uvm_glue.c revision 1.44.2.21 1 1.44.2.20 thorpej /* $NetBSD: uvm_glue.c,v 1.44.2.21 2002/12/15 18:23:18 thorpej Exp $ */
2 1.1 mrg
3 1.44.2.4 nathanw /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.44.2.4 nathanw * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.44.2.4 nathanw * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.44.2.4 nathanw *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.44.2.4 nathanw *
54 1.44.2.4 nathanw * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.44.2.4 nathanw * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.44.2.4 nathanw *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.44.2.8 nathanw #include <sys/cdefs.h>
70 1.44.2.20 thorpej __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.44.2.21 2002/12/15 18:23:18 thorpej Exp $");
71 1.44.2.8 nathanw
72 1.44.2.4 nathanw #include "opt_kgdb.h"
73 1.44.2.17 nathanw #include "opt_kstack.h"
74 1.15 tron #include "opt_sysv.h"
75 1.44.2.4 nathanw #include "opt_uvmhist.h"
76 1.5 mrg
77 1.1 mrg /*
78 1.1 mrg * uvm_glue.c: glue functions
79 1.1 mrg */
80 1.1 mrg
81 1.1 mrg #include <sys/param.h>
82 1.1 mrg #include <sys/systm.h>
83 1.1 mrg #include <sys/proc.h>
84 1.1 mrg #include <sys/resourcevar.h>
85 1.1 mrg #include <sys/buf.h>
86 1.1 mrg #include <sys/user.h>
87 1.1 mrg #ifdef SYSVSHM
88 1.1 mrg #include <sys/shm.h>
89 1.1 mrg #endif
90 1.1 mrg
91 1.1 mrg #include <uvm/uvm.h>
92 1.1 mrg
93 1.1 mrg #include <machine/cpu.h>
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * local prototypes
97 1.1 mrg */
98 1.1 mrg
99 1.44.2.1 nathanw static void uvm_swapout __P((struct lwp *));
100 1.1 mrg
101 1.44.2.18 nathanw #define UVM_NUAREA_MAX 16
102 1.44.2.18 nathanw void *uvm_uareas;
103 1.44.2.18 nathanw int uvm_nuarea;
104 1.44.2.18 nathanw
105 1.1 mrg /*
106 1.1 mrg * XXXCDC: do these really belong here?
107 1.1 mrg */
108 1.1 mrg
109 1.1 mrg int readbuffers = 0; /* allow KGDB to read kern buffer pool */
110 1.1 mrg /* XXX: see uvm_kernacc */
111 1.1 mrg
112 1.28 thorpej
113 1.28 thorpej /*
114 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
115 1.1 mrg *
116 1.1 mrg * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
117 1.1 mrg */
118 1.1 mrg
119 1.6 mrg boolean_t
120 1.6 mrg uvm_kernacc(addr, len, rw)
121 1.6 mrg caddr_t addr;
122 1.11 kleink size_t len;
123 1.11 kleink int rw;
124 1.6 mrg {
125 1.6 mrg boolean_t rv;
126 1.13 eeh vaddr_t saddr, eaddr;
127 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
128 1.6 mrg
129 1.31 kleink saddr = trunc_page((vaddr_t)addr);
130 1.43 chs eaddr = round_page((vaddr_t)addr + len);
131 1.6 mrg vm_map_lock_read(kernel_map);
132 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
133 1.6 mrg vm_map_unlock_read(kernel_map);
134 1.6 mrg
135 1.6 mrg /*
136 1.6 mrg * XXX there are still some things (e.g. the buffer cache) that
137 1.6 mrg * are managed behind the VM system's back so even though an
138 1.6 mrg * address is accessible in the mind of the VM system, there may
139 1.6 mrg * not be physical pages where the VM thinks there is. This can
140 1.6 mrg * lead to bogus allocation of pages in the kernel address space
141 1.6 mrg * or worse, inconsistencies at the pmap level. We only worry
142 1.6 mrg * about the buffer cache for now.
143 1.6 mrg */
144 1.13 eeh if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
145 1.13 eeh saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
146 1.6 mrg rv = FALSE;
147 1.6 mrg return(rv);
148 1.1 mrg }
149 1.1 mrg
150 1.1 mrg /*
151 1.1 mrg * uvm_useracc: can the user access it?
