uvm_glue.c revision 1.106 1 /* $NetBSD: uvm_glue.c,v 1.106 2007/05/17 14:51:43 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.106 2007/05/17 14:51:43 yamt Exp $");
71
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76
77 /*
78 * uvm_glue.c: glue functions
79 */
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 #include <sys/syncobj.h>
88
89 #include <uvm/uvm.h>
90
91 #include <machine/cpu.h>
92
93 /*
94 * local prototypes
95 */
96
97 static void uvm_swapout(struct lwp *);
98
99 #define UVM_NUAREA_MAX 16
100 static vaddr_t uvm_uareas;
101 static int uvm_nuarea;
102 static struct simplelock uvm_uareas_slock = SIMPLELOCK_INITIALIZER;
103 #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
104
105 void uvm_uarea_free(vaddr_t);
106
107 /*
108 * XXXCDC: do these really belong here?
109 */
110
111 /*
112 * uvm_kernacc: can the kernel access a region of memory
113 *
114 * - used only by /dev/kmem driver (mem.c)
115 */
116
117 bool
118 uvm_kernacc(void *addr, size_t len, int rw)
119 {
120 bool rv;
121 vaddr_t saddr, eaddr;
122 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
123
124 saddr = trunc_page((vaddr_t)addr);
125 eaddr = round_page((vaddr_t)addr + len);
126 vm_map_lock_read(kernel_map);
127 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
128 vm_map_unlock_read(kernel_map);
129
130 return(rv);
131 }
132
133 #ifdef KGDB
134 /*
135 * Change protections on kernel pages from addr to addr+len
136 * (presumably so debugger can plant a breakpoint).
137 *
138 * We force the protection change at the pmap level. If we were
139 * to use vm_map_protect a change to allow writing would be lazily-
140 * applied meaning we would still take a protection fault, something
141 * we really don't want to do. It would also fragment the kernel
142 * map unnecessarily. We cannot use pmap_protect since it also won't
143 * enforce a write-enable request. Using pmap_enter is the only way
144 * we can ensure the change takes place properly.
145 */
146 void
147 uvm_chgkprot(void *addr, size_t len, int rw)
148 {
149 vm_prot_t prot;
150 paddr_t pa;
151 vaddr_t sva, eva;
152
153 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
154 eva = round_page((vaddr_t)addr + len);
155 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
156 /*
157 * Extract physical address for the page.
158 */
159 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
160 panic("chgkprot: invalid page");
161 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
162 }
163 pmap_update(pmap_kernel());
164 }
165 #endif
166
167 /*
168 * uvm_vslock: wire user memory for I/O
169 *
170 * - called from physio and sys___sysctl
171 * - XXXCDC: consider nuking this (or making it a macro?)
172 */
173
174 int
175 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
176 {
177 struct vm_map *map;
178 vaddr_t start, end;
179 int error;
180
181 map = &vs->vm_map;
182 start = trunc_page((vaddr_t)addr);
183 end = round_page((vaddr_t)addr + len);
184 error = uvm_fault_wire(map, start, end, access_type, 0);
185 return error;
186 }
187
188 /*
189 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
190 *
191 * - called from physio and sys___sysctl
192 * - XXXCDC: consider nuking this (or making it a macro?)
193 */
194
195 void
196 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
197 {
198 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
199 round_page((vaddr_t)addr + len));
200 }
201
202 /*
203 * uvm_proc_fork: fork a virtual address space
204 *
205 * - the address space is copied as per parent map's inherit values
206 */
207 void
208 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
209 {
210
211 if (shared == true) {
212 p2->p_vmspace = NULL;
213 uvmspace_share(p1, p2);
214 } else {
215 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
216 }
217
218 cpu_proc_fork(p1, p2);
219 }
220
221
222 /*
223 * uvm_lwp_fork: fork a thread
224 *
225 * - a new "user" structure is allocated for the child process
226 * [filled in by MD layer...]
227 * - if specified, the child gets a new user stack described by
228 * stack and stacksize
229 * - NOTE: the kernel stack may be at a different location in the child
230 * process, and thus addresses of automatic variables may be invalid
231 * after cpu_lwp_fork returns in the child process. We do nothing here
232 * after cpu_lwp_fork returns.
