uvm_glue.c revision 1.104.2.3 1 /* $NetBSD: uvm_glue.c,v 1.104.2.3 2007/04/05 21:32:52 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.104.2.3 2007/04/05 21:32:52 ad Exp $");
71
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76
77 /*
78 * uvm_glue.c: glue functions
79 */
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87
88 #include <uvm/uvm.h>
89
90 #include <machine/cpu.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout(struct lwp *);
97
98 #define UVM_NUAREA_MAX 16
99 static vaddr_t uvm_uareas;
100 static int uvm_nuarea;
101 kmutex_t uvm_uareas_lock;
102 #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
103
104 static void uvm_uarea_free(vaddr_t);
105
106 /*
107 * XXXCDC: do these really belong here?
108 */
109
110 /*
111 * uvm_kernacc: can the kernel access a region of memory
112 *
113 * - used only by /dev/kmem driver (mem.c)
114 */
115
116 bool
117 uvm_kernacc(void *addr, size_t len, int rw)
118 {
119 bool rv;
120 vaddr_t saddr, eaddr;
121 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
122
123 saddr = trunc_page((vaddr_t)addr);
124 eaddr = round_page((vaddr_t)addr + len);
125 vm_map_lock_read(kernel_map);
126 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
127 vm_map_unlock_read(kernel_map);
128
129 return(rv);
130 }
131
132 #ifdef KGDB
133 /*
134 * Change protections on kernel pages from addr to addr+len
135 * (presumably so debugger can plant a breakpoint).
136 *
137 * We force the protection change at the pmap level. If we were
138 * to use vm_map_protect a change to allow writing would be lazily-
139 * applied meaning we would still take a protection fault, something
140 * we really don't want to do. It would also fragment the kernel
141 * map unnecessarily. We cannot use pmap_protect since it also won't
142 * enforce a write-enable request. Using pmap_enter is the only way
143 * we can ensure the change takes place properly.
144 */
145 void
146 uvm_chgkprot(void *addr, size_t len, int rw)
147 {
148 vm_prot_t prot;
149 paddr_t pa;
150 vaddr_t sva, eva;
151
152 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
153 eva = round_page((vaddr_t)addr + len);
154 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
155 /*
156 * Extract physical address for the page.
157 */
158 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
159 panic("chgkprot: invalid page");
160 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
161 }
162 pmap_update(pmap_kernel());
163 }
164 #endif
165
166 /*
167 * uvm_vslock: wire user memory for I/O
168 *
169 * - called from physio and sys___sysctl
170 * - XXXCDC: consider nuking this (or making it a macro?)
171 */
172
173 int
174 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
175 {
176 struct vm_map *map;
177 vaddr_t start, end;
178 int error;
179
180 map = &vs->vm_map;
181 start = trunc_page((vaddr_t)addr);
182 end = round_page((vaddr_t)addr + len);
183 error = uvm_fault_wire(map, start, end, access_type, 0);
184 return error;
185 }
186
187 /*
188 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
189 *
190 * - called from physio and sys___sysctl
191 * - XXXCDC: consider nuking this (or making it a macro?)
192 */
193
194 void
195 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
196 {
197 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
198 round_page((vaddr_t)addr + len));
199 }
200
201 /*
202 * uvm_proc_fork: fork a virtual address space
203 *
204 * - the address space is copied as per parent map's inherit values
205 */
206 void
207 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
208 {
209
210 if (shared == true) {
211 p2->p_vmspace = NULL;
212 uvmspace_share(p1, p2);
213 } else {
214 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
215 }
216
217 cpu_proc_fork(p1, p2);
218 }
219
220
221 /*
222 * uvm_lwp_fork: fork a thread
223 *
224 * - a new "user" structure is allocated for the child process
225 * [filled in by MD layer...]
226 * - if specified, the child gets a new user stack described by
227 * stack and stacksize
228 * - NOTE: the kernel stack may be at a different location in the child
229 * process, and thus addresses of automatic variables may be invalid
230 * after cpu_lwp_fork returns in the child process. We do nothing here
231 * after cpu_lwp_fork returns.
