uvm_glue.c revision 1.52 1 1.52 chs /* $NetBSD: uvm_glue.c,v 1.52 2001/09/15 20:36:45 chs Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.49 lukem #include "opt_kgdb.h"
70 1.49 lukem #include "opt_sysv.h"
71 1.5 mrg #include "opt_uvmhist.h"
72 1.5 mrg
73 1.1 mrg /*
74 1.1 mrg * uvm_glue.c: glue functions
75 1.1 mrg */
76 1.1 mrg
77 1.1 mrg #include <sys/param.h>
78 1.1 mrg #include <sys/systm.h>
79 1.1 mrg #include <sys/proc.h>
80 1.1 mrg #include <sys/resourcevar.h>
81 1.1 mrg #include <sys/buf.h>
82 1.1 mrg #include <sys/user.h>
83 1.1 mrg #ifdef SYSVSHM
84 1.1 mrg #include <sys/shm.h>
85 1.1 mrg #endif
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg #include <machine/cpu.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * local prototypes
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg static void uvm_swapout __P((struct proc *));
96 1.1 mrg
97 1.1 mrg /*
98 1.1 mrg * XXXCDC: do these really belong here?
99 1.1 mrg */
100 1.1 mrg
101 1.1 mrg int readbuffers = 0; /* allow KGDB to read kern buffer pool */
102 1.1 mrg /* XXX: see uvm_kernacc */
103 1.1 mrg
104 1.28 thorpej
105 1.28 thorpej /*
106 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
107 1.1 mrg *
108 1.1 mrg * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
109 1.1 mrg */
110 1.1 mrg
111 1.6 mrg boolean_t
112 1.6 mrg uvm_kernacc(addr, len, rw)
113 1.6 mrg caddr_t addr;
114 1.11 kleink size_t len;
115 1.11 kleink int rw;
116 1.6 mrg {
117 1.6 mrg boolean_t rv;
118 1.13 eeh vaddr_t saddr, eaddr;
119 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120 1.6 mrg
121 1.31 kleink saddr = trunc_page((vaddr_t)addr);
122 1.43 chs eaddr = round_page((vaddr_t)addr + len);
123 1.6 mrg vm_map_lock_read(kernel_map);
124 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 1.6 mrg vm_map_unlock_read(kernel_map);
126 1.6 mrg
127 1.6 mrg /*
128 1.6 mrg * XXX there are still some things (e.g. the buffer cache) that
129 1.6 mrg * are managed behind the VM system's back so even though an
130 1.6 mrg * address is accessible in the mind of the VM system, there may
131 1.6 mrg * not be physical pages where the VM thinks there is. This can
132 1.6 mrg * lead to bogus allocation of pages in the kernel address space
133 1.6 mrg * or worse, inconsistencies at the pmap level. We only worry
134 1.6 mrg * about the buffer cache for now.
135 1.6 mrg */
136 1.13 eeh if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
137 1.13 eeh saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
138 1.6 mrg rv = FALSE;
139 1.6 mrg return(rv);
140 1.1 mrg }
141 1.1 mrg
142 1.1 mrg /*
143 1.1 mrg * uvm_useracc: can the user access it?
144 1.1 mrg *
145 1.1 mrg * - called from physio() and sys___sysctl().
146 1.1 mrg */
147 1.1 mrg
148 1.6 mrg boolean_t
149 1.6 mrg uvm_useracc(addr, len, rw)
150 1.6 mrg caddr_t addr;
151 1.11 kleink size_t len;
152 1.11 kleink int rw;
153 1.1 mrg {
154 1.50 chs struct vm_map *map;
155 1.6 mrg boolean_t rv;
156 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
157 1.1 mrg
158 1.25 thorpej /* XXX curproc */
159 1.25 thorpej map = &curproc->p_vmspace->vm_map;
160 1.25 thorpej
161 1.25 thorpej vm_map_lock_read(map);
162 1.31 kleink rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
163 1.43 chs round_page((vaddr_t)addr + len), prot);
164 1.25 thorpej vm_map_unlock_read(map);
165 1.25 thorpej
166 1.6 mrg return(rv);
167 1.1 mrg }
168 1.1 mrg
169 1.1 mrg #ifdef KGDB
170 1.1 mrg /*
171 1.1 mrg * Change protections on kernel pages from addr to addr+len
172 1.1 mrg * (presumably so debugger can plant a breakpoint).
