1 mrg /*
77 1.1 mrg * uvm_glue.c: glue functions
78 1.1 mrg */
79 1.1 mrg
80 1.1 mrg #include <sys/param.h>
81 1.1 mrg #include <sys/systm.h>
82 1.44.2.1 nathanw #include <sys/lwp.h>
83 1.1 mrg #include <sys/proc.h>
84 1.1 mrg #include <sys/resourcevar.h>
85 1.1 mrg #include <sys/buf.h>
86 1.1 mrg #include <sys/user.h>
87 1.1 mrg #ifdef SYSVSHM
88 1.1 mrg #include <sys/shm.h>
89 1.1 mrg #endif
90 1.1 mrg
91 1.1 mrg #include <uvm/uvm.h>
92 1.1 mrg
93 1.1 mrg #include <machine/cpu.h>
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * local prototypes
97 1.1 mrg */
98 1.1 mrg
99 1.44.2.1 nathanw static void uvm_swapout __P((struct lwp *));
100 1.1 mrg
101 1.1 mrg /*
102 1.1 mrg * XXXCDC: do these really belong here?
103 1.1 mrg */
104 1.1 mrg
105 1.1 mrg int readbuffers = 0; /* allow KGDB to read kern buffer pool */
106 1.1 mrg /* XXX: see uvm_kernacc */
107 1.1 mrg
108 1.28 thorpej
109 1.28 thorpej /*
110 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
111 1.1 mrg *
112 1.1 mrg * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
113 1.1 mrg */
114 1.1 mrg
115 1.6 mrg boolean_t
116 1.6 mrg uvm_kernacc(addr, len, rw)
117 1.6 mrg caddr_t addr;
118 1.11 kleink size_t len;
119 1.11 kleink int rw;
120 1.6 mrg {
121 1.6 mrg boolean_t rv;
122 1.13 eeh vaddr_t saddr, eaddr;
123 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
124 1.6 mrg
125 1.31 kleink saddr = trunc_page((vaddr_t)addr);
126 1.43 chs eaddr = round_page((vaddr_t)addr + len);
127 1.6 mrg vm_map_lock_read(kernel_map);
128 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
129 1.6 mrg vm_map_unlock_read(kernel_map);
130 1.6 mrg
131 1.6 mrg /*
132 1.6 mrg * XXX there are still some things (e.g. the buffer cache) that
133 1.6 mrg * are managed behind the VM system's back so even though an
134 1.6 mrg * address is accessible in the mind of the VM system, there may
135 1.6 mrg * not be physical pages where the VM thinks there is. This can
136 1.6 mrg * lead to bogus allocation of pages in the kernel address space
137 1.6 mrg * or worse, inconsistencies at the pmap level. We only worry
138 1.6 mrg * about the buffer cache for now.
139 1.6 mrg */
140 1.13 eeh if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
141 1.13 eeh saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
142 1.6 mrg rv = FALSE;
143 1.6 mrg return(rv);
144 1.1 mrg }
145 1.1 mrg
146 1.1 mrg /*
147 1.1 mrg * uvm_useracc: can the user access it?
148 1.1 mrg *
149 1.1 mrg * - called from physio() and sys___sysctl().
150 1.1 mrg */
151 1.1 mrg
152 1.6 mrg boolean_t
153 1.6 mrg uvm_useracc(addr, len, rw)
154 1.6 mrg caddr_t addr;
155 1.11 kleink size_t len;
156 1.11 kleink int rw;
157 1.1 mrg {
158 1.44.2.4 nathanw struct vm_map *map;
159 1.6 mrg boolean_t rv;
160 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
161 1.1 mrg
162 1.44.2.14 nathanw /* XXX curlwp */
163 1.44.2.14 nathanw map = &curproc->p_vmspace->vm_map;
164 1.25 thorpej
165 1.25 thorpej vm_map_lock_read(map);
166 1.31 kleink rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
167 1.43 chs round_page((vaddr_t)addr + len), prot);
168 1.25 thorpej vm_map_unlock_read(map);
169 1.25 thorpej
170 1.6 mrg return(rv);
171 1.1 mrg }
172 1.1 mrg
173 1.1 mrg #ifdef KGDB
174 1.1 mrg /*
175 1.1 mrg * Change protections on kernel pages from addr to addr+len
176 1.1 mrg * (presumably so debugger can plant a breakpoint).