232 * - XXXCDC: we need a way for this to return a failure value rather
233 * than just hang
234 */
235 void
236 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
237 void (*func)(void *), void *arg)
238 {
239 int error;
240
241 /*
242 * Wire down the U-area for the process, which contains the PCB
243 * and the kernel stack. Wired state is stored in l->l_flag's
244 * L_INMEM bit rather than in the vm_map_entry's wired count
245 * to prevent kernel_map fragmentation. If we reused a cached U-area,
246 * L_INMEM will already be set and we don't need to do anything.
247 *
248 * Note the kernel stack gets read/write accesses right off the bat.
249 */
250
251 if ((l2->l_flag & LW_INMEM) == 0) {
252 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
253
254 error = uvm_fault_wire(kernel_map, uarea,
255 uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
256 if (error)
257 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
258 #ifdef PMAP_UAREA
259 /* Tell the pmap this is a u-area mapping */
260 PMAP_UAREA(uarea);
261 #endif
262 l2->l_flag |= LW_INMEM;
263 }
264
265 #ifdef KSTACK_CHECK_MAGIC
266 /*
267 * fill stack with magic number
268 */
269 kstack_setup_magic(l2);
270 #endif
271
272 /*
273 * cpu_lwp_fork() copy and update the pcb, and make the child ready
274 * to run. If this is a normal user fork, the child will exit
275 * directly to user mode via child_return() on its first time
276 * slice and will not return here. If this is a kernel thread,
277 * the specified entry point will be executed.
278 */
279 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
280 }
281
282 /*
283 * uvm_uarea_alloc: allocate a u-area
284 */
285
286 bool
287 uvm_uarea_alloc(vaddr_t *uaddrp)
288 {
289 vaddr_t uaddr;
290
291 #ifndef USPACE_ALIGN
292 #define USPACE_ALIGN 0
293 #endif
294
295 mutex_enter(&uvm_uareas_lock);
296 if (uvm_nuarea > 0) {
297 uaddr = uvm_uareas;
298 uvm_uareas = UAREA_NEXTFREE(uaddr);
299 uvm_nuarea--;
300 mutex_exit(&uvm_uareas_lock);
301 *uaddrp = uaddr;
302 return true;
303 } else {
304 mutex_exit(&uvm_uareas_lock);
305 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
306 UVM_KMF_PAGEABLE);
307 return false;
308 }
309 }
310
311 /*
312 * uvm_uarea_free: free a u-area; never blocks
313 */
314
315 static inline void
316 uvm_uarea_free(vaddr_t uaddr)
317 {
318 mutex_enter(&uvm_uareas_lock);
319 UAREA_NEXTFREE(uaddr) = uvm_uareas;
320 uvm_uareas = uaddr;
321 uvm_nuarea++;
322 mutex_exit(&uvm_uareas_lock);
323 }
324
325 /*
326 * uvm_uarea_drain: return memory of u-areas over limit
327 * back to system
328 */
329
330 void
331 uvm_uarea_drain(bool empty)
332 {
333 int leave = empty ? 0 : UVM_NUAREA_MAX;
334 vaddr_t uaddr;
335
336 if (uvm_nuarea <= leave)
337 return;
338
339 mutex_enter(&uvm_uareas_lock);
340 while(uvm_nuarea > leave) {
341 uaddr = uvm_uareas;
342 uvm_uareas = UAREA_NEXTFREE(uaddr);
343 uvm_nuarea--;
344 mutex_exit(&uvm_uareas_lock);
345 uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE);
346 mutex_enter(&uvm_uareas_lock);
347 }
348 mutex_exit(&uvm_uareas_lock);
349 }
350
351 /*
352 * uvm_exit: exit a virtual address space
353 *
354 * - the process passed to us is a dead (pre-zombie) process; we
355 * are running on a different context now (the reaper).