173 1.1 mrg *
174 1.1 mrg * We force the protection change at the pmap level. If we were
175 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
176 1.1 mrg * applied meaning we would still take a protection fault, something
177 1.1 mrg * we really don't want to do. It would also fragment the kernel
178 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
179 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
180 1.1 mrg * we can ensure the change takes place properly.
181 1.1 mrg */
182 1.6 mrg void
183 1.6 mrg uvm_chgkprot(addr, len, rw)
184 1.32 augustss caddr_t addr;
185 1.11 kleink size_t len;
186 1.11 kleink int rw;
187 1.6 mrg {
188 1.6 mrg vm_prot_t prot;
189 1.13 eeh paddr_t pa;
190 1.13 eeh vaddr_t sva, eva;
191 1.6 mrg
192 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
193 1.31 kleink eva = round_page((vaddr_t)addr + len);
194 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
195 1.6 mrg /*
196 1.6 mrg * Extract physical address for the page.
197 1.6 mrg */
198 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
199 1.6 mrg panic("chgkprot: invalid page");
200 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
201 1.6 mrg }
202 1.51 chris pmap_update(pmap_kernel());
203 1.1 mrg }
204 1.1 mrg #endif
205 1.1 mrg
206 1.1 mrg /*
207 1.52 chs * uvm_vslock: wire user memory for I/O
208 1.1 mrg *
209 1.1 mrg * - called from physio and sys___sysctl
210 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
211 1.1 mrg */
212 1.1 mrg
213 1.26 thorpej int
214 1.22 thorpej uvm_vslock(p, addr, len, access_type)
215 1.9 thorpej struct proc *p;
216 1.6 mrg caddr_t addr;
217 1.11 kleink size_t len;
218 1.22 thorpej vm_prot_t access_type;
219 1.1 mrg {
220 1.50 chs struct vm_map *map;
221 1.26 thorpej vaddr_t start, end;
222 1.45 chs int error;
223 1.26 thorpej
224 1.26 thorpej map = &p->p_vmspace->vm_map;
225 1.31 kleink start = trunc_page((vaddr_t)addr);
226 1.31 kleink end = round_page((vaddr_t)addr + len);
227 1.45 chs error = uvm_fault_wire(map, start, end, access_type);
228 1.45 chs return error;
229 1.1 mrg }
230 1.1 mrg
231 1.1 mrg /*
232 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
233 1.1 mrg *
234 1.1 mrg * - called from physio and sys___sysctl
235 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
236 1.1 mrg */
237 1.1 mrg
238 1.6 mrg void
239 1.9 thorpej uvm_vsunlock(p, addr, len)
240 1.9 thorpej struct proc *p;
241 1.6 mrg caddr_t addr;
242 1.11 kleink size_t len;
243 1.1 mrg {
244 1.43 chs uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
245 1.43 chs round_page((vaddr_t)addr + len));
246 1.1 mrg }
247 1.1 mrg
248 1.1 mrg /*
249 1.1 mrg * uvm_fork: fork a virtual address space
250 1.1 mrg *
251 1.1 mrg * - the address space is copied as per parent map's inherit values
252 1.1 mrg * - a new "user" structure is allocated for the child process
253 1.1 mrg * [filled in by MD layer...]
254 1.20 thorpej * - if specified, the child gets a new user stack described by
255 1.20 thorpej * stack and stacksize
256 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
257 1.1 mrg * process, and thus addresses of automatic variables may be invalid
258 1.1 mrg * after cpu_fork returns in the child process. We do nothing here
259 1.1 mrg * after cpu_fork returns.
