uvm_glue.c revision 1.48 1 1.48 chs /* $NetBSD: uvm_glue.c,v 1.48 2001/05/25 04:06:13 chs Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.5 mrg #include "opt_uvmhist.h"
70 1.15 tron #include "opt_sysv.h"
71 1.5 mrg
72 1.1 mrg /*
73 1.1 mrg * uvm_glue.c: glue functions
74 1.1 mrg */
75 1.1 mrg
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/proc.h>
79 1.1 mrg #include <sys/resourcevar.h>
80 1.1 mrg #include <sys/buf.h>
81 1.1 mrg #include <sys/user.h>
82 1.1 mrg #ifdef SYSVSHM
83 1.1 mrg #include <sys/shm.h>
84 1.1 mrg #endif
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.1 mrg
88 1.1 mrg #include <machine/cpu.h>
89 1.1 mrg
90 1.1 mrg /*
91 1.1 mrg * local prototypes
92 1.1 mrg */
93 1.1 mrg
94 1.1 mrg static void uvm_swapout __P((struct proc *));
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * XXXCDC: do these really belong here?
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg int readbuffers = 0; /* allow KGDB to read kern buffer pool */
101 1.1 mrg /* XXX: see uvm_kernacc */
102 1.1 mrg
103 1.28 thorpej
104 1.28 thorpej /*
105 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
106 1.1 mrg *
107 1.1 mrg * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
108 1.1 mrg */
109 1.1 mrg
110 1.6 mrg boolean_t
111 1.6 mrg uvm_kernacc(addr, len, rw)
112 1.6 mrg caddr_t addr;
113 1.11 kleink size_t len;
114 1.11 kleink int rw;
115 1.6 mrg {
116 1.6 mrg boolean_t rv;
117 1.13 eeh vaddr_t saddr, eaddr;
118 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
119 1.6 mrg
120 1.31 kleink saddr = trunc_page((vaddr_t)addr);
121 1.43 chs eaddr = round_page((vaddr_t)addr + len);
122 1.6 mrg vm_map_lock_read(kernel_map);
123 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
124 1.6 mrg vm_map_unlock_read(kernel_map);
125 1.6 mrg
126 1.6 mrg /*
127 1.6 mrg * XXX there are still some things (e.g. the buffer cache) that
128 1.6 mrg * are managed behind the VM system's back so even though an
129 1.6 mrg * address is accessible in the mind of the VM system, there may
130 1.6 mrg * not be physical pages where the VM thinks there is. This can
131 1.6 mrg * lead to bogus allocation of pages in the kernel address space
132 1.6 mrg * or worse, inconsistencies at the pmap level. We only worry
133 1.6 mrg * about the buffer cache for now.
134 1.6 mrg */
135 1.13 eeh if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
136 1.13 eeh saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
137 1.6 mrg rv = FALSE;
138 1.6 mrg return(rv);
139 1.1 mrg }
140 1.1 mrg
141 1.1 mrg /*
142 1.1 mrg * uvm_useracc: can the user access it?
143 1.1 mrg *
144 1.1 mrg * - called from physio() and sys___sysctl().
145 1.1 mrg */
146 1.1 mrg
147 1.6 mrg boolean_t
148 1.6 mrg uvm_useracc(addr, len, rw)
149 1.6 mrg caddr_t addr;
150 1.11 kleink size_t len;
151 1.11 kleink int rw;
152 1.1 mrg {
153 1.25 thorpej vm_map_t map;
154 1.6 mrg boolean_t rv;
155 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
156 1.1 mrg
157 1.25 thorpej /* XXX curproc */
158 1.25 thorpej map = &curproc->p_vmspace->vm_map;
159 1.25 thorpej
160 1.25 thorpej vm_map_lock_read(map);
161 1.31 kleink rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
162 1.43 chs round_page((vaddr_t)addr + len), prot);
163 1.25 thorpej vm_map_unlock_read(map);
164 1.25 thorpej
165 1.6 mrg return(rv);
166 1.1 mrg }
167 1.1 mrg
168 1.1 mrg #ifdef KGDB
169 1.1 mrg /*
170 1.1 mrg * Change protections on kernel pages from addr to addr+len
171 1.1 mrg * (presumably so debugger can plant a breakpoint).