177 1.1 mrg *
178 1.1 mrg * We force the protection change at the pmap level. If we were
179 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
180 1.1 mrg * applied meaning we would still take a protection fault, something
181 1.1 mrg * we really don't want to do. It would also fragment the kernel
182 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
183 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
184 1.1 mrg * we can ensure the change takes place properly.
185 1.1 mrg */
186 1.6 mrg void
187 1.6 mrg uvm_chgkprot(addr, len, rw)
188 1.32 augustss caddr_t addr;
189 1.11 kleink size_t len;
190 1.11 kleink int rw;
191 1.6 mrg {
192 1.6 mrg vm_prot_t prot;
193 1.13 eeh paddr_t pa;
194 1.13 eeh vaddr_t sva, eva;
195 1.6 mrg
196 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
197 1.31 kleink eva = round_page((vaddr_t)addr + len);
198 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
199 1.6 mrg /*
200 1.6 mrg * Extract physical address for the page.
201 1.6 mrg */
202 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
203 1.6 mrg panic("chgkprot: invalid page");
204 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
205 1.6 mrg }
206 1.44.2.6 nathanw pmap_update(pmap_kernel());
207 1.1 mrg }
208 1.1 mrg #endif
209 1.1 mrg
210 1.1 mrg /*
211 1.44.2.6 nathanw * uvm_vslock: wire user memory for I/O
212 1.1 mrg *
213 1.1 mrg * - called from physio and sys___sysctl
214 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
215 1.1 mrg */
216 1.1 mrg
217 1.26 thorpej int
218 1.22 thorpej uvm_vslock(p, addr, len, access_type)
219 1.9 thorpej struct proc *p;
220 1.6 mrg caddr_t addr;
221 1.11 kleink size_t len;
222 1.22 thorpej vm_prot_t access_type;
223 1.1 mrg {
224 1.44.2.4 nathanw struct vm_map *map;
225 1.26 thorpej vaddr_t start, end;
226 1.44.2.3 nathanw int error;
227 1.26 thorpej
228 1.26 thorpej map = &p->p_vmspace->vm_map;
229 1.31 kleink start = trunc_page((vaddr_t)addr);
230 1.31 kleink end = round_page((vaddr_t)addr + len);
231 1.44.2.11 nathanw error = uvm_fault_wire(map, start, end, VM_FAULT_WIRE, access_type);
232 1.44.2.3 nathanw return error;
233 1.1 mrg }
234 1.1 mrg
235 1.1 mrg /*
236 1.44.2.6 nathanw * uvm_vsunlock: unwire user memory wired by uvm_vslock()
237 1.1 mrg *
238 1.1 mrg * - called from physio and sys___sysctl
239 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
240 1.1 mrg */
241 1.1 mrg
242 1.6 mrg void
243 1.9 thorpej uvm_vsunlock(p, addr, len)
244 1.9 thorpej struct proc *p;
245 1.6 mrg caddr_t addr;
246 1.11 kleink size_t len;
247 1.1 mrg {
248 1.43 chs uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
249 1.43 chs round_page((vaddr_t)addr + len));
250 1.1 mrg }
251 1.1 mrg
252 1.1 mrg /*
253 1.44.2.1 nathanw * uvm_proc_fork: fork a virtual address space
254 1.1 mrg *
255 1.1 mrg * - the address space is copied as per parent map's inherit values
256 1.44.2.1 nathanw */
257 1.44.2.1 nathanw void
258 1.44.2.1 nathanw uvm_proc_fork(p1, p2, shared)
259 1.44.2.1 nathanw struct proc *p1, *p2;
260 1.44.2.1 nathanw boolean_t shared;
261 1.44.2.1 nathanw {
262 1.44.2.1 nathanw
263 1.44.2.1 nathanw if (shared == TRUE) {
264 1.44.2.1 nathanw p2->p_vmspace = NULL;
265 1.44.2.6 nathanw uvmspace_share(p1, p2);
266 1.44.2.1 nathanw } else {
267 1.44.2.6 nathanw p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
268 1.44.2.1 nathanw }
269 1.44.2.10 gmcgarry
270 1.44.2.10 gmcgarry cpu_proc_fork(p1, p2);
271 1.44.2.1 nathanw }
272 1.44.2.1 nathanw
273 1.44.2.1 nathanw
274 1.44.2.1 nathanw /*
275 1.44.2.1 nathanw * uvm_lwp_fork: fork a thread
276 1.44.2.1 nathanw *
277 1.1 mrg * - a new "user" structure is allocated for the child process
278 1.1 mrg * [filled in by MD layer...]