260 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
261 1.1 mrg * than just hang
262 1.1 mrg */
263 1.6 mrg void
264 1.34 thorpej uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
265 1.6 mrg struct proc *p1, *p2;
266 1.6 mrg boolean_t shared;
267 1.20 thorpej void *stack;
268 1.20 thorpej size_t stacksize;
269 1.34 thorpej void (*func) __P((void *));
270 1.34 thorpej void *arg;
271 1.6 mrg {
272 1.7 thorpej struct user *up = p2->p_addr;
273 1.45 chs int error;
274 1.6 mrg
275 1.42 thorpej if (shared == TRUE) {
276 1.42 thorpej p2->p_vmspace = NULL;
277 1.52 chs uvmspace_share(p1, p2);
278 1.42 thorpej } else
279 1.52 chs p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
280 1.1 mrg
281 1.6 mrg /*
282 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
283 1.7 thorpej * and the kernel stack. Wired state is stored in p->p_flag's
284 1.7 thorpej * P_INMEM bit rather than in the vm_map_entry's wired count
285 1.7 thorpej * to prevent kernel_map fragmentation.
286 1.21 thorpej *
287 1.21 thorpej * Note the kernel stack gets read/write accesses right off
288 1.21 thorpej * the bat.
289 1.6 mrg */
290 1.45 chs error = uvm_fault_wire(kernel_map, (vaddr_t)up,
291 1.21 thorpej (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
292 1.45 chs if (error)
293 1.45 chs panic("uvm_fork: uvm_fault_wire failed: %d", error);
294 1.6 mrg
295 1.6 mrg /*
296 1.19 thorpej * p_stats currently points at a field in the user struct. Copy
297 1.19 thorpej * parts of p_stats, and zero out the rest.
298 1.6 mrg */
299 1.6 mrg p2->p_stats = &up->u_stats;
300 1.12 perry memset(&up->u_stats.pstat_startzero, 0,
301 1.43 chs ((caddr_t)&up->u_stats.pstat_endzero -
302 1.43 chs (caddr_t)&up->u_stats.pstat_startzero));
303 1.12 perry memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
304 1.43 chs ((caddr_t)&up->u_stats.pstat_endcopy -
305 1.43 chs (caddr_t)&up->u_stats.pstat_startcopy));
306 1.48 chs
307 1.6 mrg /*
308 1.34 thorpej * cpu_fork() copy and update the pcb, and make the child ready
309 1.34 thorpej * to run. If this is a normal user fork, the child will exit
310 1.34 thorpej * directly to user mode via child_return() on its first time
311 1.34 thorpej * slice and will not return here. If this is a kernel thread,
312 1.34 thorpej * the specified entry point will be executed.
313 1.6 mrg */
314 1.34 thorpej cpu_fork(p1, p2, stack, stacksize, func, arg);
315 1.14 thorpej }
316 1.14 thorpej
317 1.14 thorpej /*
318 1.14 thorpej * uvm_exit: exit a virtual address space
319 1.14 thorpej *
320 1.14 thorpej * - the process passed to us is a dead (pre-zombie) process; we
321 1.14 thorpej * are running on a different context now (the reaper).
322 1.14 thorpej * - we must run in a separate thread because freeing the vmspace
323 1.14 thorpej * of the dead process may block.
324 1.14 thorpej */
325 1.14 thorpej void
326 1.14 thorpej uvm_exit(p)
327 1.14 thorpej struct proc *p;
328 1.14 thorpej {
329 1.43 chs vaddr_t va = (vaddr_t)p->p_addr;
330 1.14 thorpej
331 1.14 thorpej uvmspace_free(p->p_vmspace);
332 1.43 chs p->p_flag &= ~P_INMEM;
333 1.43 chs uvm_fault_unwire(kernel_map, va, va + USPACE);
334 1.43 chs uvm_km_free(kernel_map, va, USPACE);
335 1.36 simonb p->p_addr = NULL;
336 1.1 mrg }
337 1.1 mrg
338 1.1 mrg /*
339 1.1 mrg * uvm_init_limit: init per-process VM limits
340 1.1 mrg *
341 1.1 mrg * - called for process 0 and then inherited by all others.