233 * - XXXCDC: we need a way for this to return a failure value rather
234 * than just hang
235 */
236 void
237 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
238 void (*func)(void *), void *arg)
239 {
240 int error;
241
242 /*
243 * Wire down the U-area for the process, which contains the PCB
244 * and the kernel stack. Wired state is stored in l->l_flag's
245 * L_INMEM bit rather than in the vm_map_entry's wired count
246 * to prevent kernel_map fragmentation. If we reused a cached U-area,
247 * L_INMEM will already be set and we don't need to do anything.
248 *
249 * Note the kernel stack gets read/write accesses right off the bat.
250 */
251
252 if ((l2->l_flag & LW_INMEM) == 0) {
253 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
254
255 error = uvm_fault_wire(kernel_map, uarea,
256 uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
257 if (error)
258 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
259 #ifdef PMAP_UAREA
260 /* Tell the pmap this is a u-area mapping */
261 PMAP_UAREA(uarea);
262 #endif
263 l2->l_flag |= LW_INMEM;
264 }
265
266 #ifdef KSTACK_CHECK_MAGIC
267 /*
268 * fill stack with magic number
269 */
270 kstack_setup_magic(l2);
271 #endif
272
273 /*
274 * cpu_lwp_fork() copy and update the pcb, and make the child ready
275 * to run. If this is a normal user fork, the child will exit
276 * directly to user mode via child_return() on its first time
277 * slice and will not return here. If this is a kernel thread,
278 * the specified entry point will be executed.
279 */
280 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
281 }
282
283 /*
284 * uvm_uarea_alloc: allocate a u-area
285 */
286
287 bool
288 uvm_uarea_alloc(vaddr_t *uaddrp)
289 {
290 vaddr_t uaddr;
291
292 #ifndef USPACE_ALIGN
293 #define USPACE_ALIGN 0
294 #endif
295
296 simple_lock(&uvm_uareas_slock);
297 if (uvm_nuarea > 0) {
298 uaddr = uvm_uareas;
299 uvm_uareas = UAREA_NEXTFREE(uaddr);
300 uvm_nuarea--;
301 simple_unlock(&uvm_uareas_slock);
302 *uaddrp = uaddr;
303 return true;
304 } else {
305 simple_unlock(&uvm_uareas_slock);
306 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
307 UVM_KMF_PAGEABLE);
308 return false;
309 }
310 }
311
312 /*
313 * uvm_uarea_free: free a u-area; never blocks
314 */
315
316 void
317 uvm_uarea_free(vaddr_t uaddr)
318 {
319 simple_lock(&uvm_uareas_slock);
320 UAREA_NEXTFREE(uaddr) = uvm_uareas;
321 uvm_uareas = uaddr;
322 uvm_nuarea++;
323 simple_unlock(&uvm_uareas_slock);
324 }
325
326 /*
327 * uvm_uarea_drain: return memory of u-areas over limit
328 * back to system
329 */
330
331 void
332 uvm_uarea_drain(bool empty)
333 {
334 int leave = empty ? 0 : UVM_NUAREA_MAX;
335 vaddr_t uaddr;
336
337 if (uvm_nuarea <= leave)
338 return;
339
340 simple_lock(&uvm_uareas_slock);
341 while(uvm_nuarea > leave) {
342 uaddr = uvm_uareas;
343 uvm_uareas = UAREA_NEXTFREE(uaddr);
344 uvm_nuarea--;
345 simple_unlock(&uvm_uareas_slock);
346 uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE);
347 simple_lock(&uvm_uareas_slock);
348 }
349 simple_unlock(&uvm_uareas_slock);
350 }
351
352 /*
353 * uvm_exit: exit a virtual address space
354 *
355 * - the process passed to us is a dead (pre-zombie) process; we
356 * are running on a different context now (the reaper).
357 * - borrow proc0's address space because freeing the vmspace
358 * of the dead process may block.
359 */
360
361 void
362 uvm_proc_exit(struct proc *p)
363 {
364 struct lwp *l = curlwp; /* XXX */
365 struct vmspace *ovm;
366
367 KASSERT(p == l->l_proc);
368 ovm = p->p_vmspace;
369
370 /*
371 * borrow proc0's address space.
372 */
373 pmap_deactivate(l);
374 p->p_vmspace = proc0.p_vmspace;
375 pmap_activate(l);
376
377 uvmspace_free(ovm);
378 }
379
380 void
381 uvm_lwp_exit(struct lwp *l)
382 {
383 vaddr_t va = USER_TO_UAREA(l->l_addr);
384
385 l->l_flag &= ~LW_INMEM;
386 uvm_uarea_free(va);
387 l->l_addr = NULL;
388 }
389
390 /*
391 * uvm_init_limit: init per-process VM limits
392 *
393 * - called for process 0 and then inherited by all others.
