Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.89.2.7
      1  1.89.2.7      yamt /*	$NetBSD: uvm_glue.c,v 1.89.2.7 2008/01/21 09:48:21 yamt Exp $	*/
      2       1.1       mrg 
      3      1.48       chs /*
      4       1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5      1.48       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1       mrg  *
      7       1.1       mrg  * All rights reserved.
      8       1.1       mrg  *
      9       1.1       mrg  * This code is derived from software contributed to Berkeley by
     10       1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1       mrg  *
     12       1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1       mrg  * modification, are permitted provided that the following conditions
     14       1.1       mrg  * are met:
     15       1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1       mrg  *    must display the following acknowledgement:
     22       1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23      1.48       chs  *      Washington University, the University of California, Berkeley and
     24       1.1       mrg  *      its contributors.
     25       1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1       mrg  *    may be used to endorse or promote products derived from this software
     27       1.1       mrg  *    without specific prior written permission.
     28       1.1       mrg  *
     29       1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1       mrg  * SUCH DAMAGE.
     40       1.1       mrg  *
     41       1.1       mrg  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42       1.4       mrg  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43       1.1       mrg  *
     44       1.1       mrg  *
     45       1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1       mrg  * All rights reserved.
     47      1.48       chs  *
     48       1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1       mrg  * notice and this permission notice appear in all copies of the
     51       1.1       mrg  * software, derivative works or modified versions, and any portions
     52       1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53      1.48       chs  *
     54      1.48       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55      1.48       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57      1.48       chs  *
     58       1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1       mrg  *
     60       1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1       mrg  *  School of Computer Science
     62       1.1       mrg  *  Carnegie Mellon University
     63       1.1       mrg  *  Pittsburgh PA 15213-3890
     64       1.1       mrg  *
     65       1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1       mrg  * rights to redistribute these changes.
     67       1.1       mrg  */
     68      1.55     lukem 
     69      1.55     lukem #include <sys/cdefs.h>
     70  1.89.2.7      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.89.2.7 2008/01/21 09:48:21 yamt Exp $");
     71       1.1       mrg 
     72  1.89.2.2      yamt #include "opt_coredump.h"
     73      1.49     lukem #include "opt_kgdb.h"
     74      1.59      yamt #include "opt_kstack.h"
     75       1.5       mrg #include "opt_uvmhist.h"
     76       1.5       mrg 
     77       1.1       mrg /*
     78       1.1       mrg  * uvm_glue.c: glue functions
     79       1.1       mrg  */
     80       1.1       mrg 
     81       1.1       mrg #include <sys/param.h>
     82       1.1       mrg #include <sys/systm.h>
     83       1.1       mrg #include <sys/proc.h>
     84       1.1       mrg #include <sys/resourcevar.h>
     85       1.1       mrg #include <sys/buf.h>
     86       1.1       mrg #include <sys/user.h>
     87  1.89.2.4      yamt #include <sys/syncobj.h>
     88  1.89.2.4      yamt #include <sys/cpu.h>
     89  1.89.2.7      yamt #include <sys/atomic.h>
     90       1.1       mrg 
     91       1.1       mrg #include <uvm/uvm.h>
     92       1.1       mrg 
     93       1.1       mrg /*
     94       1.1       mrg  * local prototypes
     95       1.1       mrg  */
     96       1.1       mrg 
     97      1.78  junyoung static void uvm_swapout(struct lwp *);
     98       1.1       mrg 
     99  1.89.2.4      yamt #define UVM_NUAREA_HIWAT	20
    100  1.89.2.4      yamt #define	UVM_NUAREA_LOWAT	16
    101  1.89.2.4      yamt 
    102  1.89.2.1      yamt #define	UAREA_NEXTFREE(uarea)	(*(vaddr_t *)(UAREA_TO_USER(uarea)))
    103      1.60       chs 
    104       1.1       mrg /*
    105       1.1       mrg  * XXXCDC: do these really belong here?
    106       1.1       mrg  */
    107       1.1       mrg 
    108      1.28   thorpej /*
    109       1.1       mrg  * uvm_kernacc: can the kernel access a region of memory
    110       1.1       mrg  *
    111      1.83      yamt  * - used only by /dev/kmem driver (mem.c)
    112       1.1       mrg  */
    113       1.1       mrg 
    114  1.89.2.3      yamt bool
    115  1.89.2.4      yamt uvm_kernacc(void *addr, size_t len, int rw)
    116       1.6       mrg {
    117  1.89.2.3      yamt 	bool rv;
    118      1.13       eeh 	vaddr_t saddr, eaddr;
    119       1.6       mrg 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    120       1.6       mrg 
    121      1.31    kleink 	saddr = trunc_page((vaddr_t)addr);
    122      1.43       chs 	eaddr = round_page((vaddr_t)addr + len);
    123       1.6       mrg 	vm_map_lock_read(kernel_map);
    124       1.6       mrg 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    125       1.6       mrg 	vm_map_unlock_read(kernel_map);
    126       1.6       mrg 
    127       1.6       mrg 	return(rv);
    128       1.1       mrg }
    129       1.1       mrg 
    130       1.1       mrg #ifdef KGDB
    131       1.1       mrg /*
    132       1.1       mrg  * Change protections on kernel pages from addr to addr+len
    133       1.1       mrg  * (presumably so debugger can plant a breakpoint).
    134       1.1       mrg  *
    135       1.1       mrg  * We force the protection change at the pmap level.  If we were
    136       1.1       mrg  * to use vm_map_protect a change to allow writing would be lazily-
    137       1.1       mrg  * applied meaning we would still take a protection fault, something
    138       1.1       mrg  * we really don't want to do.  It would also fragment the kernel
    139       1.1       mrg  * map unnecessarily.  We cannot use pmap_protect since it also won't
    140       1.1       mrg  * enforce a write-enable request.  Using pmap_enter is the only way
    141       1.1       mrg  * we can ensure the change takes place properly.
    142       1.1       mrg  */
    143       1.6       mrg void
    144  1.89.2.4      yamt uvm_chgkprot(void *addr, size_t len, int rw)
    145       1.6       mrg {
    146       1.6       mrg 	vm_prot_t prot;
    147      1.13       eeh 	paddr_t pa;
    148      1.13       eeh 	vaddr_t sva, eva;
    149       1.6       mrg 
    150       1.6       mrg 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    151      1.31    kleink 	eva = round_page((vaddr_t)addr + len);
    152      1.31    kleink 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    153       1.6       mrg 		/*
    154       1.6       mrg 		 * Extract physical address for the page.