342 1.1 mrg */
343 1.6 mrg void
344 1.6 mrg uvm_init_limits(p)
345 1.6 mrg struct proc *p;
346 1.6 mrg {
347 1.6 mrg
348 1.6 mrg /*
349 1.6 mrg * Set up the initial limits on process VM. Set the maximum
350 1.6 mrg * resident set size to be all of (reasonably) available memory.
351 1.6 mrg * This causes any single, large process to start random page
352 1.6 mrg * replacement once it fills memory.
353 1.6 mrg */
354 1.6 mrg
355 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
356 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
357 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
358 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
359 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
360 1.1 mrg }
361 1.1 mrg
362 1.1 mrg #ifdef DEBUG
363 1.1 mrg int enableswap = 1;
364 1.1 mrg int swapdebug = 0;
365 1.1 mrg #define SDB_FOLLOW 1
366 1.1 mrg #define SDB_SWAPIN 2
367 1.1 mrg #define SDB_SWAPOUT 4
368 1.1 mrg #endif
369 1.1 mrg
370 1.1 mrg /*
371 1.1 mrg * uvm_swapin: swap in a process's u-area.
372 1.1 mrg */
373 1.1 mrg
374 1.6 mrg void
375 1.6 mrg uvm_swapin(p)
376 1.6 mrg struct proc *p;
377 1.6 mrg {
378 1.13 eeh vaddr_t addr;
379 1.52 chs int s, error;
380 1.6 mrg
381 1.13 eeh addr = (vaddr_t)p->p_addr;
382 1.6 mrg /* make P_INMEM true */
383 1.52 chs error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
384 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
385 1.52 chs if (error) {
386 1.52 chs panic("uvm_swapin: rewiring stack failed: %d", error);
387 1.52 chs }
388 1.6 mrg
389 1.6 mrg /*
390 1.6 mrg * Some architectures need to be notified when the user area has
391 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
392 1.6 mrg */
393 1.6 mrg cpu_swapin(p);
394 1.41 enami SCHED_LOCK(s);
395 1.6 mrg if (p->p_stat == SRUN)
396 1.6 mrg setrunqueue(p);
397 1.6 mrg p->p_flag |= P_INMEM;
398 1.41 enami SCHED_UNLOCK(s);
399 1.6 mrg p->p_swtime = 0;
400 1.6 mrg ++uvmexp.swapins;
401 1.1 mrg }
402 1.1 mrg
403 1.1 mrg /*
404 1.1 mrg * uvm_scheduler: process zero main loop
405 1.1 mrg *
406 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
407 1.1 mrg * priority.
408 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
409 1.1 mrg */
410 1.1 mrg
411 1.6 mrg void
412 1.6 mrg uvm_scheduler()
413 1.1 mrg {
414 1.32 augustss struct proc *p;
415 1.32 augustss int pri;
416 1.6 mrg struct proc *pp;
417 1.6 mrg int ppri;
418 1.1 mrg
419 1.1 mrg loop:
420 1.1 mrg #ifdef DEBUG
421 1.6 mrg while (!enableswap)
422 1.43 chs tsleep(&proc0, PVM, "noswap", 0);
423 1.1 mrg #endif
424 1.6 mrg pp = NULL; /* process to choose */
425 1.6 mrg ppri = INT_MIN; /* its priority */
426 1.29 thorpej proclist_lock_read();
427 1.43 chs LIST_FOREACH(p, &allproc, p_list) {
428 1.6 mrg
429 1.6 mrg /* is it a runnable swapped out process? */
430 1.6 mrg if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
431 1.6 mrg pri = p->p_swtime + p->p_slptime -
432 1.6 mrg (p->p_nice - NZERO) * 8;
433 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
434 1.6 mrg pp = p;
435 1.6 mrg ppri = pri;
436 1.6 mrg }
437 1.6 mrg }
438 1.6 mrg }
439 1.39 sommerfe /*
440 1.39 sommerfe * XXXSMP: possible unlock/sleep race between here and the
441 1.39 sommerfe * "scheduler" tsleep below..