172 1.1 mrg *
173 1.1 mrg * We force the protection change at the pmap level. If we were
174 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
175 1.1 mrg * applied meaning we would still take a protection fault, something
176 1.1 mrg * we really don't want to do. It would also fragment the kernel
177 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
178 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
179 1.1 mrg * we can ensure the change takes place properly.
180 1.1 mrg */
181 1.6 mrg void
182 1.6 mrg uvm_chgkprot(addr, len, rw)
183 1.32 augustss caddr_t addr;
184 1.11 kleink size_t len;
185 1.11 kleink int rw;
186 1.6 mrg {
187 1.6 mrg vm_prot_t prot;
188 1.13 eeh paddr_t pa;
189 1.13 eeh vaddr_t sva, eva;
190 1.6 mrg
191 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
192 1.31 kleink eva = round_page((vaddr_t)addr + len);
193 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
194 1.6 mrg /*
195 1.6 mrg * Extract physical address for the page.
196 1.6 mrg */
197 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
198 1.6 mrg panic("chgkprot: invalid page");
199 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
200 1.6 mrg }
201 1.47 thorpej pmap_update();
202 1.1 mrg }
203 1.1 mrg #endif
204 1.1 mrg
205 1.1 mrg /*
206 1.1 mrg * vslock: wire user memory for I/O
207 1.1 mrg *
208 1.1 mrg * - called from physio and sys___sysctl
209 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
210 1.1 mrg */
211 1.1 mrg
212 1.26 thorpej int
213 1.22 thorpej uvm_vslock(p, addr, len, access_type)
214 1.9 thorpej struct proc *p;
215 1.6 mrg caddr_t addr;
216 1.11 kleink size_t len;
217 1.22 thorpej vm_prot_t access_type;
218 1.1 mrg {
219 1.26 thorpej vm_map_t map;
220 1.26 thorpej vaddr_t start, end;
221 1.45 chs int error;
222 1.26 thorpej
223 1.26 thorpej map = &p->p_vmspace->vm_map;
224 1.31 kleink start = trunc_page((vaddr_t)addr);
225 1.31 kleink end = round_page((vaddr_t)addr + len);
226 1.45 chs error = uvm_fault_wire(map, start, end, access_type);
227 1.45 chs return error;
228 1.1 mrg }
229 1.1 mrg
230 1.1 mrg /*
231 1.1 mrg * vslock: wire user memory for I/O
232 1.1 mrg *
233 1.1 mrg * - called from physio and sys___sysctl
234 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
235 1.1 mrg */
236 1.1 mrg
237 1.6 mrg void
238 1.9 thorpej uvm_vsunlock(p, addr, len)
239 1.9 thorpej struct proc *p;
240 1.6 mrg caddr_t addr;
241 1.11 kleink size_t len;
242 1.1 mrg {
243 1.43 chs uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
244 1.43 chs round_page((vaddr_t)addr + len));
245 1.1 mrg }
246 1.1 mrg
247 1.1 mrg /*
248 1.1 mrg * uvm_fork: fork a virtual address space
249 1.1 mrg *
250 1.1 mrg * - the address space is copied as per parent map's inherit values
251 1.1 mrg * - a new "user" structure is allocated for the child process
252 1.1 mrg * [filled in by MD layer...]
253 1.20 thorpej * - if specified, the child gets a new user stack described by
254 1.20 thorpej * stack and stacksize
255 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
256 1.1 mrg * process, and thus addresses of automatic variables may be invalid
257 1.1 mrg * after cpu_fork returns in the child process. We do nothing here
258 1.1 mrg * after cpu_fork returns.
