uvm_glue.c revision 1.89 1 1.89 thorpej /* $NetBSD: uvm_glue.c,v 1.89 2005/06/27 02:19:48 thorpej Exp $ */
2 1.1 mrg
3 1.48 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.48 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.48 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 1.4 mrg * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.48 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.48 chs *
54 1.48 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.48 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.48 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.55 lukem
69 1.55 lukem #include <sys/cdefs.h>
70 1.89 thorpej __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.89 2005/06/27 02:19:48 thorpej Exp $");
71 1.1 mrg
72 1.49 lukem #include "opt_kgdb.h"
73 1.59 yamt #include "opt_kstack.h"
74 1.5 mrg #include "opt_uvmhist.h"
75 1.5 mrg
76 1.1 mrg /*
77 1.1 mrg * uvm_glue.c: glue functions
78 1.1 mrg */
79 1.1 mrg
80 1.1 mrg #include <sys/param.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/proc.h>
83 1.1 mrg #include <sys/resourcevar.h>
84 1.1 mrg #include <sys/buf.h>
85 1.1 mrg #include <sys/user.h>
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg #include <machine/cpu.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * local prototypes
93 1.1 mrg */
94 1.1 mrg
95 1.78 junyoung static void uvm_swapout(struct lwp *);
96 1.1 mrg
97 1.60 chs #define UVM_NUAREA_MAX 16
98 1.60 chs void *uvm_uareas;
99 1.60 chs int uvm_nuarea;
100 1.62 thorpej struct simplelock uvm_uareas_slock = SIMPLELOCK_INITIALIZER;
101 1.60 chs
102 1.75 jdolecek static void uvm_uarea_free(vaddr_t);
103 1.75 jdolecek
104 1.1 mrg /*
105 1.1 mrg * XXXCDC: do these really belong here?
106 1.1 mrg */
107 1.1 mrg
108 1.28 thorpej /*
109 1.1 mrg * uvm_kernacc: can the kernel access a region of memory
110 1.1 mrg *
111 1.83 yamt * - used only by /dev/kmem driver (mem.c)
112 1.1 mrg */
113 1.1 mrg
114 1.6 mrg boolean_t
115 1.89 thorpej uvm_kernacc(caddr_t addr, size_t len, int rw)
116 1.6 mrg {
117 1.6 mrg boolean_t rv;
118 1.13 eeh vaddr_t saddr, eaddr;
119 1.6 mrg vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120 1.6 mrg
121 1.31 kleink saddr = trunc_page((vaddr_t)addr);
122 1.43 chs eaddr = round_page((vaddr_t)addr + len);
123 1.6 mrg vm_map_lock_read(kernel_map);
124 1.6 mrg rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 1.6 mrg vm_map_unlock_read(kernel_map);
126 1.6 mrg
127 1.6 mrg return(rv);
128 1.1 mrg }
129 1.1 mrg
130 1.1 mrg #ifdef KGDB
131 1.1 mrg /*
132 1.1 mrg * Change protections on kernel pages from addr to addr+len
133 1.1 mrg * (presumably so debugger can plant a breakpoint).
134 1.1 mrg *
135 1.1 mrg * We force the protection change at the pmap level. If we were
136 1.1 mrg * to use vm_map_protect a change to allow writing would be lazily-
137 1.1 mrg * applied meaning we would still take a protection fault, something
138 1.1 mrg * we really don't want to do. It would also fragment the kernel
139 1.1 mrg * map unnecessarily. We cannot use pmap_protect since it also won't
140 1.1 mrg * enforce a write-enable request. Using pmap_enter is the only way
141 1.1 mrg * we can ensure the change takes place properly.
142 1.1 mrg */
143 1.6 mrg void
144 1.89 thorpej uvm_chgkprot(caddr_t addr, size_t len, int rw)
145 1.6 mrg {
146 1.6 mrg vm_prot_t prot;
147 1.13 eeh paddr_t pa;
148 1.13 eeh vaddr_t sva, eva;
149 1.6 mrg
150 1.6 mrg prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
151 1.31 kleink eva = round_page((vaddr_t)addr + len);
152 1.31 kleink for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
153 1.6 mrg /*
154 1.6 mrg * Extract physical address for the page.