279 1.20 thorpej * - if specified, the child gets a new user stack described by
280 1.20 thorpej * stack and stacksize
281 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
282 1.1 mrg * process, and thus addresses of automatic variables may be invalid
283 1.44.2.9 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
284 1.44.2.9 thorpej * after cpu_lwp_fork returns.
285 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
286 1.1 mrg * than just hang
287 1.1 mrg */
288 1.6 mrg void
289 1.44.2.1 nathanw uvm_lwp_fork(l1, l2, stack, stacksize, func, arg)
290 1.44.2.1 nathanw struct lwp *l1, *l2;
291 1.20 thorpej void *stack;
292 1.20 thorpej size_t stacksize;
293 1.34 thorpej void (*func) __P((void *));
294 1.34 thorpej void *arg;
295 1.6 mrg {
296 1.44.2.1 nathanw struct user *up = l2->l_addr;
297 1.44.2.3 nathanw int error;
298 1.6 mrg
299 1.6 mrg /*
300 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
301 1.7 thorpej * and the kernel stack. Wired state is stored in p->p_flag's
302 1.7 thorpej * P_INMEM bit rather than in the vm_map_entry's wired count
303 1.7 thorpej * to prevent kernel_map fragmentation.
304 1.21 thorpej *
305 1.21 thorpej * Note the kernel stack gets read/write accesses right off
306 1.21 thorpej * the bat.
307 1.6 mrg */
308 1.44.2.11 nathanw error = uvm_fault_wire(kernel_map, (vaddr_t)up, (vaddr_t)up + USPACE,
309 1.44.2.11 nathanw VM_FAULT_WIRE, VM_PROT_READ | VM_PROT_WRITE);
310 1.44.2.3 nathanw if (error)
311 1.44.2.6 nathanw panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
312 1.6 mrg
313 1.6 mrg /*
314 1.44.2.9 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
315 1.44.2.1 nathanw * to run. If this is a normal user fork, the child will exit
316 1.34 thorpej * directly to user mode via child_return() on its first time
317 1.34 thorpej * slice and will not return here. If this is a kernel thread,
318 1.34 thorpej * the specified entry point will be executed.
319 1.6 mrg */
320 1.44.2.9 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
321 1.14 thorpej }
322 1.14 thorpej
323 1.14 thorpej /*
324 1.14 thorpej * uvm_exit: exit a virtual address space
325 1.14 thorpej *
326 1.14 thorpej * - the process passed to us is a dead (pre-zombie) process; we
327 1.14 thorpej * are running on a different context now (the reaper).
328 1.14 thorpej * - we must run in a separate thread because freeing the vmspace
329 1.14 thorpej * of the dead process may block.
330 1.14 thorpej */
331 1.14 thorpej void
332 1.44.2.1 nathanw uvm_proc_exit(p)
333 1.14 thorpej struct proc *p;
334 1.14 thorpej {
335 1.14 thorpej uvmspace_free(p->p_vmspace);
336 1.44.2.1 nathanw }
337 1.44.2.1 nathanw
338 1.44.2.1 nathanw void
339 1.44.2.1 nathanw uvm_lwp_exit(l)
340 1.44.2.1 nathanw struct lwp *l;
341 1.44.2.1 nathanw {
342 1.44.2.1 nathanw vaddr_t va = (vaddr_t)l->l_addr;
343 1.44.2.1 nathanw
344 1.43 chs uvm_km_free(kernel_map, va, USPACE);
345 1.44.2.1 nathanw
346 1.44.2.1 nathanw l->l_flag &= ~L_INMEM;
347 1.44.2.1 nathanw l->l_addr = NULL;
348 1.1 mrg }
349 1.1 mrg
350 1.1 mrg /*
351 1.1 mrg * uvm_init_limit: init per-process VM limits
352 1.1 mrg *
353 1.1 mrg * - called for process 0 and then inherited by all others.