259 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
260 1.1 mrg * than just hang
261 1.1 mrg */
262 1.6 mrg void
263 1.34 thorpej uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
264 1.6 mrg struct proc *p1, *p2;
265 1.6 mrg boolean_t shared;
266 1.20 thorpej void *stack;
267 1.20 thorpej size_t stacksize;
268 1.34 thorpej void (*func) __P((void *));
269 1.34 thorpej void *arg;
270 1.6 mrg {
271 1.7 thorpej struct user *up = p2->p_addr;
272 1.45 chs int error;
273 1.6 mrg
274 1.42 thorpej if (shared == TRUE) {
275 1.42 thorpej p2->p_vmspace = NULL;
276 1.6 mrg uvmspace_share(p1, p2); /* share vmspace */
277 1.42 thorpej } else
278 1.6 mrg p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
279 1.1 mrg
280 1.6 mrg /*
281 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
282 1.7 thorpej * and the kernel stack. Wired state is stored in p->p_flag's
283 1.7 thorpej * P_INMEM bit rather than in the vm_map_entry's wired count
284 1.7 thorpej * to prevent kernel_map fragmentation.
285 1.21 thorpej *
286 1.21 thorpej * Note the kernel stack gets read/write accesses right off
287 1.21 thorpej * the bat.
288 1.6 mrg */
289 1.45 chs error = uvm_fault_wire(kernel_map, (vaddr_t)up,
290 1.21 thorpej (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
291 1.45 chs if (error)
292 1.45 chs panic("uvm_fork: uvm_fault_wire failed: %d", error);
293 1.6 mrg
294 1.6 mrg /*
295 1.19 thorpej * p_stats currently points at a field in the user struct. Copy
296 1.19 thorpej * parts of p_stats, and zero out the rest.
297 1.6 mrg */
298 1.6 mrg p2->p_stats = &up->u_stats;
299 1.12 perry memset(&up->u_stats.pstat_startzero, 0,
300 1.43 chs ((caddr_t)&up->u_stats.pstat_endzero -
301 1.43 chs (caddr_t)&up->u_stats.pstat_startzero));
302 1.12 perry memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
303 1.43 chs ((caddr_t)&up->u_stats.pstat_endcopy -
304 1.43 chs (caddr_t)&up->u_stats.pstat_startcopy));
305 1.48 chs
306 1.6 mrg /*
307 1.34 thorpej * cpu_fork() copy and update the pcb, and make the child ready
308 1.34 thorpej * to run. If this is a normal user fork, the child will exit
309 1.34 thorpej * directly to user mode via child_return() on its first time
310 1.34 thorpej * slice and will not return here. If this is a kernel thread,
311 1.34 thorpej * the specified entry point will be executed.
312 1.6 mrg */
313 1.34 thorpej cpu_fork(p1, p2, stack, stacksize, func, arg);
314 1.14 thorpej }
315 1.14 thorpej
316 1.14 thorpej /*
317 1.14 thorpej * uvm_exit: exit a virtual address space
318 1.14 thorpej *
319 1.14 thorpej * - the process passed to us is a dead (pre-zombie) process; we
320 1.14 thorpej * are running on a different context now (the reaper).
321 1.14 thorpej * - we must run in a separate thread because freeing the vmspace
322 1.14 thorpej * of the dead process may block.
323 1.14 thorpej */
324 1.14 thorpej void
325 1.14 thorpej uvm_exit(p)
326 1.14 thorpej struct proc *p;
327 1.14 thorpej {
328 1.43 chs vaddr_t va = (vaddr_t)p->p_addr;
329 1.14 thorpej
330 1.14 thorpej uvmspace_free(p->p_vmspace);
331 1.43 chs p->p_flag &= ~P_INMEM;
332 1.43 chs uvm_fault_unwire(kernel_map, va, va + USPACE);
333 1.43 chs uvm_km_free(kernel_map, va, USPACE);
334 1.36 simonb p->p_addr = NULL;
335 1.1 mrg }
336 1.1 mrg
337 1.1 mrg /*
338 1.1 mrg * uvm_init_limit: init per-process VM limits
339 1.1 mrg *
340 1.1 mrg * - called for process 0 and then inherited by all others.