155 1.6 mrg */
156 1.27 thorpej if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
157 1.6 mrg panic("chgkprot: invalid page");
158 1.30 thorpej pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
159 1.6 mrg }
160 1.51 chris pmap_update(pmap_kernel());
161 1.1 mrg }
162 1.1 mrg #endif
163 1.1 mrg
164 1.1 mrg /*
165 1.52 chs * uvm_vslock: wire user memory for I/O
166 1.1 mrg *
167 1.1 mrg * - called from physio and sys___sysctl
168 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
169 1.1 mrg */
170 1.1 mrg
171 1.26 thorpej int
172 1.89 thorpej uvm_vslock(struct proc *p, caddr_t addr, size_t len, vm_prot_t access_type)
173 1.1 mrg {
174 1.50 chs struct vm_map *map;
175 1.26 thorpej vaddr_t start, end;
176 1.45 chs int error;
177 1.26 thorpej
178 1.26 thorpej map = &p->p_vmspace->vm_map;
179 1.31 kleink start = trunc_page((vaddr_t)addr);
180 1.31 kleink end = round_page((vaddr_t)addr + len);
181 1.57 chs error = uvm_fault_wire(map, start, end, VM_FAULT_WIRE, access_type);
182 1.45 chs return error;
183 1.1 mrg }
184 1.1 mrg
185 1.1 mrg /*
186 1.52 chs * uvm_vsunlock: unwire user memory wired by uvm_vslock()
187 1.1 mrg *
188 1.1 mrg * - called from physio and sys___sysctl
189 1.1 mrg * - XXXCDC: consider nuking this (or making it a macro?)
190 1.1 mrg */
191 1.1 mrg
192 1.6 mrg void
193 1.89 thorpej uvm_vsunlock(struct proc *p, caddr_t addr, size_t len)
194 1.1 mrg {
195 1.43 chs uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
196 1.43 chs round_page((vaddr_t)addr + len));
197 1.1 mrg }
198 1.1 mrg
199 1.1 mrg /*
200 1.62 thorpej * uvm_proc_fork: fork a virtual address space
201 1.1 mrg *
202 1.1 mrg * - the address space is copied as per parent map's inherit values
203 1.62 thorpej */
204 1.62 thorpej void
205 1.89 thorpej uvm_proc_fork(struct proc *p1, struct proc *p2, boolean_t shared)
206 1.62 thorpej {
207 1.62 thorpej
208 1.62 thorpej if (shared == TRUE) {
209 1.62 thorpej p2->p_vmspace = NULL;
210 1.62 thorpej uvmspace_share(p1, p2);
211 1.62 thorpej } else {
212 1.62 thorpej p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
213 1.62 thorpej }
214 1.62 thorpej
215 1.62 thorpej cpu_proc_fork(p1, p2);
216 1.62 thorpej }
217 1.62 thorpej
218 1.62 thorpej
219 1.62 thorpej /*
220 1.62 thorpej * uvm_lwp_fork: fork a thread
221 1.62 thorpej *
222 1.1 mrg * - a new "user" structure is allocated for the child process
223 1.1 mrg * [filled in by MD layer...]
224 1.20 thorpej * - if specified, the child gets a new user stack described by
225 1.20 thorpej * stack and stacksize
226 1.1 mrg * - NOTE: the kernel stack may be at a different location in the child
227 1.1 mrg * process, and thus addresses of automatic variables may be invalid
228 1.62 thorpej * after cpu_lwp_fork returns in the child process. We do nothing here
229 1.62 thorpej * after cpu_lwp_fork returns.
230 1.1 mrg * - XXXCDC: we need a way for this to return a failure value rather
231 1.1 mrg * than just hang
232 1.1 mrg */
233 1.6 mrg void
234 1.89 thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
235 1.89 thorpej void (*func)(void *), void *arg)
236 1.6 mrg {
237 1.62 thorpej struct user *up = l2->l_addr;
238 1.45 chs int error;
239 1.6 mrg
240 1.6 mrg /*
241 1.7 thorpej * Wire down the U-area for the process, which contains the PCB
242 1.62 thorpej * and the kernel stack. Wired state is stored in l->l_flag's
243 1.62 thorpej * L_INMEM bit rather than in the vm_map_entry's wired count
244 1.61 chs * to prevent kernel_map fragmentation. If we reused a cached U-area,
245 1.62 thorpej * L_INMEM will already be set and we don't need to do anything.