    155       1.6       mrg 		 */
    156  1.89.2.3      yamt 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    157       1.6       mrg 			panic("chgkprot: invalid page");
    158      1.30   thorpej 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    159       1.6       mrg 	}
    160      1.51     chris 	pmap_update(pmap_kernel());
    161       1.1       mrg }
    162       1.1       mrg #endif
    163       1.1       mrg 
    164       1.1       mrg /*
    165      1.52       chs  * uvm_vslock: wire user memory for I/O
    166       1.1       mrg  *
    167       1.1       mrg  * - called from physio and sys___sysctl
    168       1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    169       1.1       mrg  */
    170       1.1       mrg 
    171      1.26   thorpej int
    172  1.89.2.2      yamt uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    173       1.1       mrg {
    174      1.50       chs 	struct vm_map *map;
    175      1.26   thorpej 	vaddr_t start, end;
    176      1.45       chs 	int error;
    177      1.26   thorpej 
    178  1.89.2.2      yamt 	map = &vs->vm_map;
    179      1.31    kleink 	start = trunc_page((vaddr_t)addr);
    180      1.31    kleink 	end = round_page((vaddr_t)addr + len);
    181  1.89.2.1      yamt 	error = uvm_fault_wire(map, start, end, access_type, 0);
    182      1.45       chs 	return error;
    183       1.1       mrg }
    184       1.1       mrg 
    185       1.1       mrg /*
    186      1.52       chs  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    187       1.1       mrg  *
    188       1.1       mrg  * - called from physio and sys___sysctl
    189       1.1       mrg  * - XXXCDC: consider nuking this (or making it a macro?)
    190       1.1       mrg  */
    191       1.1       mrg 
    192       1.6       mrg void
    193  1.89.2.2      yamt uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    194       1.1       mrg {
    195  1.89.2.2      yamt 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    196      1.43       chs 		round_page((vaddr_t)addr + len));
    197       1.1       mrg }
    198       1.1       mrg 
    199       1.1       mrg /*
    200      1.62   thorpej  * uvm_proc_fork: fork a virtual address space
    201       1.1       mrg  *
    202       1.1       mrg  * - the address space is copied as per parent map's inherit values
    203      1.62   thorpej  */
    204      1.62   thorpej void
    205  1.89.2.3      yamt uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    206      1.62   thorpej {
    207      1.62   thorpej 
    208  1.89.2.3      yamt 	if (shared == true) {
    209      1.62   thorpej 		p2->p_vmspace = NULL;
    210      1.62   thorpej 		uvmspace_share(p1, p2);
    211      1.62   thorpej 	} else {
    212      1.62   thorpej 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    213      1.62   thorpej 	}
    214      1.62   thorpej 
    215      1.62   thorpej 	cpu_proc_fork(p1, p2);
    216      1.62   thorpej }
    217      1.62   thorpej 
    218      1.62   thorpej 
    219      1.62   thorpej /*
    220      1.62   thorpej  * uvm_lwp_fork: fork a thread
    221      1.62   thorpej  *
    222       1.1       mrg  * - a new "user" structure is allocated for the child process
    223       1.1       mrg  *	[filled in by MD layer...]
    224      1.20   thorpej  * - if specified, the child gets a new user stack described by
    225      1.20   thorpej  *	stack and stacksize
    226       1.1       mrg  * - NOTE: the kernel stack may be at a different location in the child
    227       1.1       mrg  *	process, and thus addresses of automatic variables may be invalid
    228      1.62   thorpej  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    229      1.62   thorpej  *	after cpu_lwp_fork returns.
    230       1.1       mrg  * - XXXCDC: we need a way for this to return a failure value rather
    231       1.1       mrg  *   than just hang
    232       1.1       mrg  */
    233       1.6       mrg void
    234      1.89   thorpej uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    235      1.89   thorpej     void (*func)(void *), void *arg)
    236       1.6       mrg {
    237      1.45       chs 	int error;
    238       1.6       mrg 
    239       1.6       mrg 	/*
    240       1.7   thorpej 	 * Wire down the U-area for the process, which contains the PCB
    241      1.62   thorpej 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    242      1.62   thorpej 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    243      1.61       chs 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    244      1.62   thorpej 	 * L_INMEM will already be set and we don't need to do anything.
    245      1.21   thorpej 	 *
    246      1.61       chs 	 * Note the kernel stack gets read/write accesses right off the bat.
    247       1.6       mrg 	 */
    248      1.61       chs 
    249  1.89.2.3      yamt 	if ((l2->l_flag & LW_INMEM) == 0) {
    250  1.89.2.1      yamt 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    251  1.89.2.1      yamt 
    252  1.89.2.1      yamt 		error = uvm_fault_wire(kernel_map, uarea,
    253  1.89.2.1      yamt 		    uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
    254      1.61       chs 		if (error)
    255      1.62   thorpej 			panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
    256      1.67       scw #ifdef PMAP_UAREA
    257      1.67       scw 		/* Tell the pmap this is a u-area mapping */
    258  1.89.2.1      yamt 		PMAP_UAREA(uarea);
    259      1.67       scw #endif
    260  1.89.2.3      yamt 		l2->l_flag |= LW_INMEM;
    261      1.61       chs 	}
    262      1.59      yamt 
    263      1.59      yamt #ifdef KSTACK_CHECK_MAGIC
    264      1.59      yamt 	/*
    265      1.59      yamt 	 * fill stack with magic number
    266      1.59      yamt 	 */
    267      1.63      yamt 	kstack_setup_magic(l2);
    268      1.59      yamt #endif
    269       1.6       mrg 
    270       1.6       mrg 	/*
    271      1.62   thorpej 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    272      1.62   thorpej  	 * to run.  If this is a normal user fork, the child will exit
    273      1.34   thorpej 	 * directly to user mode via child_return() on its first time
    274      1.34   thorpej 	 * slice and will not return here.  If this is a kernel thread,
    275      1.34   thorpej 	 * the specified entry point will be executed.