356 * - borrow proc0's address space because freeing the vmspace
357 * of the dead process may block.
358 */
359
360 void
361 uvm_proc_exit(struct proc *p)
362 {
363 struct lwp *l = curlwp; /* XXX */
364 struct vmspace *ovm;
365
366 KASSERT(p == l->l_proc);
367 ovm = p->p_vmspace;
368
369 /*
370 * borrow proc0's address space.
371 */
372 pmap_deactivate(l);
373 p->p_vmspace = proc0.p_vmspace;
374 pmap_activate(l);
375
376 uvmspace_free(ovm);
377 }
378
379 void
380 uvm_lwp_exit(struct lwp *l)
381 {
382 vaddr_t va = USER_TO_UAREA(l->l_addr);
383
384 l->l_flag &= ~LW_INMEM;
385 uvm_uarea_free(va);
386 l->l_addr = NULL;
387 }
388
389 /*
390 * uvm_init_limit: init per-process VM limits
391 *
392 * - called for process 0 and then inherited by all others.
393 */
394
395 void
396 uvm_init_limits(struct proc *p)
397 {
398
399 /*
400 * Set up the initial limits on process VM. Set the maximum
401 * resident set size to be all of (reasonably) available memory.
402 * This causes any single, large process to start random page
403 * replacement once it fills memory.
404 */
405
406 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
407 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
408 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
409 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
410 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
411 }
412
413 #ifdef DEBUG
414 int enableswap = 1;
415 int swapdebug = 0;
416 #define SDB_FOLLOW 1
417 #define SDB_SWAPIN 2
418 #define SDB_SWAPOUT 4
419 #endif
420
421 /*
422 * uvm_swapin: swap in an lwp's u-area.
423 *
424 * - must be called with the LWP's swap lock held.
425 * - naturally, must not be called with l == curlwp
426 */
427
428 void
429 uvm_swapin(struct lwp *l)
430 {
431 vaddr_t addr;
432 int error;
433
434 KASSERT(mutex_owned(&l->l_swaplock));
435 KASSERT(l != curlwp);
436
437 addr = USER_TO_UAREA(l->l_addr);
438 /* make L_INMEM true */
439 error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
440 VM_PROT_READ | VM_PROT_WRITE, 0);
441 if (error) {
442 panic("uvm_swapin: rewiring stack failed: %d", error);
443 }
444
445 /*
446 * Some architectures need to be notified when the user area has
447 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
448 */
449 cpu_swapin(l);
450 lwp_lock(l);
451 if (l->l_stat == LSRUN)
452 setrunqueue(l);
453 l->l_flag |= LW_INMEM;
454 l->l_swtime = 0;
455 lwp_unlock(l);
456 ++uvmexp.swapins;
457 }
458
459 /*
460 * uvm_kick_scheduler: kick the scheduler into action if not running.
461 *
462 * - called when swapped out processes have been awoken.
463 */
464
465 void
466 uvm_kick_scheduler(void)
467 {
468
469 if (uvm.swap_running == false)
470 return;
471
472 mutex_enter(&uvm_scheduler_mutex);
473 uvm.scheduler_kicked = true;
474 cv_signal(&uvm.scheduler_cv);
475 mutex_exit(&uvm_scheduler_mutex);
476 }
477
478 /*
479 * uvm_scheduler: process zero main loop
480 *
481 * - attempt to swapin every swaped-out, runnable process in order of
482 * priority.
483 * - if not enough memory, wake the pagedaemon and let it clear space.