152 1.1 mrg *
153 1.1 mrg * - called from physio() and sys___sysctl().
154 1.1 mrg */
155 1.1 mrg
156 1.6 mrg boolean_t
157 1.6 mrg uvm_useracc(addr, len, rw)
158 1.6 mrg caddr_t addr;
159 1.11 kleink size_t len;
160 1.11 kleink int rw;
161 1.1 mrg {
162 1.44.2.4 nathanw struct vm_map *map;
163 1.6 mrg boolean_t rv;
164 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
165 1.1 mrg
166 1.44.2.16 nathanw /* XXX curproc */
167 1.44.2.14 nathanw map = &curproc->p_vmspace->vm_map;
168 1.25 thorpej
169 1.25 thorpej vm_map_lock_read(map);
170 1.31 kleink rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
171 1.43 chs round_page((vaddr_t)addr + len), prot);
172 1.25 thorpej vm_map_unlock_read(map);
173 1.25 thorpej
174 1.6 mrg return(rv);
175 1.1 mrg }
176 1.1 mrg
177 1.1 mrg #ifdef KGDB
178 1.1 mrg /*
179 1.1 mrg * Change protections on kernel pages from addr to addr+len
180 1.1 mrg * (presumably so debugger can plant a breakpoint).
181 1.1 mrg *
182 1.1 mrg * We force the protection change at the pmap level. If we were
183 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
184 1.1 mrg * applied meaning we would still take a protection fault, something
185 1.1 mrg * we really don't want to do. It would also fragment the kernel
186 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
187 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
188 1.1 mrg * we can ensure the change takes place properly.
189 1.1 mrg */
190 1.6 mrg void
191 1.6 mrg uvm_chgkprot(addr, len, rw)
192 1.32 augustss caddr_t addr;
193 1.11 kleink size_t len;
194 1.11 kleink int rw;
195 1.6 mrg {
196 1.6 mrg vm_prot_t prot;
197 1.13 eeh paddr_t pa;
198 1.13 eeh vaddr_t sva, eva;
199 1.6 mrg
200 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
201 1.31 kleink eva = round_page((vaddr_t)addr + len);
202 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
203 1.6 mrg /*
204 1.6 mrg * Extract physical address for the page.
205 1.6 mrg */
206 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
207 1.6 mrg panic("chgkprot: invalid page");
208 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
209 1.6 mrg }
210 1.44.2.6 nathanw pmap_update(pmap_kernel());
211 1.1 mrg }
212 1.1 mrg #endif
213 1.1 mrg
214 1.1 mrg /*
215 1.44.2.6 nathanw * uvm_vslock: wire user memory for I/O
216 1.1 mrg *
217 1.1 mrg * - called from physio and sys___sysctl
218 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
219 1.1 mrg */
220 1.1 mrg
221 1.26 thorpej int
222 1.22 thorpej uvm_vslock(p, addr, len, access_type)
223 1.9 thorpej struct proc *p;
224 1.6 mrg caddr_t addr;
225 1.11 kleink size_t len;
226 1.22 thorpej vm_prot_t access_type;
227 1.1 mrg {
228 1.44.2.4 nathanw struct vm_map *map;
229 1.26 thorpej vaddr_t start, end;
230 1.44.2.3 nathanw int error;
231 1.26 thorpej
232 1.26 thorpej map = &p->p_vmspace->vm_map;
233 1.31 kleink start = trunc_page((vaddr_t)addr);
234 1.31 kleink end = round_page((vaddr_t)addr + len);
235 1.44.2.11 nathanw error = uvm_fault_wire(map, start, end, VM_FAULT_WIRE, access_type);
236 1.44.2.3 nathanw return error;
237 1.1 mrg }
238 1.1 mrg
239 1.1 mrg /*
240 1.44.2.6 nathanw * uvm_vsunlock: unwire user memory wired by uvm_vslock()
241 1.1 mrg *
242 1.1 mrg * - called from physio and sys___sysctl
243 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
244 1.1 mrg */
245 1.1 mrg
246 1.6 mrg void
247 1.9 thorpej uvm_vsunlock(p, addr, len)
248 1.9 thorpej struct proc *p;
249 1.6 mrg caddr_t addr;
250 1.11 kleink size_t len;
251 1.1 mrg {
252 1.43 chs uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