354 1.1 mrg */
355 1.6 mrg void
356 1.6 mrg uvm_init_limits(p)
357 1.6 mrg struct proc *p;
358 1.6 mrg {
359 1.6 mrg
360 1.6 mrg /*
361 1.6 mrg * Set up the initial limits on process VM. Set the maximum
362 1.6 mrg * resident set size to be all of (reasonably) available memory.
363 1.6 mrg * This causes any single, large process to start random page
364 1.6 mrg * replacement once it fills memory.
365 1.6 mrg */
366 1.6 mrg
367 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
368 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
369 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
370 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
371 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
372 1.1 mrg }
373 1.1 mrg
374 1.1 mrg #ifdef DEBUG
375 1.1 mrg int enableswap = 1;
376 1.1 mrg int swapdebug = 0;
377 1.1 mrg #define SDB_FOLLOW 1
378 1.1 mrg #define SDB_SWAPIN 2
379 1.1 mrg #define SDB_SWAPOUT 4
380 1.1 mrg #endif
381 1.1 mrg
382 1.1 mrg /*
383 1.1 mrg * uvm_swapin: swap in a process's u-area.
384 1.1 mrg */
385 1.1 mrg
386 1.6 mrg void
387 1.44.2.1 nathanw uvm_swapin(l)
388 1.44.2.1 nathanw struct lwp *l;
389 1.6 mrg {
390 1.13 eeh vaddr_t addr;
391 1.44.2.6 nathanw int s, error;
392 1.6 mrg
393 1.44.2.1 nathanw addr = (vaddr_t)l->l_addr;
394 1.44.2.1 nathanw /* make L_INMEM true */
395 1.44.2.11 nathanw error = uvm_fault_wire(kernel_map, addr, addr + USPACE, VM_FAULT_WIRE,
396 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
397 1.44.2.6 nathanw if (error) {
398 1.44.2.6 nathanw panic("uvm_swapin: rewiring stack failed: %d", error);
399 1.44.2.6 nathanw }
400 1.6 mrg
401 1.6 mrg /*
402 1.6 mrg * Some architectures need to be notified when the user area has
403 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
404 1.6 mrg */
405 1.44.2.1 nathanw cpu_swapin(l);
406 1.41 enami SCHED_LOCK(s);
407 1.44.2.1 nathanw if (l->l_stat == LSRUN)
408 1.44.2.1 nathanw setrunqueue(l);
409 1.44.2.1 nathanw l->l_flag |= L_INMEM;
410 1.41 enami SCHED_UNLOCK(s);
411 1.44.2.1 nathanw l->l_swtime = 0;
412 1.6 mrg ++uvmexp.swapins;
413 1.1 mrg }
414 1.1 mrg
415 1.1 mrg /*
416 1.1 mrg * uvm_scheduler: process zero main loop
417 1.1 mrg *
418 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
419 1.1 mrg * priority.
420 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
421 1.1 mrg */
422 1.1 mrg
423 1.6 mrg void
424 1.6 mrg uvm_scheduler()
425 1.1 mrg {
426 1.44.2.1 nathanw struct lwp *l, *ll;
427 1.32 augustss int pri;
428 1.6 mrg int ppri;
429 1.1 mrg
430 1.1 mrg loop:
431 1.1 mrg #ifdef DEBUG
432 1.6 mrg while (!enableswap)
433 1.43 chs tsleep(&proc0, PVM, "noswap", 0);
434 1.1 mrg #endif
435 1.44.2.1 nathanw ll = NULL; /* process to choose */
436 1.6 mrg ppri = INT_MIN; /* its priority */
437 1.29 thorpej proclist_lock_read();
438 1.6 mrg
439 1.44.2.1 nathanw LIST_FOREACH(l, &alllwp, l_list) {
440 1.6 mrg /* is it a runnable swapped out process? */
441 1.44.2.1 nathanw if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
442 1.44.2.1 nathanw pri = l->l_swtime + l->l_slptime -
443 1.44.2.1 nathanw (l->l_proc->p_nice - NZERO) * 8;
444 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
445 1.44.2.1 nathanw ll = l;
446 1.6 mrg ppri = pri;
447 1.6 mrg }
448 1.6 mrg }
449 1.6 mrg }
450 1.39 sommerfe /*
451 1.39 sommerfe * XXXSMP: possible unlock/sleep race between here and the
452 1.39 sommerfe * "scheduler" tsleep below..