442 1.39 sommerfe */
443 1.28 thorpej proclist_unlock_read();
444 1.1 mrg
445 1.1 mrg #ifdef DEBUG
446 1.6 mrg if (swapdebug & SDB_FOLLOW)
447 1.6 mrg printf("scheduler: running, procp %p pri %d\n", pp, ppri);
448 1.1 mrg #endif
449 1.6 mrg /*
450 1.6 mrg * Nothing to do, back to sleep
451 1.6 mrg */
452 1.6 mrg if ((p = pp) == NULL) {
453 1.43 chs tsleep(&proc0, PVM, "scheduler", 0);
454 1.6 mrg goto loop;
455 1.6 mrg }
456 1.6 mrg
457 1.6 mrg /*
458 1.6 mrg * we have found swapped out process which we would like to bring
459 1.6 mrg * back in.
460 1.6 mrg *
461 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
462 1.6 mrg * despite our feeble check
463 1.6 mrg */
464 1.6 mrg if (uvmexp.free > atop(USPACE)) {
465 1.1 mrg #ifdef DEBUG
466 1.6 mrg if (swapdebug & SDB_SWAPIN)
467 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
468 1.1 mrg p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
469 1.1 mrg #endif
470 1.6 mrg uvm_swapin(p);
471 1.6 mrg goto loop;
472 1.6 mrg }
473 1.6 mrg /*
474 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
475 1.6 mrg * is clear
476 1.6 mrg */
477 1.1 mrg #ifdef DEBUG
478 1.6 mrg if (swapdebug & SDB_FOLLOW)
479 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
480 1.1 mrg p->p_pid, p->p_comm, uvmexp.free);
481 1.1 mrg #endif
482 1.6 mrg uvm_wait("schedpwait");
483 1.1 mrg #ifdef DEBUG
484 1.6 mrg if (swapdebug & SDB_FOLLOW)
485 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
486 1.1 mrg #endif
487 1.6 mrg goto loop;
488 1.1 mrg }
489 1.1 mrg
490 1.1 mrg /*
491 1.1 mrg * swappable: is process "p" swappable?
492 1.1 mrg */
493 1.1 mrg
494 1.1 mrg #define swappable(p) \
495 1.1 mrg (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
496 1.1 mrg (p)->p_holdcnt == 0)
497 1.1 mrg
498 1.1 mrg /*
499 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
500 1.1 mrg * u-areas.
501 1.1 mrg *
502 1.1 mrg * - called by the pagedaemon
503 1.1 mrg * - try and swap at least one processs
504 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
505 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
506 1.1 mrg * is swapped, otherwise the longest resident process...