253 1.43 chs round_page((vaddr_t)addr + len));
254 1.1 mrg }
255 1.1 mrg
256 1.1 mrg /*
257 1.44.2.1 nathanw * uvm_proc_fork: fork a virtual address space
258 1.1 mrg *
259 1.1 mrg * - the address space is copied as per parent map's inherit values
260 1.44.2.1 nathanw */
261 1.44.2.1 nathanw void
262 1.44.2.1 nathanw uvm_proc_fork(p1, p2, shared)
263 1.44.2.1 nathanw struct proc *p1, *p2;
264 1.44.2.1 nathanw boolean_t shared;
265 1.44.2.1 nathanw {
266 1.44.2.1 nathanw
267 1.44.2.1 nathanw if (shared == TRUE) {
268 1.44.2.1 nathanw p2->p_vmspace = NULL;
269 1.44.2.6 nathanw uvmspace_share(p1, p2);
270 1.44.2.1 nathanw } else {
271 1.44.2.6 nathanw p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
272 1.44.2.1 nathanw }
273 1.44.2.10 gmcgarry
274 1.44.2.10 gmcgarry cpu_proc_fork(p1, p2);
275 1.44.2.1 nathanw }
276 1.44.2.1 nathanw
277 1.44.2.1 nathanw
278 1.44.2.1 nathanw /*
279 1.44.2.1 nathanw * uvm_lwp_fork: fork a thread
280 1.44.2.1 nathanw *
281 1.1 mrg * - a new "user" structure is allocated for the child process
282 1.1 mrg * [filled in by MD layer...]
283 1.20 thorpej * - if specified, the child gets a new user stack described by
284 1.20 thorpej * stack and stacksize
285 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
286 1.1 mrg * process, and thus addresses of automatic variables may be invalid
287 1.44.2.9 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
288 1.44.2.9 thorpej * after cpu_lwp_fork returns.
289 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
290 1.1 mrg * than just hang
291 1.1 mrg */
292 1.6 mrg void
293 1.44.2.1 nathanw uvm_lwp_fork(l1, l2, stack, stacksize, func, arg)
294 1.44.2.1 nathanw struct lwp *l1, *l2;
295 1.20 thorpej void *stack;
296 1.20 thorpej size_t stacksize;
297 1.34 thorpej void (*func) __P((void *));
298 1.34 thorpej void *arg;
299 1.6 mrg {
300 1.44.2.1 nathanw struct user *up = l2->l_addr;
301 1.44.2.3 nathanw int error;
302 1.6 mrg
303 1.6 mrg /*
304 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
305 1.44.2.20 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
306 1.44.2.20 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
307 1.44.2.20 thorpej * to prevent kernel_map fragmentation. If we reused a cached U-area,
308 1.44.2.20 thorpej * L_INMEM will already be set and we don't need to do anything.
309 1.21 thorpej *
310 1.44.2.20 thorpej * Note the kernel stack gets read/write accesses right off the bat.
311 1.6 mrg */
312 1.44.2.20 thorpej
313 1.44.2.20 thorpej if ((l2->l_flag & L_INMEM) == 0) {
314 1.44.2.20 thorpej error = uvm_fault_wire(kernel_map, (vaddr_t)up,
315 1.44.2.20 thorpej (vaddr_t)up + USPACE, VM_FAULT_WIRE,
316 1.44.2.20 thorpej VM_PROT_READ | VM_PROT_WRITE);
317 1.44.2.20 thorpej if (error)
318 1.44.2.20 thorpej panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
319 1.44.2.20 thorpej l2->l_flag |= L_INMEM;
320 1.44.2.20 thorpej }
321 1.44.2.17 nathanw
322 1.44.2.17 nathanw #ifdef KSTACK_CHECK_MAGIC
323 1.44.2.17 nathanw /*
324 1.44.2.17 nathanw * fill stack with magic number
325 1.44.2.17 nathanw */
326 1.44.2.17 nathanw kstack_setup_magic(p2);
327 1.44.2.17 nathanw #endif
328 1.6 mrg
329 1.6 mrg /*
330 1.44.2.9 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
331 1.44.2.1 nathanw * to run. If this is a normal user fork, the child will exit
332 1.34 thorpej * directly to user mode via child_return() on its first time
333 1.34 thorpej * slice and will not return here. If this is a kernel thread,
334 1.34 thorpej * the specified entry point will be executed.