246 1.21 thorpej *
247 1.61 chs * Note the kernel stack gets read/write accesses right off the bat.
248 1.6 mrg */
249 1.61 chs
250 1.62 thorpej if ((l2->l_flag & L_INMEM) == 0) {
251 1.61 chs error = uvm_fault_wire(kernel_map, (vaddr_t)up,
252 1.61 chs (vaddr_t)up + USPACE, VM_FAULT_WIRE,
253 1.61 chs VM_PROT_READ | VM_PROT_WRITE);
254 1.61 chs if (error)
255 1.62 thorpej panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
256 1.67 scw #ifdef PMAP_UAREA
257 1.67 scw /* Tell the pmap this is a u-area mapping */
258 1.67 scw PMAP_UAREA((vaddr_t)up);
259 1.67 scw #endif
260 1.62 thorpej l2->l_flag |= L_INMEM;
261 1.61 chs }
262 1.59 yamt
263 1.59 yamt #ifdef KSTACK_CHECK_MAGIC
264 1.59 yamt /*
265 1.59 yamt * fill stack with magic number
266 1.59 yamt */
267 1.63 yamt kstack_setup_magic(l2);
268 1.59 yamt #endif
269 1.6 mrg
270 1.6 mrg /*
271 1.62 thorpej * cpu_lwp_fork() copy and update the pcb, and make the child ready
272 1.62 thorpej * to run. If this is a normal user fork, the child will exit
273 1.34 thorpej * directly to user mode via child_return() on its first time
274 1.34 thorpej * slice and will not return here. If this is a kernel thread,
275 1.34 thorpej * the specified entry point will be executed.
276 1.6 mrg */
277 1.62 thorpej cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
278 1.14 thorpej }
279 1.14 thorpej
280 1.14 thorpej /*
281 1.60 chs * uvm_uarea_alloc: allocate a u-area
282 1.60 chs */
283 1.60 chs
284 1.61 chs boolean_t
285 1.61 chs uvm_uarea_alloc(vaddr_t *uaddrp)
286 1.60 chs {
287 1.60 chs vaddr_t uaddr;
288 1.60 chs
289 1.60 chs #ifndef USPACE_ALIGN
290 1.60 chs #define USPACE_ALIGN 0
291 1.60 chs #endif
292 1.60 chs
293 1.62 thorpej simple_lock(&uvm_uareas_slock);
294 1.75 jdolecek if (uvm_nuarea > 0) {
295 1.75 jdolecek uaddr = (vaddr_t)uvm_uareas;
296 1.60 chs uvm_uareas = *(void **)uvm_uareas;
297 1.60 chs uvm_nuarea--;
298 1.62 thorpej simple_unlock(&uvm_uareas_slock);
299 1.61 chs *uaddrp = uaddr;
300 1.61 chs return TRUE;
301 1.60 chs } else {
302 1.62 thorpej simple_unlock(&uvm_uareas_slock);
303 1.84 yamt *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
304 1.84 yamt UVM_KMF_PAGEABLE);
305 1.61 chs return FALSE;
306 1.60 chs }
307 1.60 chs }
308 1.60 chs
309 1.60 chs /*
310 1.75 jdolecek * uvm_uarea_free: free a u-area; never blocks
311 1.75 jdolecek */
312 1.75 jdolecek
313 1.80 pk static __inline__ void
314 1.75 jdolecek uvm_uarea_free(vaddr_t uaddr)
315 1.75 jdolecek {
316 1.75 jdolecek simple_lock(&uvm_uareas_slock);
317 1.75 jdolecek *(void **)uaddr = uvm_uareas;
318 1.75 jdolecek uvm_uareas = (void *)uaddr;
319 1.75 jdolecek uvm_nuarea++;
320 1.75 jdolecek simple_unlock(&uvm_uareas_slock);
321 1.75 jdolecek }
322 1.75 jdolecek
323 1.75 jdolecek /*
324 1.75 jdolecek * uvm_uarea_drain: return memory of u-areas over limit
325 1.75 jdolecek * back to system
326 1.60 chs */
327 1.60 chs
328 1.60 chs void
329 1.75 jdolecek uvm_uarea_drain(boolean_t empty)
330 1.60 chs {
331 1.75 jdolecek int leave = empty ? 0 : UVM_NUAREA_MAX;
332 1.75 jdolecek vaddr_t uaddr;
333 1.75 jdolecek
334 1.75 jdolecek if (uvm_nuarea <= leave)
335 1.75 jdolecek return;
336 1.60 chs
337 1.62 thorpej simple_lock(&uvm_uareas_slock);
338 1.75 jdolecek while(uvm_nuarea > leave) {
339 1.75 jdolecek uaddr = (vaddr_t)uvm_uareas;
340 1.75 jdolecek uvm_uareas = *(void **)uvm_uareas;
341 1.75 jdolecek uvm_nuarea--;
342 1.62 thorpej simple_unlock(&uvm_uareas_slock);
343 1.84 yamt uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE);
344 1.75 jdolecek simple_lock(&uvm_uareas_slock);
345 1.60 chs }
346 1.75 jdolecek simple_unlock(&uvm_uareas_slock);
347 1.60 chs }
348 1.60 chs
349 1.60 chs /*
350 1.80 pk * uvm_exit: exit a virtual address space
351 1.80 pk *
352 1.80 pk * - the process passed to us is a dead (pre-zombie) process; we
353 1.80 pk * are running on a different context now (the reaper).