    276       1.6       mrg 	 */
    277      1.62   thorpej 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    278      1.14   thorpej }
    279      1.14   thorpej 
    280      1.14   thorpej /*
    281  1.89.2.4      yamt  * uvm_cpu_attach: initialize per-CPU data structures.
    282  1.89.2.4      yamt  */
    283  1.89.2.4      yamt 
    284  1.89.2.4      yamt void
    285  1.89.2.4      yamt uvm_cpu_attach(struct cpu_info *ci)
    286  1.89.2.4      yamt {
    287  1.89.2.4      yamt 
    288  1.89.2.4      yamt 	mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
    289  1.89.2.4      yamt 	ci->ci_data.cpu_uarea_cnt = 0;
    290  1.89.2.4      yamt 	ci->ci_data.cpu_uarea_list = 0;
    291  1.89.2.4      yamt }
    292  1.89.2.4      yamt 
    293  1.89.2.4      yamt /*
    294      1.60       chs  * uvm_uarea_alloc: allocate a u-area
    295      1.60       chs  */
    296      1.60       chs 
    297  1.89.2.3      yamt bool
    298      1.61       chs uvm_uarea_alloc(vaddr_t *uaddrp)
    299      1.60       chs {
    300  1.89.2.4      yamt 	struct cpu_info *ci;
    301      1.60       chs 	vaddr_t uaddr;
    302      1.60       chs 
    303      1.60       chs #ifndef USPACE_ALIGN
    304      1.60       chs #define USPACE_ALIGN    0
    305      1.60       chs #endif
    306      1.60       chs 
    307  1.89.2.4      yamt 	ci = curcpu();
    308  1.89.2.4      yamt 
    309  1.89.2.4      yamt 	if (ci->ci_data.cpu_uarea_cnt > 0) {
    310  1.89.2.4      yamt 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
    311  1.89.2.4      yamt 		if (ci->ci_data.cpu_uarea_cnt == 0) {
    312  1.89.2.4      yamt 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    313  1.89.2.4      yamt 		} else {
    314  1.89.2.4      yamt 			uaddr = ci->ci_data.cpu_uarea_list;
    315  1.89.2.4      yamt 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
    316  1.89.2.4      yamt 			ci->ci_data.cpu_uarea_cnt--;
    317  1.89.2.4      yamt 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    318  1.89.2.4      yamt 			*uaddrp = uaddr;
    319  1.89.2.4      yamt 			return true;
    320  1.89.2.4      yamt 		}
    321      1.60       chs 	}
    322  1.89.2.4      yamt 
    323  1.89.2.4      yamt 	*uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
    324  1.89.2.4      yamt 	    UVM_KMF_PAGEABLE);
    325  1.89.2.4      yamt 	return false;
    326      1.60       chs }
    327      1.60       chs 
    328      1.60       chs /*
    329  1.89.2.4      yamt  * uvm_uarea_free: free a u-area
    330      1.75  jdolecek  */
    331      1.75  jdolecek 
    332  1.89.2.4      yamt void
    333  1.89.2.6      yamt uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
    334      1.75  jdolecek {
    335  1.89.2.4      yamt 
    336  1.89.2.4      yamt 	mutex_enter(&ci->ci_data.cpu_uarea_lock);
    337  1.89.2.4      yamt 	UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
    338  1.89.2.4      yamt 	ci->ci_data.cpu_uarea_list = uaddr;
    339  1.89.2.4      yamt 	ci->ci_data.cpu_uarea_cnt++;
    340  1.89.2.4      yamt 	mutex_exit(&ci->ci_data.cpu_uarea_lock);
    341      1.75  jdolecek }
    342      1.75  jdolecek 
    343      1.75  jdolecek /*
    344      1.75  jdolecek  * uvm_uarea_drain: return memory of u-areas over limit
    345      1.75  jdolecek  * back to system
    346  1.89.2.4      yamt  *
    347  1.89.2.4      yamt  * => if asked to drain as much as possible, drain all cpus.
    348  1.89.2.4      yamt  * => if asked to drain to low water mark, drain local cpu only.
    349      1.60       chs  */
    350      1.60       chs 
    351      1.60       chs void
    352  1.89.2.3      yamt uvm_uarea_drain(bool empty)
    353      1.60       chs {
    354  1.89.2.4      yamt 	CPU_INFO_ITERATOR cii;
    355  1.89.2.4      yamt 	struct cpu_info *ci;
    356  1.89.2.4      yamt 	vaddr_t uaddr, nuaddr;
    357  1.89.2.4      yamt 	int count;
    358  1.89.2.4      yamt 
    359  1.89.2.4      yamt 	if (empty) {
    360  1.89.2.4      yamt 		for (CPU_INFO_FOREACH(cii, ci)) {
    361  1.89.2.4      yamt 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
    362  1.89.2.4      yamt 			count = ci->ci_data.cpu_uarea_cnt;
    363  1.89.2.4      yamt 			uaddr = ci->ci_data.cpu_uarea_list;
    364  1.89.2.4      yamt 			ci->ci_data.cpu_uarea_cnt = 0;
    365  1.89.2.4      yamt 			ci->ci_data.cpu_uarea_list = 0;
    366  1.89.2.4      yamt 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    367  1.89.2.4      yamt 
    368  1.89.2.4      yamt 			while (count != 0) {
    369  1.89.2.4      yamt 				nuaddr = UAREA_NEXTFREE(uaddr);
    370  1.89.2.4      yamt 				uvm_km_free(kernel_map, uaddr, USPACE,
    371  1.89.2.4      yamt 				    UVM_KMF_PAGEABLE);
    372  1.89.2.4      yamt 				uaddr = nuaddr;
    373  1.89.2.4      yamt 				count--;
    374  1.89.2.4      yamt 			}
    375  1.89.2.4      yamt 		}
    376      1.75  jdolecek 		return;
    377  1.89.2.4      yamt 	}
    378      1.60       chs 
    379  1.89.2.4      yamt 	ci = curcpu();
    380  1.89.2.4      yamt 	if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
    381  1.89.2.4      yamt 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
    382  1.89.2.4      yamt 		while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
    383  1.89.2.4      yamt 			uaddr = ci->ci_data.cpu_uarea_list;
    384  1.89.2.4      yamt 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
    385  1.89.2.4      yamt 			ci->ci_data.cpu_uarea_cnt--;
    386  1.89.2.4      yamt 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    387  1.89.2.4      yamt 			uvm_km_free(kernel_map, uaddr, USPACE,
    388  1.89.2.4      yamt 			    UVM_KMF_PAGEABLE);
    389  1.89.2.4      yamt 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
    390  1.89.2.4      yamt 		}
    391  1.89.2.4      yamt 		mutex_exit(&ci->ci_data.cpu_uarea_lock);
    392      1.60       chs 	}
    393      1.60       chs }
    394      1.60       chs 
    395      1.60       chs /*
    396      1.80        pk  * uvm_exit: exit a virtual address space
    397      1.80        pk  *
    398      1.80        pk  * - the process passed to us is a dead (pre-zombie) process; we
    399      1.80        pk  *   are running on a different context now (the reaper).