335 1.6 mrg */
336 1.44.2.9 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
337 1.14 thorpej }
338 1.14 thorpej
339 1.14 thorpej /*
340 1.14 thorpej * uvm_exit: exit a virtual address space
341 1.14 thorpej *
342 1.14 thorpej * - the process passed to us is a dead (pre-zombie) process; we
343 1.14 thorpej * are running on a different context now (the reaper).
344 1.14 thorpej * - we must run in a separate thread because freeing the vmspace
345 1.14 thorpej * of the dead process may block.
346 1.14 thorpej */
347 1.44.2.18 nathanw
348 1.14 thorpej void
349 1.44.2.1 nathanw uvm_proc_exit(p)
350 1.14 thorpej struct proc *p;
351 1.14 thorpej {
352 1.14 thorpej uvmspace_free(p->p_vmspace);
353 1.44.2.1 nathanw }
354 1.44.2.1 nathanw
355 1.44.2.1 nathanw void
356 1.44.2.1 nathanw uvm_lwp_exit(l)
357 1.44.2.1 nathanw struct lwp *l;
358 1.44.2.1 nathanw {
359 1.44.2.1 nathanw vaddr_t va = (vaddr_t)l->l_addr;
360 1.44.2.1 nathanw
361 1.44.2.19 nathanw l->l_flag &= ~L_INMEM;
362 1.44.2.18 nathanw uvm_uarea_free(va);
363 1.44.2.1 nathanw l->l_addr = NULL;
364 1.1 mrg }
365 1.1 mrg
366 1.1 mrg /*
367 1.44.2.18 nathanw * uvm_uarea_alloc: allocate a u-area
368 1.44.2.18 nathanw */
369 1.44.2.18 nathanw
370 1.44.2.20 thorpej boolean_t
371 1.44.2.20 thorpej uvm_uarea_alloc(vaddr_t *uaddrp)
372 1.44.2.18 nathanw {
373 1.44.2.18 nathanw vaddr_t uaddr;
374 1.44.2.18 nathanw
375 1.44.2.18 nathanw #ifndef USPACE_ALIGN
376 1.44.2.18 nathanw #define USPACE_ALIGN 0
377 1.44.2.18 nathanw #endif
378 1.44.2.18 nathanw
379 1.44.2.18 nathanw uaddr = (vaddr_t)uvm_uareas;
380 1.44.2.18 nathanw if (uaddr) {
381 1.44.2.18 nathanw uvm_uareas = *(void **)uvm_uareas;
382 1.44.2.18 nathanw uvm_nuarea--;
383 1.44.2.20 thorpej *uaddrp = uaddr;
384 1.44.2.20 thorpej return TRUE;
385 1.44.2.18 nathanw } else {
386 1.44.2.20 thorpej *uaddrp = uvm_km_valloc_align(kernel_map, USPACE, USPACE_ALIGN);
387 1.44.2.20 thorpej return FALSE;
388 1.44.2.18 nathanw }
389 1.44.2.18 nathanw }
390 1.44.2.18 nathanw
391 1.44.2.18 nathanw /*
392 1.44.2.18 nathanw * uvm_uarea_free: free a u-area
393 1.44.2.18 nathanw */
394 1.44.2.18 nathanw
395 1.44.2.18 nathanw void
396 1.44.2.18 nathanw uvm_uarea_free(vaddr_t uaddr)
397 1.44.2.18 nathanw {
398 1.44.2.18 nathanw
399 1.44.2.18 nathanw if (uvm_nuarea < UVM_NUAREA_MAX) {
400 1.44.2.18 nathanw *(void **)uaddr = uvm_uareas;
401 1.44.2.18 nathanw uvm_uareas = (void *)uaddr;
402 1.44.2.18 nathanw uvm_nuarea++;
403 1.44.2.18 nathanw } else {
404 1.44.2.18 nathanw uvm_km_free(kernel_map, uaddr, USPACE);
405 1.44.2.18 nathanw }
406 1.44.2.18 nathanw }
407 1.44.2.18 nathanw
408 1.44.2.18 nathanw /*
409 1.1 mrg * uvm_init_limit: init per-process VM limits
410 1.1 mrg *
411 1.1 mrg * - called for process 0 and then inherited by all others.