341 1.1 mrg */
342 1.6 mrg void
343 1.6 mrg uvm_init_limits(p)
344 1.6 mrg struct proc *p;
345 1.6 mrg {
346 1.6 mrg
347 1.6 mrg /*
348 1.6 mrg * Set up the initial limits on process VM. Set the maximum
349 1.6 mrg * resident set size to be all of (reasonably) available memory.
350 1.6 mrg * This causes any single, large process to start random page
351 1.6 mrg * replacement once it fills memory.
352 1.6 mrg */
353 1.6 mrg
354 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
355 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
356 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
357 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
358 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
359 1.1 mrg }
360 1.1 mrg
361 1.1 mrg #ifdef DEBUG
362 1.1 mrg int enableswap = 1;
363 1.1 mrg int swapdebug = 0;
364 1.1 mrg #define SDB_FOLLOW 1
365 1.1 mrg #define SDB_SWAPIN 2
366 1.1 mrg #define SDB_SWAPOUT 4
367 1.1 mrg #endif
368 1.1 mrg
369 1.1 mrg /*
370 1.1 mrg * uvm_swapin: swap in a process's u-area.
371 1.1 mrg */
372 1.1 mrg
373 1.6 mrg void
374 1.6 mrg uvm_swapin(p)
375 1.6 mrg struct proc *p;
376 1.6 mrg {
377 1.13 eeh vaddr_t addr;
378 1.6 mrg int s;
379 1.6 mrg
380 1.13 eeh addr = (vaddr_t)p->p_addr;
381 1.6 mrg /* make P_INMEM true */
382 1.21 thorpej uvm_fault_wire(kernel_map, addr, addr + USPACE,
383 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
384 1.6 mrg
385 1.6 mrg /*
386 1.6 mrg * Some architectures need to be notified when the user area has
387 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
388 1.6 mrg */
389 1.6 mrg cpu_swapin(p);
390 1.41 enami SCHED_LOCK(s);
391 1.6 mrg if (p->p_stat == SRUN)
392 1.6 mrg setrunqueue(p);
393 1.6 mrg p->p_flag |= P_INMEM;
394 1.41 enami SCHED_UNLOCK(s);
395 1.6 mrg p->p_swtime = 0;
396 1.6 mrg ++uvmexp.swapins;
397 1.1 mrg }
398 1.1 mrg
399 1.1 mrg /*
400 1.1 mrg * uvm_scheduler: process zero main loop
401 1.1 mrg *
402 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
403 1.1 mrg * priority.
404 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
405 1.1 mrg */
406 1.1 mrg
407 1.6 mrg void
408 1.6 mrg uvm_scheduler()
409 1.1 mrg {
410 1.32 augustss struct proc *p;
411 1.32 augustss int pri;
412 1.6 mrg struct proc *pp;
413 1.6 mrg int ppri;
414 1.1 mrg
415 1.1 mrg loop:
416 1.1 mrg #ifdef DEBUG
417 1.6 mrg while (!enableswap)
418 1.43 chs tsleep(&proc0, PVM, "noswap", 0);
419 1.1 mrg #endif
420 1.6 mrg pp = NULL; /* process to choose */
421 1.6 mrg ppri = INT_MIN; /* its priority */
422 1.29 thorpej proclist_lock_read();
423 1.43 chs LIST_FOREACH(p, &allproc, p_list) {
424 1.6 mrg
425 1.6 mrg /* is it a runnable swapped out process? */
426 1.6 mrg if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
427 1.6 mrg pri = p->p_swtime + p->p_slptime -
428 1.6 mrg (p->p_nice - NZERO) * 8;
429 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
430 1.6 mrg pp = p;
431 1.6 mrg ppri = pri;
432 1.6 mrg }
433 1.6 mrg }
434 1.6 mrg }
435 1.39 sommerfe /*
436 1.39 sommerfe * XXXSMP: possible unlock/sleep race between here and the
437 1.39 sommerfe * "scheduler" tsleep below..