    400      1.80        pk  * - borrow proc0's address space because freeing the vmspace
    401      1.80        pk  *   of the dead process may block.
    402      1.80        pk  */
    403      1.80        pk 
    404      1.80        pk void
    405      1.89   thorpej uvm_proc_exit(struct proc *p)
    406      1.80        pk {
    407      1.80        pk 	struct lwp *l = curlwp; /* XXX */
    408      1.80        pk 	struct vmspace *ovm;
    409      1.80        pk 
    410      1.80        pk 	KASSERT(p == l->l_proc);
    411      1.80        pk 	ovm = p->p_vmspace;
    412      1.80        pk 
    413      1.80        pk 	/*
    414      1.80        pk 	 * borrow proc0's address space.
    415      1.80        pk 	 */
    416      1.80        pk 	pmap_deactivate(l);
    417      1.80        pk 	p->p_vmspace = proc0.p_vmspace;
    418      1.80        pk 	pmap_activate(l);
    419      1.80        pk 
    420      1.80        pk 	uvmspace_free(ovm);
    421      1.80        pk }
    422      1.80        pk 
    423      1.80        pk void
    424      1.80        pk uvm_lwp_exit(struct lwp *l)
    425      1.80        pk {
    426  1.89.2.1      yamt 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    427      1.80        pk 
    428  1.89.2.3      yamt 	l->l_flag &= ~LW_INMEM;
    429  1.89.2.6      yamt 	uvm_uarea_free(va, l->l_cpu);
    430      1.80        pk 	l->l_addr = NULL;
    431      1.80        pk }
    432      1.80        pk 
    433      1.80        pk /*
    434       1.1       mrg  * uvm_init_limit: init per-process VM limits
    435       1.1       mrg  *
    436       1.1       mrg  * - called for process 0 and then inherited by all others.
    437       1.1       mrg  */
    438      1.60       chs 
    439       1.6       mrg void
    440      1.89   thorpej uvm_init_limits(struct proc *p)
    441       1.6       mrg {
    442       1.6       mrg 
    443       1.6       mrg 	/*
    444       1.6       mrg 	 * Set up the initial limits on process VM.  Set the maximum
    445       1.6       mrg 	 * resident set size to be all of (reasonably) available memory.
    446       1.6       mrg 	 * This causes any single, large process to start random page
    447       1.6       mrg 	 * replacement once it fills memory.
    448       1.6       mrg 	 */
    449       1.6       mrg 
    450       1.6       mrg 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    451      1.79        pk 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    452       1.6       mrg 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    453      1.79        pk 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    454       1.6       mrg 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    455       1.1       mrg }
    456       1.1       mrg 
    457       1.1       mrg #ifdef DEBUG
    458       1.1       mrg int	enableswap = 1;
    459       1.1       mrg int	swapdebug = 0;
    460       1.1       mrg #define	SDB_FOLLOW	1
    461       1.1       mrg #define SDB_SWAPIN	2
    462       1.1       mrg #define SDB_SWAPOUT	4
    463       1.1       mrg #endif
    464       1.1       mrg 
    465       1.1       mrg /*
    466  1.89.2.1      yamt  * uvm_swapin: swap in an lwp's u-area.
    467  1.89.2.4      yamt  *
    468  1.89.2.4      yamt  * - must be called with the LWP's swap lock held.
    469  1.89.2.4      yamt  * - naturally, must not be called with l == curlwp
    470       1.1       mrg  */
    471       1.1       mrg 
    472       1.6       mrg void
    473      1.89   thorpej uvm_swapin(struct lwp *l)
    474       1.6       mrg {
    475      1.13       eeh 	vaddr_t addr;
    476  1.89.2.3      yamt 	int error;
    477       1.6       mrg 
    478  1.89.2.5      yamt 	/* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
    479  1.89.2.4      yamt 	KASSERT(l != curlwp);
    480  1.89.2.4      yamt 
    481  1.89.2.1      yamt 	addr = USER_TO_UAREA(l->l_addr);
    482      1.62   thorpej 	/* make L_INMEM true */
    483  1.89.2.1      yamt 	error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
    484  1.89.2.1      yamt 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    485      1.52       chs 	if (error) {
    486      1.52       chs 		panic("uvm_swapin: rewiring stack failed: %d", error);
    487      1.52       chs 	}
    488       1.6       mrg 
    489       1.6       mrg 	/*
    490       1.6       mrg 	 * Some architectures need to be notified when the user area has
    491       1.6       mrg 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    492       1.6       mrg 	 */
    493      1.62   thorpej 	cpu_swapin(l);
    494  1.89.2.3      yamt 	lwp_lock(l);
    495      1.62   thorpej 	if (l->l_stat == LSRUN)
    496  1.89.2.4      yamt 		sched_enqueue(l, false);
    497  1.89.2.3      yamt 	l->l_flag |= LW_INMEM;
    498      1.62   thorpej 	l->l_swtime = 0;
    499  1.89.2.3      yamt 	lwp_unlock(l);
    500       1.6       mrg 	++uvmexp.swapins;
    501       1.1       mrg }
    502       1.1       mrg 
    503       1.1       mrg /*
    504  1.89.2.3      yamt  * uvm_kick_scheduler: kick the scheduler into action if not running.
    505  1.89.2.3      yamt  *
    506  1.89.2.3      yamt  * - called when swapped out processes have been awoken.