453 1.39 sommerfe */
454 1.28 thorpej proclist_unlock_read();
455 1.1 mrg
456 1.1 mrg #ifdef DEBUG
457 1.6 mrg if (swapdebug & SDB_FOLLOW)
458 1.44.2.1 nathanw printf("scheduler: running, procp %p pri %d\n", ll, ppri);
459 1.1 mrg #endif
460 1.6 mrg /*
461 1.6 mrg * Nothing to do, back to sleep
462 1.6 mrg */
463 1.44.2.1 nathanw if ((l = ll) == NULL) {
464 1.43 chs tsleep(&proc0, PVM, "scheduler", 0);
465 1.6 mrg goto loop;
466 1.6 mrg }
467 1.6 mrg
468 1.6 mrg /*
469 1.6 mrg * we have found swapped out process which we would like to bring
470 1.6 mrg * back in.
471 1.6 mrg *
472 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
473 1.6 mrg * despite our feeble check
474 1.6 mrg */
475 1.6 mrg if (uvmexp.free > atop(USPACE)) {
476 1.1 mrg #ifdef DEBUG
477 1.6 mrg if (swapdebug & SDB_SWAPIN)
478 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
479 1.44.2.1 nathanw l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free);
480 1.1 mrg #endif
481 1.44.2.1 nathanw uvm_swapin(l);
482 1.6 mrg goto loop;
483 1.6 mrg }
484 1.6 mrg /*
485 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
486 1.6 mrg * is clear
487 1.6 mrg */
488 1.1 mrg #ifdef DEBUG
489 1.6 mrg if (swapdebug & SDB_FOLLOW)
490 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
491 1.44.2.1 nathanw l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free);
492 1.1 mrg #endif
493 1.6 mrg uvm_wait("schedpwait");
494 1.1 mrg #ifdef DEBUG
495 1.6 mrg if (swapdebug & SDB_FOLLOW)
496 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
497 1.1 mrg #endif
498 1.6 mrg goto loop;
499 1.1 mrg }
500 1.1 mrg
501 1.1 mrg /*
502 1.44.2.1 nathanw * swappable: is LWP "l" swappable?
503 1.1 mrg */
504 1.1 mrg
505 1.44.2.1 nathanw #define swappable(l) \
506 1.44.2.1 nathanw (((l)->l_flag & (L_INMEM)) && \
507 1.44.2.1 nathanw ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) && \
508 1.44.2.1 nathanw (l)->l_holdcnt == 0)
509 1.1 mrg
510 1.1 mrg /*
511 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
512 1.1 mrg * u-areas.
513 1.1 mrg *
514 1.1 mrg * - called by the pagedaemon
515 1.1 mrg * - try and swap at least one processs
516 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
517 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
518 1.1 mrg * is swapped, otherwise the longest resident process...