412 1.1 mrg */
413 1.44.2.18 nathanw
414 1.6 mrg void
415 1.6 mrg uvm_init_limits(p)
416 1.6 mrg struct proc *p;
417 1.6 mrg {
418 1.6 mrg
419 1.6 mrg /*
420 1.6 mrg * Set up the initial limits on process VM. Set the maximum
421 1.6 mrg * resident set size to be all of (reasonably) available memory.
422 1.6 mrg * This causes any single, large process to start random page
423 1.6 mrg * replacement once it fills memory.
424 1.6 mrg */
425 1.6 mrg
426 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
427 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
428 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
429 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
430 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
431 1.1 mrg }
432 1.1 mrg
433 1.1 mrg #ifdef DEBUG
434 1.1 mrg int enableswap = 1;
435 1.1 mrg int swapdebug = 0;
436 1.1 mrg #define SDB_FOLLOW 1
437 1.1 mrg #define SDB_SWAPIN 2
438 1.1 mrg #define SDB_SWAPOUT 4
439 1.1 mrg #endif
440 1.1 mrg
441 1.1 mrg /*
442 1.1 mrg * uvm_swapin: swap in a process's u-area.
443 1.1 mrg */
444 1.1 mrg
445 1.6 mrg void
446 1.44.2.1 nathanw uvm_swapin(l)
447 1.44.2.1 nathanw struct lwp *l;
448 1.6 mrg {
449 1.13 eeh vaddr_t addr;
450 1.44.2.6 nathanw int s, error;
451 1.6 mrg
452 1.44.2.1 nathanw addr = (vaddr_t)l->l_addr;
453 1.44.2.1 nathanw /* make L_INMEM true */
454 1.44.2.11 nathanw error = uvm_fault_wire(kernel_map, addr, addr + USPACE, VM_FAULT_WIRE,
455 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
456 1.44.2.6 nathanw if (error) {
457 1.44.2.6 nathanw panic("uvm_swapin: rewiring stack failed: %d", error);
458 1.44.2.6 nathanw }
459 1.6 mrg
460 1.6 mrg /*
461 1.6 mrg * Some architectures need to be notified when the user area has
462 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
463 1.6 mrg */
464 1.44.2.1 nathanw cpu_swapin(l);
465 1.41 enami SCHED_LOCK(s);
466 1.44.2.1 nathanw if (l->l_stat == LSRUN)
467 1.44.2.1 nathanw setrunqueue(l);
468 1.44.2.1 nathanw l->l_flag |= L_INMEM;
469 1.41 enami SCHED_UNLOCK(s);
470 1.44.2.1 nathanw l->l_swtime = 0;
471 1.6 mrg ++uvmexp.swapins;
472 1.1 mrg }
473 1.1 mrg
474 1.1 mrg /*
475 1.1 mrg * uvm_scheduler: process zero main loop
476 1.1 mrg *
477 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
478 1.1 mrg * priority.
479 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
480 1.1 mrg */
481 1.1 mrg
482 1.6 mrg void
483 1.6 mrg uvm_scheduler()
484 1.1 mrg {
485 1.44.2.1 nathanw struct lwp *l, *ll;
486 1.32 augustss int pri;
487 1.6 mrg int ppri;
488 1.1 mrg
489 1.1 mrg loop:
490 1.1 mrg #ifdef DEBUG
491 1.6 mrg while (!enableswap)
492 1.43 chs tsleep(&proc0, PVM, "noswap", 0);
493 1.1 mrg #endif
494 1.44.2.1 nathanw ll = NULL; /* process to choose */
495 1.6 mrg ppri = INT_MIN; /* its priority */
496 1.29 thorpej proclist_lock_read();
497 1.6 mrg
498 1.44.2.1 nathanw LIST_FOREACH(l, &alllwp, l_list) {
499 1.6 mrg /* is it a runnable swapped out process? */
500 1.44.2.1 nathanw if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
501 1.44.2.1 nathanw pri = l->l_swtime + l->l_slptime -
502 1.44.2.1 nathanw (l->l_proc->p_nice - NZERO) * 8;
503 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
504 1.44.2.1 nathanw ll = l;
505 1.6 mrg ppri = pri;
506 1.6 mrg }
507 1.6 mrg }
508 1.6 mrg }
509 1.39 sommerfe /*
510 1.39 sommerfe * XXXSMP: possible unlock/sleep race between here and the
511 1.39 sommerfe * "scheduler" tsleep below..