    507  1.89.2.3      yamt  */
    508  1.89.2.3      yamt 
    509  1.89.2.3      yamt void
    510  1.89.2.3      yamt uvm_kick_scheduler(void)
    511  1.89.2.3      yamt {
    512  1.89.2.3      yamt 
    513  1.89.2.3      yamt 	if (uvm.swap_running == false)
    514  1.89.2.3      yamt 		return;
    515  1.89.2.3      yamt 
    516  1.89.2.4      yamt 	mutex_enter(&uvm_scheduler_mutex);
    517  1.89.2.3      yamt 	uvm.scheduler_kicked = true;
    518  1.89.2.3      yamt 	cv_signal(&uvm.scheduler_cv);
    519  1.89.2.4      yamt 	mutex_exit(&uvm_scheduler_mutex);
    520  1.89.2.3      yamt }
    521  1.89.2.3      yamt 
    522  1.89.2.3      yamt /*
    523       1.1       mrg  * uvm_scheduler: process zero main loop
    524       1.1       mrg  *
    525       1.1       mrg  * - attempt to swapin every swaped-out, runnable process in order of
    526       1.1       mrg  *	priority.
    527       1.1       mrg  * - if not enough memory, wake the pagedaemon and let it clear space.
    528       1.1       mrg  */
    529       1.1       mrg 
    530       1.6       mrg void
    531      1.89   thorpej uvm_scheduler(void)
    532       1.1       mrg {
    533      1.62   thorpej 	struct lwp *l, *ll;
    534      1.32  augustss 	int pri;
    535       1.6       mrg 	int ppri;
    536       1.1       mrg 
    537  1.89.2.3      yamt 	l = curlwp;
    538  1.89.2.3      yamt 	lwp_lock(l);
    539  1.89.2.6      yamt 	l->l_priority = PRI_VM;
    540  1.89.2.6      yamt 	l->l_class = SCHED_FIFO;
    541  1.89.2.3      yamt 	lwp_unlock(l);
    542       1.6       mrg 
    543  1.89.2.3      yamt 	for (;;) {
    544  1.89.2.3      yamt #ifdef DEBUG
    545  1.89.2.4      yamt 		mutex_enter(&uvm_scheduler_mutex);
    546  1.89.2.3      yamt 		while (!enableswap)
    547  1.89.2.4      yamt 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
    548  1.89.2.4      yamt 		mutex_exit(&uvm_scheduler_mutex);
    549  1.89.2.3      yamt #endif
    550  1.89.2.3      yamt 		ll = NULL;		/* process to choose */
    551  1.89.2.3      yamt 		ppri = INT_MIN;		/* its priority */
    552  1.89.2.3      yamt 
    553  1.89.2.4      yamt 		mutex_enter(&proclist_lock);
    554  1.89.2.3      yamt 		LIST_FOREACH(l, &alllwp, l_list) {
    555  1.89.2.3      yamt 			/* is it a runnable swapped out process? */
    556  1.89.2.3      yamt 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
    557  1.89.2.3      yamt 				pri = l->l_swtime + l->l_slptime -
    558  1.89.2.3      yamt 				    (l->l_proc->p_nice - NZERO) * 8;
    559  1.89.2.3      yamt 				if (pri > ppri) {   /* higher priority? */
    560  1.89.2.3      yamt 					ll = l;
    561  1.89.2.3      yamt 					ppri = pri;
    562  1.89.2.3      yamt 				}
    563       1.6       mrg 			}
    564       1.6       mrg 		}
    565       1.1       mrg #ifdef DEBUG
    566  1.89.2.3      yamt 		if (swapdebug & SDB_FOLLOW)
    567  1.89.2.3      yamt 			printf("scheduler: running, procp %p pri %d\n", ll,
    568  1.89.2.3      yamt 			    ppri);
    569       1.1       mrg #endif
    570  1.89.2.3      yamt 		/*
    571  1.89.2.3      yamt 		 * Nothing to do, back to sleep
    572  1.89.2.3      yamt 		 */
    573  1.89.2.3      yamt 		if ((l = ll) == NULL) {
    574  1.89.2.4      yamt 			mutex_exit(&proclist_lock);
    575  1.89.2.4      yamt 			mutex_enter(&uvm_scheduler_mutex);
    576  1.89.2.3      yamt 			if (uvm.scheduler_kicked == false)
    577  1.89.2.3      yamt 				cv_wait(&uvm.scheduler_cv,
    578  1.89.2.4      yamt 				    &uvm_scheduler_mutex);
    579  1.89.2.3      yamt 			uvm.scheduler_kicked = false;
    580  1.89.2.4      yamt 			mutex_exit(&uvm_scheduler_mutex);
    581  1.89.2.3      yamt 			continue;
    582  1.89.2.3      yamt 		}
    583       1.6       mrg 
    584  1.89.2.3      yamt 		/*
    585  1.89.2.3      yamt 		 * we have found swapped out process which we would like
    586  1.89.2.3      yamt 		 * to bring back in.
    587  1.89.2.3      yamt 		 *
    588  1.89.2.3      yamt 		 * XXX: this part is really bogus cuz we could deadlock
    589  1.89.2.3      yamt 		 * on memory despite our feeble check
    590  1.89.2.3      yamt 		 */
    591  1.89.2.3      yamt 		if (uvmexp.free > atop(USPACE)) {
    592       1.1       mrg #ifdef DEBUG
    593  1.89.2.3      yamt 			if (swapdebug & SDB_SWAPIN)
    594  1.89.2.3      yamt 				printf("swapin: pid %d(%s)@%p, pri %d "
    595  1.89.2.3      yamt 				    "free %d\n", l->l_proc->p_pid,
    596  1.89.2.3      yamt 				    l->l_proc->p_comm, l->l_addr, ppri,
    597  1.89.2.3      yamt 				    uvmexp.free);
    598       1.1       mrg #endif
    599  1.89.2.4      yamt 			mutex_enter(&l->l_swaplock);
    600  1.89.2.4      yamt 			mutex_exit(&proclist_lock);
    601  1.89.2.3      yamt 			uvm_swapin(l);
    602  1.89.2.4      yamt 			mutex_exit(&l->l_swaplock);
    603  1.89.2.4      yamt 			continue;
    604  1.89.2.3      yamt 		} else {
    605  1.89.2.3      yamt 			/*
    606  1.89.2.3      yamt 			 * not enough memory, jab the pageout daemon and
    607  1.89.2.3      yamt 			 * wait til the coast is clear
    608  1.89.2.3      yamt 			 */
    609  1.89.2.4      yamt 			mutex_exit(&proclist_lock);
    610       1.1       mrg #ifdef DEBUG
    611  1.89.2.3      yamt 			if (swapdebug & SDB_FOLLOW)
    612  1.89.2.3      yamt 				printf("scheduler: no room for pid %d(%s),"
    613  1.89.2.3      yamt 				    " free %d\n", l->l_proc->p_pid,
    614  1.89.2.3      yamt 				    l->l_proc->p_comm, uvmexp.free);
    615       1.1       mrg #endif
    616  1.89.2.3      yamt 			uvm_wait("schedpwait");
    617       1.1       mrg #ifdef DEBUG
    618  1.89.2.3      yamt 			if (swapdebug & SDB_FOLLOW)
    619  1.89.2.3      yamt 				printf("scheduler: room again, free %d\n",
    620  1.89.2.3      yamt 				    uvmexp.free);
    621       1.1       mrg #endif
    622  1.89.2.3      yamt 		}
    623  1.89.2.3      yamt 	}
    624       1.1       mrg }
    625       1.1       mrg 
    626       1.1       mrg /*
    627      1.62   thorpej  * swappable: is LWP "l" swappable?