354 1.80 pk * - borrow proc0's address space because freeing the vmspace
355 1.80 pk * of the dead process may block.
356 1.80 pk */
357 1.80 pk
358 1.80 pk void
359 1.89 thorpej uvm_proc_exit(struct proc *p)
360 1.80 pk {
361 1.80 pk struct lwp *l = curlwp; /* XXX */
362 1.80 pk struct vmspace *ovm;
363 1.80 pk
364 1.80 pk KASSERT(p == l->l_proc);
365 1.80 pk ovm = p->p_vmspace;
366 1.80 pk
367 1.80 pk /*
368 1.80 pk * borrow proc0's address space.
369 1.80 pk */
370 1.80 pk pmap_deactivate(l);
371 1.80 pk p->p_vmspace = proc0.p_vmspace;
372 1.80 pk pmap_activate(l);
373 1.80 pk
374 1.80 pk uvmspace_free(ovm);
375 1.80 pk }
376 1.80 pk
377 1.80 pk void
378 1.80 pk uvm_lwp_exit(struct lwp *l)
379 1.80 pk {
380 1.80 pk vaddr_t va = (vaddr_t)l->l_addr;
381 1.80 pk
382 1.80 pk l->l_flag &= ~L_INMEM;
383 1.80 pk uvm_uarea_free(va);
384 1.80 pk l->l_addr = NULL;
385 1.80 pk }
386 1.80 pk
387 1.80 pk /*
388 1.1 mrg * uvm_init_limit: init per-process VM limits
389 1.1 mrg *
390 1.1 mrg * - called for process 0 and then inherited by all others.
391 1.1 mrg */
392 1.60 chs
393 1.6 mrg void
394 1.89 thorpej uvm_init_limits(struct proc *p)
395 1.6 mrg {
396 1.6 mrg
397 1.6 mrg /*
398 1.6 mrg * Set up the initial limits on process VM. Set the maximum
399 1.6 mrg * resident set size to be all of (reasonably) available memory.
400 1.6 mrg * This causes any single, large process to start random page
401 1.6 mrg * replacement once it fills memory.
402 1.6 mrg */
403 1.6 mrg
404 1.6 mrg p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
405 1.79 pk p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
406 1.6 mrg p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
407 1.79 pk p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
408 1.6 mrg p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
409 1.1 mrg }
410 1.1 mrg
411 1.1 mrg #ifdef DEBUG
412 1.1 mrg int enableswap = 1;
413 1.1 mrg int swapdebug = 0;
414 1.1 mrg #define SDB_FOLLOW 1
415 1.1 mrg #define SDB_SWAPIN 2
416 1.1 mrg #define SDB_SWAPOUT 4
417 1.1 mrg #endif
418 1.1 mrg
419 1.1 mrg /*
420 1.1 mrg * uvm_swapin: swap in a process's u-area.