519 1.1 mrg */
520 1.6 mrg void
521 1.6 mrg uvm_swapout_threads()
522 1.1 mrg {
523 1.44.2.1 nathanw struct lwp *l;
524 1.44.2.1 nathanw struct lwp *outl, *outl2;
525 1.6 mrg int outpri, outpri2;
526 1.6 mrg int didswap = 0;
527 1.44.2.4 nathanw extern int maxslp;
528 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
529 1.1 mrg
530 1.1 mrg #ifdef DEBUG
531 1.6 mrg if (!enableswap)
532 1.6 mrg return;
533 1.1 mrg #endif
534 1.1 mrg
535 1.6 mrg /*
536 1.44.2.1 nathanw * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
537 1.44.2.1 nathanw * outl2/outpri2: the longest resident thread (its swap time)
538 1.6 mrg */
539 1.44.2.1 nathanw outl = outl2 = NULL;
540 1.6 mrg outpri = outpri2 = 0;
541 1.29 thorpej proclist_lock_read();
542 1.44.2.1 nathanw LIST_FOREACH(l, &alllwp, l_list) {
543 1.44.2.1 nathanw if (!swappable(l))
544 1.6 mrg continue;
545 1.44.2.1 nathanw switch (l->l_stat) {
546 1.44.2.1 nathanw case LSRUN:
547 1.44.2.1 nathanw case LSONPROC:
548 1.44.2.1 nathanw if (l->l_swtime > outpri2) {
549 1.44.2.1 nathanw outl2 = l;
550 1.44.2.1 nathanw outpri2 = l->l_swtime;
551 1.6 mrg }
552 1.6 mrg continue;
553 1.44.2.4 nathanw
554 1.44.2.1 nathanw case LSSLEEP:
555 1.44.2.1 nathanw case LSSTOP:
556 1.44.2.1 nathanw if (l->l_slptime >= maxslp) {
557 1.44.2.1 nathanw uvm_swapout(l);
558 1.6 mrg didswap++;
559 1.44.2.1 nathanw } else if (l->l_slptime > outpri) {
560 1.44.2.1 nathanw outl = l;
561 1.44.2.1 nathanw outpri = l->l_slptime;
562 1.6 mrg }
563 1.6 mrg continue;
564 1.6 mrg }
565 1.6 mrg }
566 1.28 thorpej proclist_unlock_read();
567 1.6 mrg
568 1.6 mrg /*
569 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
570 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
571 1.6 mrg * if we are real low on memory since we don't gain much by doing
572 1.6 mrg * it (USPACE bytes).
573 1.6 mrg */
574 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
575 1.44.2.1 nathanw if ((l = outl) == NULL)
576 1.44.2.1 nathanw l = outl2;
577 1.1 mrg #ifdef DEBUG
578 1.6 mrg if (swapdebug & SDB_SWAPOUT)
579 1.44.2.1 nathanw printf("swapout_threads: no duds, try procp %p\n", l);
580 1.1 mrg #endif
581 1.44.2.1 nathanw if (l)
582 1.44.2.1 nathanw uvm_swapout(l);
583 1.6 mrg }
584 1.1 mrg }
585 1.1 mrg
586 1.1 mrg /*
587 1.44.2.1 nathanw * uvm_swapout: swap out lwp "l"
588 1.1 mrg *
589 1.44.2.4 nathanw * - currently "swapout" means "unwire U-area" and "pmap_collect()"
590 1.1 mrg * the pmap.
591 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
592 1.1 mrg */
593 1.1 mrg
594 1.6 mrg static void
595 1.44.2.1 nathanw uvm_swapout(l)
596 1.44.2.1 nathanw struct lwp *l;
597 1.1 mrg {
598 1.13 eeh vaddr_t addr;
599 1.6 mrg int s;
600 1.44.2.1 nathanw struct proc *p = l->l_proc;
601 1.1 mrg
602 1.1 mrg #ifdef DEBUG
603 1.6 mrg if (swapdebug & SDB_SWAPOUT)
604 1.44.2.12 nathanw printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
605 1.44.2.12 nathanw p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
606 1.44.2.1 nathanw l->l_slptime, uvmexp.free);
607 1.1 mrg #endif
608 1.1 mrg
609 1.6 mrg /*
610 1.6 mrg * Do any machine-specific actions necessary before swapout.
611 1.6 mrg * This can include saving floating point state, etc.
612 1.6 mrg */
613 1.44.2.1 nathanw cpu_swapout(l);
614 1.6 mrg
615 1.6 mrg /*
616 1.6 mrg * Mark it as (potentially) swapped out.
617 1.6 mrg */
618 1.41 enami SCHED_LOCK(s);
619 1.44.2.1 nathanw l->l_flag &= ~L_INMEM;
620 1.44.2.1 nathanw if (l->l_stat == LSRUN)
621 1.44.2.1 nathanw remrunqueue(l);
622 1.41 enami SCHED_UNLOCK(s);
623 1.44.2.1 nathanw l->l_swtime = 0;
624 1.44.2.7 nathanw p->p_stats->p_ru.ru_nswap++;
625 1.6 mrg ++uvmexp.swapouts;
626 1.43 chs
627 1.43 chs /*
628 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
629 1.43 chs */
630 1.44.2.1 nathanw addr = (vaddr_t)l->l_addr;
631 1.43 chs uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
632 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
633 1.1 mrg }
634 1.1 mrg
635 1.44.2.11 nathanw /*
636 1.44.2.11 nathanw * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
637 1.44.2.11 nathanw * a core file.