    628       1.1       mrg  */
    629       1.1       mrg 
    630  1.89.2.4      yamt static bool
    631  1.89.2.4      yamt swappable(struct lwp *l)
    632  1.89.2.4      yamt {
    633  1.89.2.4      yamt 
    634  1.89.2.4      yamt 	if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
    635  1.89.2.4      yamt 		return false;
    636  1.89.2.4      yamt 	if (l->l_holdcnt != 0)
    637  1.89.2.4      yamt 		return false;
    638  1.89.2.4      yamt 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
    639  1.89.2.4      yamt 		return false;
    640  1.89.2.4      yamt 	return true;
    641  1.89.2.4      yamt }
    642       1.1       mrg 
    643       1.1       mrg /*
    644       1.1       mrg  * swapout_threads: find threads that can be swapped and unwire their
    645       1.1       mrg  *	u-areas.
    646       1.1       mrg  *
    647       1.1       mrg  * - called by the pagedaemon
    648       1.1       mrg  * - try and swap at least one processs
    649       1.1       mrg  * - processes that are sleeping or stopped for maxslp or more seconds
    650       1.1       mrg  *   are swapped... otherwise the longest-sleeping or stopped process
    651       1.1       mrg  *   is swapped, otherwise the longest resident process...
    652       1.1       mrg  */
    653      1.60       chs 
    654       1.6       mrg void
    655      1.89   thorpej uvm_swapout_threads(void)
    656       1.1       mrg {
    657      1.62   thorpej 	struct lwp *l;
    658      1.62   thorpej 	struct lwp *outl, *outl2;
    659       1.6       mrg 	int outpri, outpri2;
    660       1.6       mrg 	int didswap = 0;
    661      1.48       chs 	extern int maxslp;
    662  1.89.2.4      yamt 	bool gotit;
    663  1.89.2.4      yamt 
    664       1.6       mrg 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    665       1.1       mrg 
    666       1.1       mrg #ifdef DEBUG
    667       1.6       mrg 	if (!enableswap)
    668       1.6       mrg 		return;
    669       1.1       mrg #endif
    670       1.1       mrg 
    671       1.6       mrg 	/*
    672      1.62   thorpej 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    673      1.62   thorpej 	 * outl2/outpri2: the longest resident thread (its swap time)
    674       1.6       mrg 	 */
    675      1.62   thorpej 	outl = outl2 = NULL;
    676       1.6       mrg 	outpri = outpri2 = 0;
    677  1.89.2.4      yamt 
    678  1.89.2.4      yamt  restart:
    679  1.89.2.4      yamt 	mutex_enter(&proclist_lock);
    680      1.62   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
    681      1.81      yamt 		KASSERT(l->l_proc != NULL);
    682  1.89.2.4      yamt 		if (!mutex_tryenter(&l->l_swaplock))
    683  1.89.2.4      yamt 			continue;
    684  1.89.2.3      yamt 		if (!swappable(l)) {
    685  1.89.2.4      yamt 			mutex_exit(&l->l_swaplock);
    686       1.6       mrg 			continue;
    687  1.89.2.3      yamt 		}
    688      1.62   thorpej 		switch (l->l_stat) {
    689      1.68        cl 		case LSONPROC:
    690  1.89.2.3      yamt 			break;
    691      1.69        cl 
    692      1.62   thorpej 		case LSRUN:
    693      1.62   thorpej 			if (l->l_swtime > outpri2) {
    694      1.62   thorpej 				outl2 = l;
    695      1.62   thorpej 				outpri2 = l->l_swtime;
    696       1.6       mrg 			}
    697  1.89.2.3      yamt 			break;
    698      1.48       chs 
    699      1.62   thorpej 		case LSSLEEP:
    700      1.62   thorpej 		case LSSTOP:
    701      1.62   thorpej 			if (l->l_slptime >= maxslp) {
    702  1.89.2.4      yamt 				mutex_exit(&proclist_lock);
    703      1.62   thorpej 				uvm_swapout(l);
    704  1.89.2.4      yamt 				/*
    705  1.89.2.4      yamt 				 * Locking in the wrong direction -
    706  1.89.2.4      yamt 				 * try to prevent the LWP from exiting.
    707  1.89.2.4      yamt 				 */
    708  1.89.2.4      yamt 				gotit = mutex_tryenter(&proclist_lock);
    709  1.89.2.4      yamt 				mutex_exit(&l->l_swaplock);
    710       1.6       mrg 				didswap++;
    711  1.89.2.4      yamt 				if (!gotit)
    712  1.89.2.4      yamt 					goto restart;
    713  1.89.2.3      yamt 				continue;
    714      1.62   thorpej 			} else if (l->l_slptime > outpri) {
    715      1.62   thorpej 				outl = l;
    716      1.62   thorpej 				outpri = l->l_slptime;
    717       1.6       mrg 			}
    718  1.89.2.3      yamt 			break;
    719       1.6       mrg 		}
    720  1.89.2.4      yamt 		mutex_exit(&l->l_swaplock);
    721       1.6       mrg 	}
    722  1.89.2.4      yamt 
    723       1.6       mrg 	/*
    724       1.6       mrg 	 * If we didn't get rid of any real duds, toss out the next most
    725       1.6       mrg 	 * likely sleeping/stopped or running candidate.  We only do this
    726       1.6       mrg 	 * if we are real low on memory since we don't gain much by doing
    727       1.6       mrg 	 * it (USPACE bytes).