394 */
395
396 void
397 uvm_init_limits(struct proc *p)
398 {
399
400 /*
401 * Set up the initial limits on process VM. Set the maximum
402 * resident set size to be all of (reasonably) available memory.
403 * This causes any single, large process to start random page
404 * replacement once it fills memory.
405 */
406
407 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
408 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
409 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
410 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
411 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
412 }
413
414 #ifdef DEBUG
415 int enableswap = 1;
416 int swapdebug = 0;
417 #define SDB_FOLLOW 1
418 #define SDB_SWAPIN 2
419 #define SDB_SWAPOUT 4
420 #endif
421
422 /*
423 * uvm_swapin: swap in an lwp's u-area.
424 */
425
426 void
427 uvm_swapin(struct lwp *l)
428 {
429 vaddr_t addr;
430 int error;
431
432 addr = USER_TO_UAREA(l->l_addr);
433 /* make L_INMEM true */
434 error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
435 VM_PROT_READ | VM_PROT_WRITE, 0);
436 if (error) {
437 panic("uvm_swapin: rewiring stack failed: %d", error);
438 }
439
440 /*
441 * Some architectures need to be notified when the user area has
442 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
443 */
444 cpu_swapin(l);
445 lwp_lock(l);
446 if (l->l_stat == LSRUN)
447 sched_enqueue(l, false);
448 l->l_flag |= LW_INMEM;
449 l->l_swtime = 0;
450 lwp_unlock(l);
451 ++uvmexp.swapins;
452 }
453
454 /*
455 * uvm_kick_scheduler: kick the scheduler into action if not running.
456 *
457 * - called when swapped out processes have been awoken.
458 */
459
460 void
461 uvm_kick_scheduler(void)
462 {
463
464 if (uvm.swap_running == false)
465 return;
466
467 mutex_enter(&uvm.scheduler_mutex);
468 uvm.scheduler_kicked = true;
469 cv_signal(&uvm.scheduler_cv);
470 mutex_exit(&uvm.scheduler_mutex);
471 }
472
473 /*
474 * uvm_scheduler: process zero main loop
475 *
476 * - attempt to swapin every swaped-out, runnable process in order of
477 * priority.
478 * - if not enough memory, wake the pagedaemon and let it clear space.
479 */
480
481 void
482 uvm_scheduler(void)
483 {
484 struct lwp *l, *ll;
485 int pri;
486 int ppri;
487
488 l = curlwp;
489 lwp_lock(l);
490 lwp_changepri(l, PVM);
491 lwp_unlock(l);
492
493 for (;;) {
494 #ifdef DEBUG
495 mutex_enter(&uvm.scheduler_mutex);
496 while (!enableswap)
497 cv_wait(&uvm.scheduler_cv, &uvm.scheduler_mutex);
498 mutex_exit(&uvm.scheduler_mutex);
499 #endif
500 ll = NULL; /* process to choose */
501 ppri = INT_MIN; /* its priority */
502
503 mutex_enter(&proclist_mutex);
504 LIST_FOREACH(l, &alllwp, l_list) {
505 /* is it a runnable swapped out process? */
506 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
507 pri = l->l_swtime + l->l_slptime -
508 (l->l_proc->p_nice - NZERO) * 8;
509 if (pri > ppri) { /* higher priority? */
510 ll = l;
511 ppri = pri;
512 }
513 }
514 }
515 mutex_exit(&proclist_mutex);
516 #ifdef DEBUG
517 if (swapdebug & SDB_FOLLOW)
518 printf("scheduler: running, procp %p pri %d\n", ll,
519 ppri);
520 #endif
521 /*
522 * Nothing to do, back to sleep
523 */
524 if ((l = ll) == NULL) {
525 mutex_enter(&uvm.scheduler_mutex);
526 if (uvm.scheduler_kicked == false)
527 cv_wait(&uvm.scheduler_cv,
528 &uvm.scheduler_mutex);
529 uvm.scheduler_kicked = false;
530 mutex_exit(&uvm.scheduler_mutex);
531 continue;
532 }
533
534 /*
535 * we have found swapped out process which we would like
536 * to bring back in.