484 */
485
486 void
487 uvm_scheduler(void)
488 {
489 struct lwp *l, *ll;
490 int pri;
491 int ppri;
492
493 l = curlwp;
494 lwp_lock(l);
495 lwp_changepri(l, PVM);
496 lwp_unlock(l);
497
498 KERNEL_UNLOCK_LAST(l); /* XXX */
499
500 for (;;) {
501 #ifdef DEBUG
502 mutex_enter(&uvm_scheduler_mutex);
503 while (!enableswap)
504 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
505 mutex_exit(&uvm_scheduler_mutex);
506 #endif
507 ll = NULL; /* process to choose */
508 ppri = INT_MIN; /* its priority */
509
510 mutex_enter(&proclist_lock);
511 LIST_FOREACH(l, &alllwp, l_list) {
512 /* is it a runnable swapped out process? */
513 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
514 pri = l->l_swtime + l->l_slptime -
515 (l->l_proc->p_nice - NZERO) * 8;
516 if (pri > ppri) { /* higher priority? */
517 ll = l;
518 ppri = pri;
519 }
520 }
521 }
522 #ifdef DEBUG
523 if (swapdebug & SDB_FOLLOW)
524 printf("scheduler: running, procp %p pri %d\n", ll,
525 ppri);
526 #endif
527 /*
528 * Nothing to do, back to sleep
529 */
530 if ((l = ll) == NULL) {
531 mutex_exit(&proclist_lock);
532 mutex_enter(&uvm_scheduler_mutex);
533 if (uvm.scheduler_kicked == false)
534 cv_wait(&uvm.scheduler_cv,
535 &uvm_scheduler_mutex);
536 uvm.scheduler_kicked = false;
537 mutex_exit(&uvm_scheduler_mutex);
538 continue;
539 }
540
541 /*
542 * we have found swapped out process which we would like
543 * to bring back in.
544 *
545 * XXX: this part is really bogus cuz we could deadlock
546 * on memory despite our feeble check
547 */
548 if (uvmexp.free > atop(USPACE)) {
549 #ifdef DEBUG
550 if (swapdebug & SDB_SWAPIN)
551 printf("swapin: pid %d(%s)@%p, pri %d "
552 "free %d\n", l->l_proc->p_pid,
553 l->l_proc->p_comm, l->l_addr, ppri,
554 uvmexp.free);
555 #endif
556 mutex_enter(&l->l_swaplock);
557 mutex_exit(&proclist_lock);
558 uvm_swapin(l);
559 mutex_exit(&l->l_swaplock);
560 continue;
561 } else {
562 /*
563 * not enough memory, jab the pageout daemon and
564 * wait til the coast is clear
565 */
566 mutex_exit(&proclist_lock);
567 #ifdef DEBUG
568 if (swapdebug & SDB_FOLLOW)
569 printf("scheduler: no room for pid %d(%s),"
570 " free %d\n", l->l_proc->p_pid,
571 l->l_proc->p_comm, uvmexp.free);
572 #endif
573 uvm_wait("schedpwait");
574 #ifdef DEBUG
575 if (swapdebug & SDB_FOLLOW)
576 printf("scheduler: room again, free %d\n",
577 uvmexp.free);
578 #endif
579 }
580 }
581 }
582
583 /*
584 * swappable: is LWP "l" swappable?
585 */
586
587 #define swappable(l) \
588 (((l)->l_flag & (LW_INMEM | LW_SYSTEM)) == LW_INMEM && \
589 (l)->l_holdcnt == 0 && (l)->l_cpu->ci_curlwp != (l))
590
591 /*
592 * swapout_threads: find threads that can be swapped and unwire their
593 * u-areas.
594 *
595 * - called by the pagedaemon
596 * - try and swap at least one processs
597 * - processes that are sleeping or stopped for maxslp or more seconds
598 * are swapped... otherwise the longest-sleeping or stopped process
599 * is swapped, otherwise the longest resident process...