638 1.44.2.11 nathanw */
639 1.44.2.11 nathanw
640 1.44.2.11 nathanw int
641 1.44.2.11 nathanw uvm_coredump_walkmap(p, vp, cred, func, cookie)
642 1.44.2.11 nathanw struct proc *p;
643 1.44.2.11 nathanw struct vnode *vp;
644 1.44.2.11 nathanw struct ucred *cred;
645 1.44.2.11 nathanw int (*func)(struct proc *, struct vnode *, struct ucred *,
646 1.44.2.11 nathanw struct uvm_coredump_state *);
647 1.44.2.11 nathanw void *cookie;
648 1.44.2.11 nathanw {
649 1.44.2.11 nathanw struct uvm_coredump_state state;
650 1.44.2.11 nathanw struct vmspace *vm = p->p_vmspace;
651 1.44.2.11 nathanw struct vm_map *map = &vm->vm_map;
652 1.44.2.11 nathanw struct vm_map_entry *entry;
653 1.44.2.11 nathanw vaddr_t maxstack;
654 1.44.2.11 nathanw int error;
655 1.44.2.11 nathanw
656 1.44.2.11 nathanw maxstack = trunc_page(USRSTACK - ctob(vm->vm_ssize));
657 1.44.2.11 nathanw
658 1.44.2.11 nathanw for (entry = map->header.next; entry != &map->header;
659 1.44.2.11 nathanw entry = entry->next) {
660 1.44.2.11 nathanw /* Should never happen for a user process. */
661 1.44.2.11 nathanw if (UVM_ET_ISSUBMAP(entry))
662 1.44.2.11 nathanw panic("uvm_coredump_walkmap: user process with "
663 1.44.2.11 nathanw "submap?");
664 1.44.2.11 nathanw
665 1.44.2.11 nathanw state.cookie = cookie;
666 1.44.2.11 nathanw state.start = entry->start;
667 1.44.2.11 nathanw state.end = entry->end;
668 1.44.2.11 nathanw state.prot = entry->protection;
669 1.44.2.11 nathanw state.flags = 0;
670 1.44.2.11 nathanw
671 1.44.2.11 nathanw if (state.start >= VM_MAXUSER_ADDRESS)
672 1.44.2.11 nathanw continue;
673 1.44.2.11 nathanw
674 1.44.2.11 nathanw if (state.end > VM_MAXUSER_ADDRESS)
675 1.44.2.11 nathanw state.end = VM_MAXUSER_ADDRESS;
676 1.44.2.11 nathanw
677 1.44.2.11 nathanw if (state.start >= (vaddr_t)vm->vm_maxsaddr) {
678 1.44.2.11 nathanw if (state.end <= maxstack)
679 1.44.2.11 nathanw continue;
680 1.44.2.11 nathanw if (state.start < maxstack)
681 1.44.2.11 nathanw state.start = maxstack;
682 1.44.2.11 nathanw state.flags |= UVM_COREDUMP_STACK;
683 1.44.2.11 nathanw }
684 1.44.2.11 nathanw
685 1.44.2.11 nathanw if ((entry->protection & VM_PROT_WRITE) == 0)
686 1.44.2.13 nathanw state.flags |= UVM_COREDUMP_NODUMP;
687 1.44.2.13 nathanw
688 1.44.2.13 nathanw if (entry->object.uvm_obj != NULL &&
689 1.44.2.13 nathanw entry->object.uvm_obj->pgops == &uvm_deviceops)
690 1.44.2.11 nathanw state.flags |= UVM_COREDUMP_NODUMP;
691 1.44.2.11 nathanw
692 1.44.2.11 nathanw error = (*func)(p, vp, cred, &state);
693 1.44.2.11 nathanw if (error)
694 1.44.2.11 nathanw return (error);
695 1.44.2.11 nathanw }
696 1.44.2.11 nathanw
697 1.44.2.11 nathanw return (0);
698 1.44.2.11 nathanw }
699