537 *
538 * XXX: this part is really bogus cuz we could deadlock
539 * on memory despite our feeble check
540 */
541 if (uvmexp.free > atop(USPACE)) {
542 #ifdef DEBUG
543 if (swapdebug & SDB_SWAPIN)
544 printf("swapin: pid %d(%s)@%p, pri %d "
545 "free %d\n", l->l_proc->p_pid,
546 l->l_proc->p_comm, l->l_addr, ppri,
547 uvmexp.free);
548 #endif
549 uvm_swapin(l);
550 } else {
551 /*
552 * not enough memory, jab the pageout daemon and
553 * wait til the coast is clear
554 */
555 #ifdef DEBUG
556 if (swapdebug & SDB_FOLLOW)
557 printf("scheduler: no room for pid %d(%s),"
558 " free %d\n", l->l_proc->p_pid,
559 l->l_proc->p_comm, uvmexp.free);
560 #endif
561 uvm_wait("schedpwait");
562 #ifdef DEBUG
563 if (swapdebug & SDB_FOLLOW)
564 printf("scheduler: room again, free %d\n",
565 uvmexp.free);
566 #endif
567 }
568 }
569 }
570
571 /*
572 * swappable: is LWP "l" swappable?
573 */
574
575 static bool
576 swappable(struct lwp *l)
577 {
578
579 if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
580 return false;
581 if (l->l_holdcnt != 0)
582 return false;
583 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
584 return false;
585 return true;
586 }
587
588 /*
589 * swapout_threads: find threads that can be swapped and unwire their
590 * u-areas.
591 *
592 * - called by the pagedaemon
593 * - try and swap at least one processs
594 * - processes that are sleeping or stopped for maxslp or more seconds
595 * are swapped... otherwise the longest-sleeping or stopped process
596 * is swapped, otherwise the longest resident process...
597 */
598
599 void
600 uvm_swapout_threads(void)
601 {
602 struct lwp *l;
603 struct lwp *outl, *outl2;
604 int outpri, outpri2;
605 int didswap = 0;
606 extern int maxslp;
607 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
608
609 #ifdef DEBUG
610 if (!enableswap)
611 return;
612 #endif
613
614 /*
615 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
616 * outl2/outpri2: the longest resident thread (its swap time)
617 */
618 outl = outl2 = NULL;
619 outpri = outpri2 = 0;
620 mutex_enter(&proclist_mutex); /* XXXSMP */
621 LIST_FOREACH(l, &alllwp, l_list) {
622 KASSERT(l->l_proc != NULL);
623 lwp_lock(l);
624 if (!swappable(l)) {
625 lwp_unlock(l);
626 continue;
627 }
628 switch (l->l_stat) {
629 case LSONPROC:
630 break;
631
632 case LSRUN:
633 if (l->l_swtime > outpri2) {
634 outl2 = l;
635 outpri2 = l->l_swtime;
636 }
637 break;
638
639 case LSSLEEP:
640 case LSSTOP:
641 if (l->l_slptime >= maxslp) {
642 /* uvm_swapout() will release the lock. */
643 uvm_swapout(l);
644 didswap++;
645 continue;
646 } else if (l->l_slptime > outpri) {
647 outl = l;
648 outpri = l->l_slptime;
649 }
650 break;
651 }
652 lwp_unlock(l);
653 }
654 /*
655 * If we didn't get rid of any real duds, toss out the next most
656 * likely sleeping/stopped or running candidate. We only do this
657 * if we are real low on memory since we don't gain much by doing
658 * it (USPACE bytes).
659 */
660 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
661 if ((l = outl) == NULL)
662 l = outl2;
663 #ifdef DEBUG
664 if (swapdebug & SDB_SWAPOUT)
665 printf("swapout_threads: no duds, try procp %p\n", l);
666 #endif
667 if (l) {
668 /* uvm_swapout() will release the lock. */
669 lwp_lock(l);
670 uvm_swapout(l);
671 }
672 }
673
674 mutex_exit(&proclist_mutex);
675
676 }
677
678 /*
679 * uvm_swapout: swap out lwp "l"
680 *
681 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
682 * the pmap.
683 * - must be called with the LWP locked, and will release the lock.
684 * - XXXCDC: should deactivate all process' private anonymous memory
685 */
686
687 static void
688 uvm_swapout(struct lwp *l)
689 {
690 vaddr_t addr;
691 struct proc *p = l->l_proc;
692
693 LOCK_ASSERT(lwp_locked(l, NULL));
694
695 #ifdef DEBUG
696 if (swapdebug & SDB_SWAPOUT)
697 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
698 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
699 l->l_slptime, uvmexp.free);
700 #endif
701
702 /*
703 * Mark it as (potentially) swapped out.