600 */
601
602 void
603 uvm_swapout_threads(void)
604 {
605 struct lwp *l;
606 struct lwp *outl, *outl2;
607 int outpri, outpri2;
608 int didswap = 0;
609 extern int maxslp;
610 bool gotit;
611
612 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
613
614 #ifdef DEBUG
615 if (!enableswap)
616 return;
617 #endif
618
619 /*
620 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
621 * outl2/outpri2: the longest resident thread (its swap time)
622 */
623 outl = outl2 = NULL;
624 outpri = outpri2 = 0;
625
626 restart:
627 mutex_enter(&proclist_lock);
628 LIST_FOREACH(l, &alllwp, l_list) {
629 KASSERT(l->l_proc != NULL);
630 if (!mutex_tryenter(&l->l_swaplock))
631 continue;
632 if (!swappable(l)) {
633 mutex_exit(&l->l_swaplock);
634 continue;
635 }
636 switch (l->l_stat) {
637 case LSONPROC:
638 break;
639
640 case LSRUN:
641 if (l->l_swtime > outpri2) {
642 outl2 = l;
643 outpri2 = l->l_swtime;
644 }
645 break;
646
647 case LSSLEEP:
648 case LSSTOP:
649 if (l->l_slptime >= maxslp) {
650 mutex_exit(&proclist_lock);
651 uvm_swapout(l);
652 /*
653 * Locking in the wrong direction -
654 * try to prevent the LWP from exiting.
655 */
656 gotit = mutex_tryenter(&proclist_lock);
657 mutex_exit(&l->l_swaplock);
658 didswap++;
659 if (!gotit)
660 goto restart;
661 continue;
662 } else if (l->l_slptime > outpri) {
663 outl = l;
664 outpri = l->l_slptime;
665 }
666 break;
667 }
668 mutex_exit(&l->l_swaplock);
669 }
670
671 /*
672 * If we didn't get rid of any real duds, toss out the next most
673 * likely sleeping/stopped or running candidate. We only do this
674 * if we are real low on memory since we don't gain much by doing
675 * it (USPACE bytes).
676 */
677 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
678 if ((l = outl) == NULL)
679 l = outl2;
680 #ifdef DEBUG
681 if (swapdebug & SDB_SWAPOUT)
682 printf("swapout_threads: no duds, try procp %p\n", l);
683 #endif
684 if (l) {
685 mutex_enter(&l->l_swaplock);
686 mutex_exit(&proclist_lock);
687 if (swappable(l))
688 uvm_swapout(l);
689 mutex_exit(&l->l_swaplock);
690 return;
691 }
692 }
693
694 mutex_exit(&proclist_lock);
695 }
696
697 /*
698 * uvm_swapout: swap out lwp "l"
699 *
700 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
701 * the pmap.
702 * - must be called with l->l_swaplock held.
703 * - XXXCDC: should deactivate all process' private anonymous memory
704 */
705
706 static void
707 uvm_swapout(struct lwp *l)
708 {
709 vaddr_t addr;
710 struct proc *p = l->l_proc;
711
712 KASSERT(mutex_owned(&l->l_swaplock));
713
714 #ifdef DEBUG
715 if (swapdebug & SDB_SWAPOUT)
716 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
717 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
718 l->l_slptime, uvmexp.free);
719 #endif
720
721 /*
722 * Mark it as (potentially) swapped out.
723 */
724 lwp_lock(l);
725 if (!swappable(l)) {
726 KDASSERT(l->l_cpu != curcpu());
727 lwp_unlock(l);
728 return;
729 }
730 l->l_flag &= ~LW_INMEM;
731 l->l_swtime = 0;
732 if (l->l_stat == LSRUN)
733 remrunqueue(l);
734 lwp_unlock(l);
735 p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
736 ++uvmexp.swapouts;
737
738 /*
739 * Do any machine-specific actions necessary before swapout.
740 * This can include saving floating point state, etc.
741 */
742 cpu_swapout(l);
743
744 /*
745 * Unwire the to-be-swapped process's user struct and kernel stack.
746 */
747 addr = USER_TO_UAREA(l->l_addr);
748 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
749 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
750 }
751
752 /*
753 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
754 * back into memory if it is currently swapped.
755 */
756
757 void
758 uvm_lwp_hold(struct lwp *l)
759 {
760
761 mutex_enter(&l->l_swaplock);
762 if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0)
763 uvm_swapin(l);
764 mutex_exit(&l->l_swaplock);
765 }
766
767 /*
768 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
769 * drops to zero, it's eligable to be swapped.