507 1.1 mrg */
508 1.6 mrg void
509 1.6 mrg uvm_swapout_threads()
510 1.1 mrg {
511 1.32 augustss struct proc *p;
512 1.6 mrg struct proc *outp, *outp2;
513 1.6 mrg int outpri, outpri2;
514 1.6 mrg int didswap = 0;
515 1.48 chs extern int maxslp;
516 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
517 1.1 mrg
518 1.1 mrg #ifdef DEBUG
519 1.6 mrg if (!enableswap)
520 1.6 mrg return;
521 1.1 mrg #endif
522 1.1 mrg
523 1.6 mrg /*
524 1.6 mrg * outp/outpri : stop/sleep process with largest sleeptime < maxslp
525 1.6 mrg * outp2/outpri2: the longest resident process (its swap time)
526 1.6 mrg */
527 1.6 mrg outp = outp2 = NULL;
528 1.6 mrg outpri = outpri2 = 0;
529 1.29 thorpej proclist_lock_read();
530 1.43 chs LIST_FOREACH(p, &allproc, p_list) {
531 1.6 mrg if (!swappable(p))
532 1.6 mrg continue;
533 1.6 mrg switch (p->p_stat) {
534 1.6 mrg case SRUN:
535 1.33 thorpej case SONPROC:
536 1.6 mrg if (p->p_swtime > outpri2) {
537 1.6 mrg outp2 = p;
538 1.6 mrg outpri2 = p->p_swtime;
539 1.6 mrg }
540 1.6 mrg continue;
541 1.48 chs
542 1.6 mrg case SSLEEP:
543 1.6 mrg case SSTOP:
544 1.6 mrg if (p->p_slptime >= maxslp) {
545 1.43 chs uvm_swapout(p);
546 1.6 mrg didswap++;
547 1.6 mrg } else if (p->p_slptime > outpri) {
548 1.6 mrg outp = p;
549 1.6 mrg outpri = p->p_slptime;
550 1.6 mrg }
551 1.6 mrg continue;
552 1.6 mrg }
553 1.6 mrg }
554 1.28 thorpej proclist_unlock_read();
555 1.6 mrg
556 1.6 mrg /*
557 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
558 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
559 1.6 mrg * if we are real low on memory since we don't gain much by doing
560 1.6 mrg * it (USPACE bytes).
561 1.6 mrg */
562 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
563 1.6 mrg if ((p = outp) == NULL)
564 1.6 mrg p = outp2;
565 1.1 mrg #ifdef DEBUG
566 1.6 mrg if (swapdebug & SDB_SWAPOUT)
567 1.6 mrg printf("swapout_threads: no duds, try procp %p\n", p);
568 1.1 mrg #endif
569 1.6 mrg if (p)
570 1.6 mrg uvm_swapout(p);
571 1.6 mrg }
572 1.1 mrg }
573 1.1 mrg
574 1.1 mrg /*
575 1.1 mrg * uvm_swapout: swap out process "p"
576 1.1 mrg *
577 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
578 1.1 mrg * the pmap.
579 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
580 1.1 mrg */
581 1.1 mrg
582 1.6 mrg static void
583 1.6 mrg uvm_swapout(p)
584 1.32 augustss struct proc *p;
585 1.1 mrg {
586 1.13 eeh vaddr_t addr;
587 1.6 mrg int s;
588 1.1 mrg
589 1.1 mrg #ifdef DEBUG
590 1.6 mrg if (swapdebug & SDB_SWAPOUT)
591 1.6 mrg printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
592 1.1 mrg p->p_pid, p->p_comm, p->p_addr, p->p_stat,
593 1.1 mrg p->p_slptime, uvmexp.free);
594 1.1 mrg #endif
595 1.1 mrg
596 1.6 mrg /*
597 1.6 mrg * Do any machine-specific actions necessary before swapout.
598 1.6 mrg * This can include saving floating point state, etc.
599 1.6 mrg */
600 1.6 mrg cpu_swapout(p);
601 1.6 mrg
602 1.6 mrg /*
603 1.6 mrg * Mark it as (potentially) swapped out.
604 1.6 mrg */
605 1.41 enami SCHED_LOCK(s);
606 1.6 mrg p->p_flag &= ~P_INMEM;
607 1.6 mrg if (p->p_stat == SRUN)
608 1.6 mrg remrunqueue(p);
609 1.41 enami SCHED_UNLOCK(s);
610 1.6 mrg p->p_swtime = 0;
611 1.6 mrg ++uvmexp.swapouts;
612 1.43 chs
613 1.43 chs /*
614 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
615 1.43 chs */
616 1.43 chs addr = (vaddr_t)p->p_addr;
617 1.43 chs uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
618 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
619 1.1 mrg }
620 1.1 mrg
621