421 1.1 mrg */
422 1.1 mrg
423 1.6 mrg void
424 1.89 thorpej uvm_swapin(struct lwp *l)
425 1.6 mrg {
426 1.13 eeh vaddr_t addr;
427 1.52 chs int s, error;
428 1.6 mrg
429 1.62 thorpej addr = (vaddr_t)l->l_addr;
430 1.62 thorpej /* make L_INMEM true */
431 1.57 chs error = uvm_fault_wire(kernel_map, addr, addr + USPACE, VM_FAULT_WIRE,
432 1.21 thorpej VM_PROT_READ | VM_PROT_WRITE);
433 1.52 chs if (error) {
434 1.52 chs panic("uvm_swapin: rewiring stack failed: %d", error);
435 1.52 chs }
436 1.6 mrg
437 1.6 mrg /*
438 1.6 mrg * Some architectures need to be notified when the user area has
439 1.6 mrg * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
440 1.6 mrg */
441 1.62 thorpej cpu_swapin(l);
442 1.41 enami SCHED_LOCK(s);
443 1.62 thorpej if (l->l_stat == LSRUN)
444 1.62 thorpej setrunqueue(l);
445 1.62 thorpej l->l_flag |= L_INMEM;
446 1.41 enami SCHED_UNLOCK(s);
447 1.62 thorpej l->l_swtime = 0;
448 1.6 mrg ++uvmexp.swapins;
449 1.1 mrg }
450 1.1 mrg
451 1.1 mrg /*
452 1.1 mrg * uvm_scheduler: process zero main loop
453 1.1 mrg *
454 1.1 mrg * - attempt to swapin every swaped-out, runnable process in order of
455 1.1 mrg * priority.
456 1.1 mrg * - if not enough memory, wake the pagedaemon and let it clear space.
457 1.1 mrg */
458 1.1 mrg
459 1.6 mrg void
460 1.89 thorpej uvm_scheduler(void)
461 1.1 mrg {
462 1.62 thorpej struct lwp *l, *ll;
463 1.32 augustss int pri;
464 1.6 mrg int ppri;
465 1.1 mrg
466 1.1 mrg loop:
467 1.1 mrg #ifdef DEBUG
468 1.6 mrg while (!enableswap)
469 1.43 chs tsleep(&proc0, PVM, "noswap", 0);
470 1.1 mrg #endif
471 1.62 thorpej ll = NULL; /* process to choose */
472 1.6 mrg ppri = INT_MIN; /* its priority */
473 1.29 thorpej proclist_lock_read();
474 1.6 mrg
475 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
476 1.6 mrg /* is it a runnable swapped out process? */
477 1.62 thorpej if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
478 1.62 thorpej pri = l->l_swtime + l->l_slptime -
479 1.62 thorpej (l->l_proc->p_nice - NZERO) * 8;
480 1.6 mrg if (pri > ppri) { /* higher priority? remember it. */
481 1.62 thorpej ll = l;
482 1.6 mrg ppri = pri;
483 1.6 mrg }
484 1.6 mrg }
485 1.6 mrg }
486 1.39 sommerfe /*
487 1.39 sommerfe * XXXSMP: possible unlock/sleep race between here and the
488 1.39 sommerfe * "scheduler" tsleep below..
489 1.39 sommerfe */
490 1.28 thorpej proclist_unlock_read();
491 1.1 mrg
492 1.1 mrg #ifdef DEBUG
493 1.6 mrg if (swapdebug & SDB_FOLLOW)
494 1.62 thorpej printf("scheduler: running, procp %p pri %d\n", ll, ppri);
495 1.1 mrg #endif
496 1.6 mrg /*
497 1.6 mrg * Nothing to do, back to sleep
498 1.6 mrg */
499 1.62 thorpej if ((l = ll) == NULL) {
500 1.43 chs tsleep(&proc0, PVM, "scheduler", 0);
501 1.6 mrg goto loop;
502 1.6 mrg }
503 1.6 mrg
504 1.6 mrg /*
505 1.6 mrg * we have found swapped out process which we would like to bring
506 1.6 mrg * back in.