    728       1.6       mrg 	 */
    729       1.6       mrg 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    730      1.62   thorpej 		if ((l = outl) == NULL)
    731      1.62   thorpej 			l = outl2;
    732       1.1       mrg #ifdef DEBUG
    733       1.6       mrg 		if (swapdebug & SDB_SWAPOUT)
    734      1.62   thorpej 			printf("swapout_threads: no duds, try procp %p\n", l);
    735       1.1       mrg #endif
    736  1.89.2.3      yamt 		if (l) {
    737  1.89.2.4      yamt 			mutex_enter(&l->l_swaplock);
    738  1.89.2.4      yamt 			mutex_exit(&proclist_lock);
    739  1.89.2.4      yamt 			if (swappable(l))
    740  1.89.2.4      yamt 				uvm_swapout(l);
    741  1.89.2.4      yamt 			mutex_exit(&l->l_swaplock);
    742  1.89.2.4      yamt 			return;
    743  1.89.2.3      yamt 		}
    744       1.6       mrg 	}
    745  1.89.2.3      yamt 
    746  1.89.2.4      yamt 	mutex_exit(&proclist_lock);
    747       1.1       mrg }
    748       1.1       mrg 
    749       1.1       mrg /*
    750      1.62   thorpej  * uvm_swapout: swap out lwp "l"
    751       1.1       mrg  *
    752      1.48       chs  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    753       1.1       mrg  *   the pmap.
    754  1.89.2.4      yamt  * - must be called with l->l_swaplock held.
    755       1.1       mrg  * - XXXCDC: should deactivate all process' private anonymous memory
    756       1.1       mrg  */
    757       1.1       mrg 
    758       1.6       mrg static void
    759      1.89   thorpej uvm_swapout(struct lwp *l)
    760       1.1       mrg {
    761      1.13       eeh 	vaddr_t addr;
    762      1.62   thorpej 	struct proc *p = l->l_proc;
    763       1.1       mrg 
    764  1.89.2.4      yamt 	KASSERT(mutex_owned(&l->l_swaplock));
    765  1.89.2.3      yamt 
    766       1.1       mrg #ifdef DEBUG
    767       1.6       mrg 	if (swapdebug & SDB_SWAPOUT)
    768      1.62   thorpej 		printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    769      1.62   thorpej 	   p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
    770      1.62   thorpej 	   l->l_slptime, uvmexp.free);
    771       1.1       mrg #endif
    772       1.1       mrg 
    773       1.6       mrg 	/*
    774       1.6       mrg 	 * Mark it as (potentially) swapped out.
    775       1.6       mrg 	 */
    776  1.89.2.4      yamt 	lwp_lock(l);
    777  1.89.2.4      yamt 	if (!swappable(l)) {
    778      1.69        cl 		KDASSERT(l->l_cpu != curcpu());
    779  1.89.2.3      yamt 		lwp_unlock(l);
    780      1.68        cl 		return;
    781      1.68        cl 	}
    782  1.89.2.3      yamt 	l->l_flag &= ~LW_INMEM;
    783  1.89.2.3      yamt 	l->l_swtime = 0;
    784      1.62   thorpej 	if (l->l_stat == LSRUN)
    785  1.89.2.4      yamt 		sched_dequeue(l);
    786  1.89.2.3      yamt 	lwp_unlock(l);
    787  1.89.2.3      yamt 	p->p_stats->p_ru.ru_nswap++;	/* XXXSMP */
    788       1.6       mrg 	++uvmexp.swapouts;
    789      1.68        cl 
    790      1.68        cl 	/*
    791      1.68        cl 	 * Do any machine-specific actions necessary before swapout.
    792      1.68        cl 	 * This can include saving floating point state, etc.
    793      1.68        cl 	 */
    794      1.68        cl 	cpu_swapout(l);
    795      1.43       chs 
    796      1.43       chs 	/*
    797      1.43       chs 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    798      1.43       chs 	 */
    799  1.89.2.1      yamt 	addr = USER_TO_UAREA(l->l_addr);
    800      1.62   thorpej 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
    801      1.43       chs 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
    802  1.89.2.4      yamt }
    803  1.89.2.4      yamt 
    804  1.89.2.4      yamt /*
    805  1.89.2.4      yamt  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
    806  1.89.2.4      yamt  * back into memory if it is currently swapped.
    807  1.89.2.4      yamt  */
    808  1.89.2.4      yamt 
    809  1.89.2.4      yamt void
    810  1.89.2.4      yamt uvm_lwp_hold(struct lwp *l)
    811  1.89.2.4      yamt {
    812  1.89.2.4      yamt 
    813  1.89.2.7      yamt 	if (l == curlwp) {
    814  1.89.2.7      yamt 		atomic_inc_uint(&l->l_holdcnt);
    815  1.89.2.7      yamt 	} else {
    816  1.89.2.7      yamt 		mutex_enter(&l->l_swaplock);
    817  1.89.2.7      yamt 		if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
    818  1.89.2.7      yamt 		    (l->l_flag & LW_INMEM) == 0)
    819  1.89.2.7      yamt 			uvm_swapin(l);
    820  1.89.2.7      yamt 		mutex_exit(&l->l_swaplock);
    821  1.89.2.7      yamt 	}
    822  1.89.2.4      yamt }
    823  1.89.2.4      yamt 
    824  1.89.2.4      yamt /*
    825  1.89.2.4      yamt  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
    826  1.89.2.4      yamt  * drops to zero, it's eligable to be swapped.
    827  1.89.2.4      yamt  */
    828  1.89.2.4      yamt 
    829  1.89.2.4      yamt void
    830  1.89.2.4      yamt uvm_lwp_rele(struct lwp *l)
    831  1.89.2.4      yamt {
    832  1.89.2.4      yamt 
    833  1.89.2.4      yamt 	KASSERT(l->l_holdcnt != 0);
    834  1.89.2.3      yamt 
    835  1.89.2.7      yamt 	atomic_dec_uint(&l->l_holdcnt);
    836       1.1       mrg }
    837       1.1       mrg 
    838  1.89.2.2      yamt #ifdef COREDUMP
    839      1.56   thorpej /*
    840      1.56   thorpej  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
    841      1.56   thorpej  * a core file.