512 1.39 sommerfe */
513 1.28 thorpej proclist_unlock_read();
514 1.1 mrg
515 1.1 mrg #ifdef DEBUG
516 1.6 mrg if (swapdebug & SDB_FOLLOW)
517 1.44.2.1 nathanw printf("scheduler: running, procp %p pri %d\n", ll, ppri);
518 1.1 mrg #endif
519 1.6 mrg /*
520 1.6 mrg * Nothing to do, back to sleep
521 1.6 mrg */
522 1.44.2.1 nathanw if ((l = ll) == NULL) {
523 1.43 chs tsleep(&proc0, PVM, "scheduler", 0);
524 1.6 mrg goto loop;
525 1.6 mrg }
526 1.6 mrg
527 1.6 mrg /*
528 1.6 mrg * we have found swapped out process which we would like to bring
529 1.6 mrg * back in.
530 1.6 mrg *
531 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
532 1.6 mrg * despite our feeble check
533 1.6 mrg */
534 1.6 mrg if (uvmexp.free > atop(USPACE)) {
535 1.1 mrg #ifdef DEBUG
536 1.6 mrg if (swapdebug & SDB_SWAPIN)
537 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
538 1.44.2.1 nathanw l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free);
539 1.1 mrg #endif
540 1.44.2.1 nathanw uvm_swapin(l);
541 1.6 mrg goto loop;
542 1.6 mrg }
543 1.6 mrg /*
544 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
545 1.6 mrg * is clear
546 1.6 mrg */
547 1.1 mrg #ifdef DEBUG
548 1.6 mrg if (swapdebug & SDB_FOLLOW)
549 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
550 1.44.2.1 nathanw l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free);
551 1.1 mrg #endif
552 1.6 mrg uvm_wait("schedpwait");
553 1.1 mrg #ifdef DEBUG
554 1.6 mrg if (swapdebug & SDB_FOLLOW)
555 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
556 1.1 mrg #endif
557 1.6 mrg goto loop;
558 1.1 mrg }
559 1.1 mrg
560 1.1 mrg /*
561 1.44.2.1 nathanw * swappable: is LWP "l" swappable?
562 1.1 mrg */
563 1.1 mrg
564 1.44.2.1 nathanw #define swappable(l) \
565 1.44.2.1 nathanw (((l)->l_flag & (L_INMEM)) && \
566 1.44.2.1 nathanw ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) && \
567 1.44.2.1 nathanw (l)->l_holdcnt == 0)
568 1.1 mrg
569 1.1 mrg /*
570 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
571 1.1 mrg * u-areas.
572 1.1 mrg *
573 1.1 mrg * - called by the pagedaemon
574 1.1 mrg * - try and swap at least one processs
575 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
576 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
577 1.1 mrg * is swapped, otherwise the longest resident process...