438 1.39 sommerfe */
439 1.28 thorpej proclist_unlock_read();
440 1.1 mrg
441 1.1 mrg #ifdef DEBUG
442 1.6 mrg if (swapdebug & SDB_FOLLOW)
443 1.6 mrg printf("scheduler: running, procp %p pri %d\n", pp, ppri);
444 1.1 mrg #endif
445 1.6 mrg /*
446 1.6 mrg * Nothing to do, back to sleep
447 1.6 mrg */
448 1.6 mrg if ((p = pp) == NULL) {
449 1.43 chs tsleep(&proc0, PVM, "scheduler", 0);
450 1.6 mrg goto loop;
451 1.6 mrg }
452 1.6 mrg
453 1.6 mrg /*
454 1.6 mrg * we have found swapped out process which we would like to bring
455 1.6 mrg * back in.
456 1.6 mrg *
457 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
458 1.6 mrg * despite our feeble check
459 1.6 mrg */
460 1.6 mrg if (uvmexp.free > atop(USPACE)) {
461 1.1 mrg #ifdef DEBUG
462 1.6 mrg if (swapdebug & SDB_SWAPIN)
463 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
464 1.1 mrg p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
465 1.1 mrg #endif
466 1.6 mrg uvm_swapin(p);
467 1.6 mrg goto loop;
468 1.6 mrg }
469 1.6 mrg /*
470 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
471 1.6 mrg * is clear
472 1.6 mrg */
473 1.1 mrg #ifdef DEBUG
474 1.6 mrg if (swapdebug & SDB_FOLLOW)
475 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
476 1.1 mrg p->p_pid, p->p_comm, uvmexp.free);
477 1.1 mrg #endif
478 1.6 mrg uvm_wait("schedpwait");
479 1.1 mrg #ifdef DEBUG
480 1.6 mrg if (swapdebug & SDB_FOLLOW)
481 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
482 1.1 mrg #endif
483 1.6 mrg goto loop;
484 1.1 mrg }
485 1.1 mrg
486 1.1 mrg /*
487 1.1 mrg * swappable: is process "p" swappable?
488 1.1 mrg */
489 1.1 mrg
490 1.1 mrg #define swappable(p) \
491 1.1 mrg (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
492 1.1 mrg (p)->p_holdcnt == 0)
493 1.1 mrg
494 1.1 mrg /*
495 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
496 1.1 mrg * u-areas.
497 1.1 mrg *
498 1.1 mrg * - called by the pagedaemon
499 1.1 mrg * - try and swap at least one processs
500 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
501 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
502 1.1 mrg * is swapped, otherwise the longest resident process...