    842      1.56   thorpej  */
    843      1.56   thorpej 
    844      1.56   thorpej int
    845      1.89   thorpej uvm_coredump_walkmap(struct proc *p, void *iocookie,
    846      1.89   thorpej     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
    847      1.89   thorpej     void *cookie)
    848      1.56   thorpej {
    849      1.56   thorpej 	struct uvm_coredump_state state;
    850      1.56   thorpej 	struct vmspace *vm = p->p_vmspace;
    851      1.56   thorpej 	struct vm_map *map = &vm->vm_map;
    852      1.56   thorpej 	struct vm_map_entry *entry;
    853      1.56   thorpej 	int error;
    854      1.56   thorpej 
    855      1.64    atatat 	entry = NULL;
    856      1.64    atatat 	vm_map_lock_read(map);
    857      1.87      matt 	state.end = 0;
    858      1.64    atatat 	for (;;) {
    859      1.64    atatat 		if (entry == NULL)
    860      1.64    atatat 			entry = map->header.next;
    861      1.64    atatat 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
    862      1.64    atatat 			entry = entry->next;
    863      1.64    atatat 		if (entry == &map->header)
    864      1.64    atatat 			break;
    865      1.64    atatat 
    866      1.56   thorpej 		state.cookie = cookie;
    867      1.86      matt 		if (state.end > entry->start) {
    868      1.86      matt 			state.start = state.end;
    869      1.86      matt 		} else {
    870      1.86      matt 			state.start = entry->start;
    871      1.86      matt 		}
    872      1.86      matt 		state.realend = entry->end;
    873      1.56   thorpej 		state.end = entry->end;
    874      1.56   thorpej 		state.prot = entry->protection;
    875      1.56   thorpej 		state.flags = 0;
    876      1.56   thorpej 
    877      1.82       chs 		/*
    878      1.82       chs 		 * Dump the region unless one of the following is true:
    879      1.82       chs 		 *
    880      1.82       chs 		 * (1) the region has neither object nor amap behind it
    881      1.82       chs 		 *     (ie. it has never been accessed).
    882      1.82       chs 		 *
    883      1.82       chs 		 * (2) the region has no amap and is read-only
    884      1.82       chs 		 *     (eg. an executable text section).
    885      1.82       chs 		 *
    886      1.82       chs 		 * (3) the region's object is a device.
    887      1.85   nathanw 		 *
    888      1.85   nathanw 		 * (4) the region is unreadable by the process.
    889      1.82       chs 		 */
    890      1.56   thorpej 
    891      1.82       chs 		KASSERT(!UVM_ET_ISSUBMAP(entry));
    892      1.82       chs 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
    893      1.82       chs 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
    894      1.82       chs 		if (entry->object.uvm_obj == NULL &&
    895      1.82       chs 		    entry->aref.ar_amap == NULL) {
    896      1.86      matt 			state.realend = state.start;
    897      1.86      matt 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
    898      1.82       chs 		    entry->aref.ar_amap == NULL) {
    899      1.86      matt 			state.realend = state.start;
    900      1.86      matt 		} else if (entry->object.uvm_obj != NULL &&
    901      1.82       chs 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
    902      1.86      matt 			state.realend = state.start;
    903      1.86      matt 		} else if ((entry->protection & VM_PROT_READ) == 0) {
    904      1.86      matt 			state.realend = state.start;
    905      1.86      matt 		} else {
    906      1.86      matt 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
    907      1.86      matt 				state.flags |= UVM_COREDUMP_STACK;
    908      1.86      matt 
    909      1.86      matt 			/*
    910      1.86      matt 			 * If this an anonymous entry, only dump instantiated
    911      1.86      matt 			 * pages.
    912      1.86      matt 			 */
    913      1.86      matt 			if (entry->object.uvm_obj == NULL) {
    914      1.86      matt 				vaddr_t end;
    915      1.86      matt 
    916      1.86      matt 				amap_lock(entry->aref.ar_amap);
    917      1.86      matt 				for (end = state.start;
    918      1.86      matt 				     end < state.end; end += PAGE_SIZE) {
    919      1.86      matt 					struct vm_anon *anon;
    920      1.86      matt 					anon = amap_lookup(&entry->aref,
    921      1.86      matt 					    end - entry->start);
    922      1.86      matt 					/*
    923      1.86      matt 					 * If we have already encountered an
    924      1.86      matt 					 * uninstantiated page, stop at the
    925      1.86      matt 					 * first instantied page.
    926      1.86      matt 					 */
    927      1.86      matt 					if (anon != NULL &&
    928      1.86      matt 					    state.realend != state.end) {
    929      1.86      matt 						state.end = end;
    930      1.86      matt 						break;
    931      1.86      matt 					}
    932      1.86      matt 
    933      1.86      matt 					/*
    934      1.86      matt 					 * If this page is the first
    935      1.86      matt 					 * uninstantiated page, mark this as
    936      1.86      matt 					 * the real ending point.  Continue to
    937      1.86      matt 					 * counting uninstantiated pages.
    938      1.86      matt 					 */
    939      1.86      matt 					if (anon == NULL &&
    940      1.86      matt 					    state.realend == state.end) {
    941      1.86      matt 						state.realend = end;
    942      1.86      matt 					}
    943      1.86      matt 				}
    944      1.86      matt 				amap_unlock(entry->aref.ar_amap);
    945      1.86      matt 			}
    946      1.82       chs 		}
    947      1.86      matt 
    948      1.56   thorpej 
    949      1.64    atatat 		vm_map_unlock_read(map);
    950      1.88      matt 		error = (*func)(p, iocookie, &state);
    951      1.56   thorpej 		if (error)
    952      1.56   thorpej 			return (error);
    953      1.64    atatat 		vm_map_lock_read(map);
    954      1.56   thorpej 	}
    955      1.64    atatat 	vm_map_unlock_read(map);
    956      1.56   thorpej 
    957      1.56   thorpej 	return (0);
    958      1.56   thorpej }
    959  1.89.2.2      yamt #endif /* COREDUMP */
    960