507 1.6 mrg *
508 1.6 mrg * XXX: this part is really bogus cuz we could deadlock on memory
509 1.6 mrg * despite our feeble check
510 1.6 mrg */
511 1.6 mrg if (uvmexp.free > atop(USPACE)) {
512 1.1 mrg #ifdef DEBUG
513 1.6 mrg if (swapdebug & SDB_SWAPIN)
514 1.6 mrg printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
515 1.62 thorpej l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free);
516 1.1 mrg #endif
517 1.62 thorpej uvm_swapin(l);
518 1.6 mrg goto loop;
519 1.6 mrg }
520 1.6 mrg /*
521 1.6 mrg * not enough memory, jab the pageout daemon and wait til the coast
522 1.6 mrg * is clear
523 1.6 mrg */
524 1.1 mrg #ifdef DEBUG
525 1.6 mrg if (swapdebug & SDB_FOLLOW)
526 1.6 mrg printf("scheduler: no room for pid %d(%s), free %d\n",
527 1.62 thorpej l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free);
528 1.1 mrg #endif
529 1.6 mrg uvm_wait("schedpwait");
530 1.1 mrg #ifdef DEBUG
531 1.6 mrg if (swapdebug & SDB_FOLLOW)
532 1.6 mrg printf("scheduler: room again, free %d\n", uvmexp.free);
533 1.1 mrg #endif
534 1.6 mrg goto loop;
535 1.1 mrg }
536 1.1 mrg
537 1.1 mrg /*
538 1.62 thorpej * swappable: is LWP "l" swappable?
539 1.1 mrg */
540 1.1 mrg
541 1.62 thorpej #define swappable(l) \
542 1.62 thorpej (((l)->l_flag & (L_INMEM)) && \
543 1.62 thorpej ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) && \
544 1.62 thorpej (l)->l_holdcnt == 0)
545 1.1 mrg
546 1.1 mrg /*
547 1.1 mrg * swapout_threads: find threads that can be swapped and unwire their
548 1.1 mrg * u-areas.
549 1.1 mrg *
550 1.1 mrg * - called by the pagedaemon
551 1.1 mrg * - try and swap at least one processs
552 1.1 mrg * - processes that are sleeping or stopped for maxslp or more seconds
553 1.1 mrg * are swapped... otherwise the longest-sleeping or stopped process
554 1.1 mrg * is swapped, otherwise the longest resident process...
555 1.1 mrg */
556 1.60 chs
557 1.6 mrg void
558 1.89 thorpej uvm_swapout_threads(void)
559 1.1 mrg {
560 1.62 thorpej struct lwp *l;
561 1.62 thorpej struct lwp *outl, *outl2;
562 1.6 mrg int outpri, outpri2;
563 1.6 mrg int didswap = 0;
564 1.48 chs extern int maxslp;
565 1.6 mrg /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
566 1.1 mrg
567 1.1 mrg #ifdef DEBUG
568 1.6 mrg if (!enableswap)
569 1.6 mrg return;
570 1.1 mrg #endif
571 1.1 mrg
572 1.6 mrg /*
573 1.62 thorpej * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
574 1.62 thorpej * outl2/outpri2: the longest resident thread (its swap time)
575 1.6 mrg */
576 1.62 thorpej outl = outl2 = NULL;
577 1.6 mrg outpri = outpri2 = 0;
578 1.29 thorpej proclist_lock_read();
579 1.62 thorpej LIST_FOREACH(l, &alllwp, l_list) {
580 1.81 yamt KASSERT(l->l_proc != NULL);
581 1.62 thorpej if (!swappable(l))
582 1.6 mrg continue;
583 1.62 thorpej switch (l->l_stat) {
584 1.68 cl case LSONPROC:
585 1.69 cl KDASSERT(l->l_cpu != curcpu());
586 1.69 cl continue;
587 1.69 cl
588 1.62 thorpej case LSRUN:
589 1.62 thorpej if (l->l_swtime > outpri2) {
590 1.62 thorpej outl2 = l;
591 1.62 thorpej outpri2 = l->l_swtime;
592 1.6 mrg }
593 1.6 mrg continue;
594 1.48 chs
595 1.62 thorpej case LSSLEEP:
596 1.62 thorpej case LSSTOP:
597 1.62 thorpej if (l->l_slptime >= maxslp) {
598 1.62 thorpej uvm_swapout(l);
599 1.6 mrg didswap++;
600 1.62 thorpej } else if (l->l_slptime > outpri) {
601 1.62 thorpej outl = l;
602 1.62 thorpej outpri = l->l_slptime;
603 1.6 mrg }
604 1.6 mrg continue;
605 1.6 mrg }
606 1.6 mrg }
607 1.28 thorpej proclist_unlock_read();
608 1.6 mrg
609 1.6 mrg /*
610 1.6 mrg * If we didn't get rid of any real duds, toss out the next most
611 1.6 mrg * likely sleeping/stopped or running candidate. We only do this
612 1.6 mrg * if we are real low on memory since we don't gain much by doing
613 1.6 mrg * it (USPACE bytes).