578 1.1 mrg */
579 1.44.2.18 nathanw
580 1.6 mrg void
581 1.6 mrg uvm_swapout_threads()
582 1.1 mrg {
583 1.44.2.1 nathanw struct lwp *l;
584 1.44.2.1 nathanw struct lwp *outl, *outl2;
585 1.6 mrg int outpri, outpri2;
586 1.6 mrg int didswap = 0;
587 1.44.2.4 nathanw extern int maxslp;
588 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
589 1.1 mrg
590 1.1 mrg #ifdef DEBUG
591 1.6 mrg if (!enableswap)
592 1.6 mrg return;
593 1.1 mrg #endif
594 1.1 mrg
595 1.6 mrg /*
596 1.44.2.1 nathanw * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
597 1.44.2.1 nathanw * outl2/outpri2: the longest resident thread (its swap time)
598 1.6 mrg */
599 1.44.2.1 nathanw outl = outl2 = NULL;
600 1.6 mrg outpri = outpri2 = 0;
601 1.29 thorpej proclist_lock_read();
602 1.44.2.1 nathanw LIST_FOREACH(l, &alllwp, l_list) {
603 1.44.2.1 nathanw if (!swappable(l))
604 1.6 mrg continue;
605 1.44.2.1 nathanw switch (l->l_stat) {
606 1.44.2.1 nathanw case LSRUN:
607 1.44.2.1 nathanw case LSONPROC:
608 1.44.2.1 nathanw if (l->l_swtime > outpri2) {
609 1.44.2.1 nathanw outl2 = l;
610 1.44.2.1 nathanw outpri2 = l->l_swtime;
611 1.6 mrg }
612 1.6 mrg continue;
613 1.44.2.4 nathanw
614 1.44.2.1 nathanw case LSSLEEP:
615 1.44.2.1 nathanw case LSSTOP:
616 1.44.2.1 nathanw if (l->l_slptime >= maxslp) {
617 1.44.2.1 nathanw uvm_swapout(l);
618 1.6 mrg didswap++;
619 1.44.2.1 nathanw } else if (l->l_slptime > outpri) {
620 1.44.2.1 nathanw outl = l;
621 1.44.2.1 nathanw outpri = l->l_slptime;
622 1.6 mrg }
623 1.6 mrg continue;
624 1.6 mrg }
625 1.6 mrg }
626 1.28 thorpej proclist_unlock_read();
627 1.6 mrg
628 1.6 mrg /*
629 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
630 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
631 1.6 mrg * if we are real low on memory since we don't gain much by doing
632 1.6 mrg * it (USPACE bytes).
633 1.6 mrg */
634 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
635 1.44.2.1 nathanw if ((l = outl) == NULL)
636 1.44.2.1 nathanw l = outl2;
637 1.1 mrg #ifdef DEBUG
638 1.6 mrg if (swapdebug & SDB_SWAPOUT)
639 1.44.2.1 nathanw printf("swapout_threads: no duds, try procp %p\n", l);
640 1.1 mrg #endif
641 1.44.2.1 nathanw if (l)
642 1.44.2.1 nathanw uvm_swapout(l);
643 1.6 mrg }
644 1.1 mrg }
645 1.1 mrg
646 1.1 mrg /*
647 1.44.2.1 nathanw * uvm_swapout: swap out lwp "l"
648 1.1 mrg *
649 1.44.2.4 nathanw * - currently "swapout" means "unwire U-area" and "pmap_collect()"
650 1.1 mrg * the pmap.
651 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
652 1.1 mrg */
653 1.1 mrg
654 1.6 mrg static void
655 1.44.2.1 nathanw uvm_swapout(l)
656 1.44.2.1 nathanw struct lwp *l;
657 1.1 mrg {
658 1.13 eeh vaddr_t addr;
659 1.6 mrg int s;
660 1.44.2.1 nathanw struct proc *p = l->l_proc;
661 1.1 mrg
662 1.1 mrg #ifdef DEBUG
663 1.6 mrg if (swapdebug & SDB_SWAPOUT)
664 1.44.2.12 nathanw printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
665 1.44.2.12 nathanw p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
666 1.44.2.1 nathanw l->l_slptime, uvmexp.free);
667 1.1 mrg #endif
668 1.1 mrg
669 1.6 mrg /*
670 1.6 mrg * Do any machine-specific actions necessary before swapout.
671 1.6 mrg * This can include saving floating point state, etc.
672 1.6 mrg */
673 1.44.2.1 nathanw cpu_swapout(l);
674 1.6 mrg
675 1.6 mrg /*
676 1.6 mrg * Mark it as (potentially) swapped out.
677 1.6 mrg */
678 1.41 enami SCHED_LOCK(s);
679 1.44.2.1 nathanw l->l_flag &= ~L_INMEM;
680 1.44.2.1 nathanw if (l->l_stat == LSRUN)
681 1.44.2.1 nathanw remrunqueue(l);
682 1.41 enami SCHED_UNLOCK(s);
683 1.44.2.1 nathanw l->l_swtime = 0;
684 1.44.2.7 nathanw p->p_stats->p_ru.ru_nswap++;
685 1.6 mrg ++uvmexp.swapouts;
686 1.43 chs
687 1.43 chs /*
688 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
689 1.43 chs */
690 1.44.2.1 nathanw addr = (vaddr_t)l->l_addr;
691 1.44.2.21 thorpej uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
692 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
693 1.1 mrg }
694 1.1 mrg
695 1.44.2.11 nathanw /*
696 1.44.2.11 nathanw * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
697 1.44.2.11 nathanw * a core file.