503 1.1 mrg */
504 1.6 mrg void
505 1.6 mrg uvm_swapout_threads()
506 1.1 mrg {
507 1.32 augustss struct proc *p;
508 1.6 mrg struct proc *outp, *outp2;
509 1.6 mrg int outpri, outpri2;
510 1.6 mrg int didswap = 0;
511 1.48 chs extern int maxslp;
512 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
513 1.1 mrg
514 1.1 mrg #ifdef DEBUG
515 1.6 mrg if (!enableswap)
516 1.6 mrg return;
517 1.1 mrg #endif
518 1.1 mrg
519 1.6 mrg /*
520 1.6 mrg * outp/outpri : stop/sleep process with largest sleeptime < maxslp
521 1.6 mrg * outp2/outpri2: the longest resident process (its swap time)
522 1.6 mrg */
523 1.6 mrg outp = outp2 = NULL;
524 1.6 mrg outpri = outpri2 = 0;
525 1.29 thorpej proclist_lock_read();
526 1.43 chs LIST_FOREACH(p, &allproc, p_list) {
527 1.6 mrg if (!swappable(p))
528 1.6 mrg continue;
529 1.6 mrg switch (p->p_stat) {
530 1.6 mrg case SRUN:
531 1.33 thorpej case SONPROC:
532 1.6 mrg if (p->p_swtime > outpri2) {
533 1.6 mrg outp2 = p;
534 1.6 mrg outpri2 = p->p_swtime;
535 1.6 mrg }
536 1.6 mrg continue;
537 1.48 chs
538 1.6 mrg case SSLEEP:
539 1.6 mrg case SSTOP:
540 1.6 mrg if (p->p_slptime >= maxslp) {
541 1.43 chs uvm_swapout(p);
542 1.6 mrg didswap++;
543 1.6 mrg } else if (p->p_slptime > outpri) {
544 1.6 mrg outp = p;
545 1.6 mrg outpri = p->p_slptime;
546 1.6 mrg }
547 1.6 mrg continue;
548 1.6 mrg }
549 1.6 mrg }
550 1.28 thorpej proclist_unlock_read();
551 1.6 mrg
552 1.6 mrg /*
553 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
554 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
555 1.6 mrg * if we are real low on memory since we don't gain much by doing
556 1.6 mrg * it (USPACE bytes).
557 1.6 mrg */
558 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
559 1.6 mrg if ((p = outp) == NULL)
560 1.6 mrg p = outp2;
561 1.1 mrg #ifdef DEBUG
562 1.6 mrg if (swapdebug & SDB_SWAPOUT)
563 1.6 mrg printf("swapout_threads: no duds, try procp %p\n", p);
564 1.1 mrg #endif
565 1.6 mrg if (p)
566 1.6 mrg uvm_swapout(p);
567 1.6 mrg }
568 1.1 mrg }
569 1.1 mrg
570 1.1 mrg /*
571 1.1 mrg * uvm_swapout: swap out process "p"
572 1.1 mrg *
573 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
574 1.1 mrg * the pmap.
575 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
576 1.1 mrg */
577 1.1 mrg
578 1.6 mrg static void
579 1.6 mrg uvm_swapout(p)
580 1.32 augustss struct proc *p;
581 1.1 mrg {
582 1.13 eeh vaddr_t addr;
583 1.6 mrg int s;
584 1.1 mrg
585 1.1 mrg #ifdef DEBUG
586 1.6 mrg if (swapdebug & SDB_SWAPOUT)
587 1.6 mrg printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
588 1.1 mrg p->p_pid, p->p_comm, p->p_addr, p->p_stat,
589 1.1 mrg p->p_slptime, uvmexp.free);
590 1.1 mrg #endif
591 1.1 mrg
592 1.6 mrg /*
593 1.6 mrg * Do any machine-specific actions necessary before swapout.
594 1.6 mrg * This can include saving floating point state, etc.
595 1.6 mrg */
596 1.6 mrg cpu_swapout(p);
597 1.6 mrg
598 1.6 mrg /*
599 1.6 mrg * Mark it as (potentially) swapped out.
600 1.6 mrg */
601 1.41 enami SCHED_LOCK(s);
602 1.6 mrg p->p_flag &= ~P_INMEM;
603 1.6 mrg if (p->p_stat == SRUN)
604 1.6 mrg remrunqueue(p);
605 1.41 enami SCHED_UNLOCK(s);
606 1.6 mrg p->p_swtime = 0;
607 1.6 mrg ++uvmexp.swapouts;
608 1.43 chs
609 1.43 chs /*
610 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
611 1.43 chs */
612 1.43 chs addr = (vaddr_t)p->p_addr;
613 1.43 chs uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
614 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
615 1.1 mrg }
616 1.1 mrg
617