770 */
771
772 void
773 uvm_lwp_rele(struct lwp *l)
774 {
775
776 KASSERT(l->l_holdcnt != 0);
777
778 mutex_enter(&l->l_swaplock);
779 l->l_holdcnt--;
780 mutex_exit(&l->l_swaplock);
781 }
782
783 #ifdef COREDUMP
784 /*
785 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
786 * a core file.
787 */
788
789 int
790 uvm_coredump_walkmap(struct proc *p, void *iocookie,
791 int (*func)(struct proc *, void *, struct uvm_coredump_state *),
792 void *cookie)
793 {
794 struct uvm_coredump_state state;
795 struct vmspace *vm = p->p_vmspace;
796 struct vm_map *map = &vm->vm_map;
797 struct vm_map_entry *entry;
798 int error;
799
800 entry = NULL;
801 vm_map_lock_read(map);
802 state.end = 0;
803 for (;;) {
804 if (entry == NULL)
805 entry = map->header.next;
806 else if (!uvm_map_lookup_entry(map, state.end, &entry))
807 entry = entry->next;
808 if (entry == &map->header)
809 break;
810
811 state.cookie = cookie;
812 if (state.end > entry->start) {
813 state.start = state.end;
814 } else {
815 state.start = entry->start;
816 }
817 state.realend = entry->end;
818 state.end = entry->end;
819 state.prot = entry->protection;
820 state.flags = 0;
821
822 /*
823 * Dump the region unless one of the following is true:
824 *
825 * (1) the region has neither object nor amap behind it
826 * (ie. it has never been accessed).
827 *
828 * (2) the region has no amap and is read-only
829 * (eg. an executable text section).
830 *
831 * (3) the region's object is a device.
832 *
833 * (4) the region is unreadable by the process.
834 */
835
836 KASSERT(!UVM_ET_ISSUBMAP(entry));
837 KASSERT(state.start < VM_MAXUSER_ADDRESS);
838 KASSERT(state.end <= VM_MAXUSER_ADDRESS);
839 if (entry->object.uvm_obj == NULL &&
840 entry->aref.ar_amap == NULL) {
841 state.realend = state.start;
842 } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
843 entry->aref.ar_amap == NULL) {
844 state.realend = state.start;
845 } else if (entry->object.uvm_obj != NULL &&
846 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
847 state.realend = state.start;
848 } else if ((entry->protection & VM_PROT_READ) == 0) {
849 state.realend = state.start;
850 } else {
851 if (state.start >= (vaddr_t)vm->vm_maxsaddr)
852 state.flags |= UVM_COREDUMP_STACK;
853
854 /*
855 * If this an anonymous entry, only dump instantiated
856 * pages.
857 */
858 if (entry->object.uvm_obj == NULL) {
859 vaddr_t end;
860
861 amap_lock(entry->aref.ar_amap);
862 for (end = state.start;
863 end < state.end; end += PAGE_SIZE) {
864 struct vm_anon *anon;
865 anon = amap_lookup(&entry->aref,
866 end - entry->start);
867 /*
868 * If we have already encountered an
869 * uninstantiated page, stop at the
870 * first instantied page.
871 */
872 if (anon != NULL &&
873 state.realend != state.end) {
874 state.end = end;
875 break;
876 }
877
878 /*
879 * If this page is the first
880 * uninstantiated page, mark this as
881 * the real ending point. Continue to
882 * counting uninstantiated pages.
883 */
884 if (anon == NULL &&
885 state.realend == state.end) {
886 state.realend = end;
887 }
888 }
889 amap_unlock(entry->aref.ar_amap);
890 }
891 }
892
893
894 vm_map_unlock_read(map);
895 error = (*func)(p, iocookie, &state);
896 if (error)
897 return (error);
898 vm_map_lock_read(map);
899 }
900 vm_map_unlock_read(map);
901
902 return (0);
903 }
904 #endif /* COREDUMP */
905