698 1.44.2.11 nathanw */
699 1.44.2.11 nathanw
700 1.44.2.11 nathanw int
701 1.44.2.11 nathanw uvm_coredump_walkmap(p, vp, cred, func, cookie)
702 1.44.2.11 nathanw struct proc *p;
703 1.44.2.11 nathanw struct vnode *vp;
704 1.44.2.11 nathanw struct ucred *cred;
705 1.44.2.11 nathanw int (*func)(struct proc *, struct vnode *, struct ucred *,
706 1.44.2.11 nathanw struct uvm_coredump_state *);
707 1.44.2.11 nathanw void *cookie;
708 1.44.2.11 nathanw {
709 1.44.2.11 nathanw struct uvm_coredump_state state;
710 1.44.2.11 nathanw struct vmspace *vm = p->p_vmspace;
711 1.44.2.11 nathanw struct vm_map *map = &vm->vm_map;
712 1.44.2.11 nathanw struct vm_map_entry *entry;
713 1.44.2.11 nathanw vaddr_t maxstack;
714 1.44.2.11 nathanw int error;
715 1.44.2.11 nathanw
716 1.44.2.11 nathanw maxstack = trunc_page(USRSTACK - ctob(vm->vm_ssize));
717 1.44.2.11 nathanw
718 1.44.2.11 nathanw for (entry = map->header.next; entry != &map->header;
719 1.44.2.11 nathanw entry = entry->next) {
720 1.44.2.11 nathanw /* Should never happen for a user process. */
721 1.44.2.11 nathanw if (UVM_ET_ISSUBMAP(entry))
722 1.44.2.11 nathanw panic("uvm_coredump_walkmap: user process with "
723 1.44.2.11 nathanw "submap?");
724 1.44.2.11 nathanw
725 1.44.2.11 nathanw state.cookie = cookie;
726 1.44.2.11 nathanw state.start = entry->start;
727 1.44.2.11 nathanw state.end = entry->end;
728 1.44.2.11 nathanw state.prot = entry->protection;
729 1.44.2.11 nathanw state.flags = 0;
730 1.44.2.11 nathanw
731 1.44.2.11 nathanw if (state.start >= VM_MAXUSER_ADDRESS)
732 1.44.2.11 nathanw continue;
733 1.44.2.11 nathanw
734 1.44.2.11 nathanw if (state.end > VM_MAXUSER_ADDRESS)
735 1.44.2.11 nathanw state.end = VM_MAXUSER_ADDRESS;
736 1.44.2.11 nathanw
737 1.44.2.11 nathanw if (state.start >= (vaddr_t)vm->vm_maxsaddr) {
738 1.44.2.11 nathanw if (state.end <= maxstack)
739 1.44.2.11 nathanw continue;
740 1.44.2.11 nathanw if (state.start < maxstack)
741 1.44.2.11 nathanw state.start = maxstack;
742 1.44.2.11 nathanw state.flags |= UVM_COREDUMP_STACK;
743 1.44.2.11 nathanw }
744 1.44.2.11 nathanw
745 1.44.2.11 nathanw if ((entry->protection & VM_PROT_WRITE) == 0)
746 1.44.2.13 nathanw state.flags |= UVM_COREDUMP_NODUMP;
747 1.44.2.13 nathanw
748 1.44.2.13 nathanw if (entry->object.uvm_obj != NULL &&
749 1.44.2.13 nathanw entry->object.uvm_obj->pgops == &uvm_deviceops)
750 1.44.2.11 nathanw state.flags |= UVM_COREDUMP_NODUMP;
751 1.44.2.11 nathanw
752 1.44.2.11 nathanw error = (*func)(p, vp, cred, &state);
753 1.44.2.11 nathanw if (error)
754 1.44.2.11 nathanw return (error);
755 1.44.2.11 nathanw }
756 1.44.2.11 nathanw
757 1.44.2.11 nathanw return (0);
758 1.44.2.11 nathanw }
759