614 1.6 mrg */
615 1.6 mrg if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
616 1.62 thorpej if ((l = outl) == NULL)
617 1.62 thorpej l = outl2;
618 1.1 mrg #ifdef DEBUG
619 1.6 mrg if (swapdebug & SDB_SWAPOUT)
620 1.62 thorpej printf("swapout_threads: no duds, try procp %p\n", l);
621 1.1 mrg #endif
622 1.62 thorpej if (l)
623 1.62 thorpej uvm_swapout(l);
624 1.6 mrg }
625 1.1 mrg }
626 1.1 mrg
627 1.1 mrg /*
628 1.62 thorpej * uvm_swapout: swap out lwp "l"
629 1.1 mrg *
630 1.48 chs * - currently "swapout" means "unwire U-area" and "pmap_collect()"
631 1.1 mrg * the pmap.
632 1.1 mrg * - XXXCDC: should deactivate all process' private anonymous memory
633 1.1 mrg */
634 1.1 mrg
635 1.6 mrg static void
636 1.89 thorpej uvm_swapout(struct lwp *l)
637 1.1 mrg {
638 1.13 eeh vaddr_t addr;
639 1.6 mrg int s;
640 1.62 thorpej struct proc *p = l->l_proc;
641 1.1 mrg
642 1.1 mrg #ifdef DEBUG
643 1.6 mrg if (swapdebug & SDB_SWAPOUT)
644 1.62 thorpej printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
645 1.62 thorpej p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
646 1.62 thorpej l->l_slptime, uvmexp.free);
647 1.1 mrg #endif
648 1.1 mrg
649 1.6 mrg /*
650 1.6 mrg * Mark it as (potentially) swapped out.
651 1.6 mrg */
652 1.41 enami SCHED_LOCK(s);
653 1.69 cl if (l->l_stat == LSONPROC) {
654 1.69 cl KDASSERT(l->l_cpu != curcpu());
655 1.68 cl SCHED_UNLOCK(s);
656 1.68 cl return;
657 1.68 cl }
658 1.62 thorpej l->l_flag &= ~L_INMEM;
659 1.62 thorpej if (l->l_stat == LSRUN)
660 1.62 thorpej remrunqueue(l);
661 1.41 enami SCHED_UNLOCK(s);
662 1.62 thorpej l->l_swtime = 0;
663 1.53 chs p->p_stats->p_ru.ru_nswap++;
664 1.6 mrg ++uvmexp.swapouts;
665 1.68 cl
666 1.68 cl /*
667 1.68 cl * Do any machine-specific actions necessary before swapout.
668 1.68 cl * This can include saving floating point state, etc.
669 1.68 cl */
670 1.68 cl cpu_swapout(l);
671 1.43 chs
672 1.43 chs /*
673 1.43 chs * Unwire the to-be-swapped process's user struct and kernel stack.
674 1.43 chs */
675 1.62 thorpej addr = (vaddr_t)l->l_addr;
676 1.62 thorpej uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
677 1.43 chs pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
678 1.1 mrg }
679 1.1 mrg
680 1.56 thorpej /*
681 1.56 thorpej * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
682 1.56 thorpej * a core file.
683 1.56 thorpej */
684 1.56 thorpej
685 1.56 thorpej int
686 1.89 thorpej uvm_coredump_walkmap(struct proc *p, void *iocookie,
687 1.89 thorpej int (*func)(struct proc *, void *, struct uvm_coredump_state *),
688 1.89 thorpej void *cookie)
689 1.56 thorpej {
690 1.56 thorpej struct uvm_coredump_state state;
691 1.56 thorpej struct vmspace *vm = p->p_vmspace;
692 1.56 thorpej struct vm_map *map = &vm->vm_map;
693 1.56 thorpej struct vm_map_entry *entry;
694 1.56 thorpej int error;
695 1.56 thorpej
696 1.64 atatat entry = NULL;
697 1.64 atatat vm_map_lock_read(map);
698 1.87 matt state.end = 0;
699 1.64 atatat for (;;) {
700 1.64 atatat if (entry == NULL)
701 1.64 atatat entry = map->header.next;
702 1.64 atatat else if (!uvm_map_lookup_entry(map, state.end, &entry))
703 1.64 atatat entry = entry->next;
704 1.64 atatat if (entry == &map->header)
705 1.64 atatat break;
706 1.64 atatat
707 1.56 thorpej state.cookie = cookie;
708 1.86 matt if (state.end > entry->start) {
709 1.86 matt state.start = state.end;
710 1.86 matt } else {
711 1.86 matt state.start = entry->start;
712 1.86 matt }
713 1.86 matt state.realend = entry->end;
714 1.56 thorpej state.end = entry->end;
715 1.56 thorpej state.prot = entry->protection;
716 1.56 thorpej state.flags = 0;
717 1.56 thorpej
718 1.82 chs /*
719 1.82 chs * Dump the region unless one of the following is true:
720 1.82 chs *
721 1.82 chs * (1) the region has neither object nor amap behind it
722 1.82 chs * (ie. it has never been accessed).
723 1.82 chs *
724 1.82 chs * (2) the region has no amap and is read-only
725 1.82 chs * (eg. an executable text section).
726 1.82 chs *
727 1.82 chs * (3) the region's object is a device.
728 1.85 nathanw *
729 1.85 nathanw * (4) the region is unreadable by the process.
730 1.82 chs */
731 1.56 thorpej
732 1.82 chs KASSERT(!UVM_ET_ISSUBMAP(entry));
733 1.82 chs KASSERT(state.start < VM_MAXUSER_ADDRESS);
734 1.82 chs KASSERT(state.end <= VM_MAXUSER_ADDRESS);
735 1.82 chs if (entry->object.uvm_obj == NULL &&
736 1.82 chs entry->aref.ar_amap == NULL) {
737 1.86 matt state.realend = state.start;
738 1.86 matt } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
739 1.82 chs entry->aref.ar_amap == NULL) {
740 1.86 matt state.realend = state.start;
741 1.86 matt } else if (entry->object.uvm_obj != NULL &&
742 1.82 chs UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
743 1.86 matt state.realend = state.start;
744 1.86 matt } else if ((entry->protection & VM_PROT_READ) == 0) {
745 1.86 matt state.realend = state.start;
746 1.86 matt } else {
747 1.86 matt if (state.start >= (vaddr_t)vm->vm_maxsaddr)
748 1.86 matt state.flags |= UVM_COREDUMP_STACK;
749 1.86 matt
750 1.86 matt /*
751 1.86 matt * If this an anonymous entry, only dump instantiated
752 1.86 matt * pages.
753 1.86 matt */
754 1.86 matt if (entry->object.uvm_obj == NULL) {
755 1.86 matt vaddr_t end;
756 1.86 matt
757 1.86 matt amap_lock(entry->aref.ar_amap);
758 1.86 matt for (end = state.start;
759 1.86 matt end < state.end; end += PAGE_SIZE) {
760 1.86 matt struct vm_anon *anon;
761 1.86 matt anon = amap_lookup(&entry->aref,
762 1.86 matt end - entry->start);
763 1.86 matt /*
764 1.86 matt * If we have already encountered an
765 1.86 matt * uninstantiated page, stop at the
766 1.86 matt * first instantied page.
767 1.86 matt */
768 1.86 matt if (anon != NULL &&
769 1.86 matt state.realend != state.end) {
770 1.86 matt state.end = end;
771 1.86 matt break;
772 1.86 matt }
773 1.86 matt
774 1.86 matt /*
775 1.86 matt * If this page is the first
776 1.86 matt * uninstantiated page, mark this as
777 1.86 matt * the real ending point. Continue to
778 1.86 matt * counting uninstantiated pages.
779 1.86 matt */
780 1.86 matt if (anon == NULL &&
781 1.86 matt state.realend == state.end) {
782 1.86 matt state.realend = end;
783 1.86 matt }
784 1.86 matt }
785 1.86 matt amap_unlock(entry->aref.ar_amap);
786 1.86 matt }
787 1.82 chs }
788 1.86 matt
789 1.56 thorpej
790 1.64 atatat vm_map_unlock_read(map);
791 1.88 matt error = (*func)(p, iocookie, &state);
792 1.56 thorpej if (error)
793 1.56 thorpej return (error);
794 1.64 atatat vm_map_lock_read(map);
795 1.56 thorpej }
796 1.64 atatat vm_map_unlock_read(map);
797 1.56 thorpej
798 1.56 thorpej return (0);
799 1.56 thorpej }
800