704 */
705 if (!swappable(l)) {
706 KDASSERT(l->l_cpu != curcpu());
707 lwp_unlock(l);
708 return;
709 }
710 l->l_flag &= ~LW_INMEM;
711 l->l_swtime = 0;
712 if (l->l_stat == LSRUN)
713 sched_dequeue(l);
714 lwp_unlock(l);
715 p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
716 ++uvmexp.swapouts;
717
718 mutex_exit(&proclist_mutex); /* XXXSMP */
719
720 /*
721 * Do any machine-specific actions necessary before swapout.
722 * This can include saving floating point state, etc.
723 */
724 cpu_swapout(l);
725
726 /*
727 * Unwire the to-be-swapped process's user struct and kernel stack.
728 */
729 addr = USER_TO_UAREA(l->l_addr);
730 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
731 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
732
733 mutex_enter(&proclist_mutex); /* XXXSMP */
734 }
735
736 #ifdef COREDUMP
737 /*
738 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
739 * a core file.
740 */
741
742 int
743 uvm_coredump_walkmap(struct proc *p, void *iocookie,
744 int (*func)(struct proc *, void *, struct uvm_coredump_state *),
745 void *cookie)
746 {
747 struct uvm_coredump_state state;
748 struct vmspace *vm = p->p_vmspace;
749 struct vm_map *map = &vm->vm_map;
750 struct vm_map_entry *entry;
751 int error;
752
753 entry = NULL;
754 vm_map_lock_read(map);
755 state.end = 0;
756 for (;;) {
757 if (entry == NULL)
758 entry = map->header.next;
759 else if (!uvm_map_lookup_entry(map, state.end, &entry))
760 entry = entry->next;
761 if (entry == &map->header)
762 break;
763
764 state.cookie = cookie;
765 if (state.end > entry->start) {
766 state.start = state.end;
767 } else {
768 state.start = entry->start;
769 }
770 state.realend = entry->end;
771 state.end = entry->end;
772 state.prot = entry->protection;
773 state.flags = 0;
774
775 /*
776 * Dump the region unless one of the following is true:
777 *
778 * (1) the region has neither object nor amap behind it
779 * (ie. it has never been accessed).
780 *
781 * (2) the region has no amap and is read-only
782 * (eg. an executable text section).
783 *
784 * (3) the region's object is a device.
785 *
786 * (4) the region is unreadable by the process.
787 */
788
789 KASSERT(!UVM_ET_ISSUBMAP(entry));
790 KASSERT(state.start < VM_MAXUSER_ADDRESS);
791 KASSERT(state.end <= VM_MAXUSER_ADDRESS);
792 if (entry->object.uvm_obj == NULL &&
793 entry->aref.ar_amap == NULL) {
794 state.realend = state.start;
795 } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
796 entry->aref.ar_amap == NULL) {
797 state.realend = state.start;
798 } else if (entry->object.uvm_obj != NULL &&
799 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
800 state.realend = state.start;
801 } else if ((entry->protection & VM_PROT_READ) == 0) {
802 state.realend = state.start;
803 } else {
804 if (state.start >= (vaddr_t)vm->vm_maxsaddr)
805 state.flags |= UVM_COREDUMP_STACK;
806
807 /*
808 * If this an anonymous entry, only dump instantiated
809 * pages.
810 */
811 if (entry->object.uvm_obj == NULL) {
812 vaddr_t end;
813
814 amap_lock(entry->aref.ar_amap);
815 for (end = state.start;
816 end < state.end; end += PAGE_SIZE) {
817 struct vm_anon *anon;
818 anon = amap_lookup(&entry->aref,
819 end - entry->start);
820 /*
821 * If we have already encountered an
822 * uninstantiated page, stop at the
823 * first instantied page.
824 */
825 if (anon != NULL &&
826 state.realend != state.end) {
827 state.end = end;
828 break;
829 }
830
831 /*
832 * If this page is the first
833 * uninstantiated page, mark this as
834 * the real ending point. Continue to
835 * counting uninstantiated pages.
836 */
837 if (anon == NULL &&
838 state.realend == state.end) {
839 state.realend = end;
840 }
841 }
842 amap_unlock(entry->aref.ar_amap);
843 }
844 }
845
846
847 vm_map_unlock_read(map);
848 error = (*func)(p, iocookie, &state);
849 if (error)
850 return (error);
851 vm_map_lock_read(map);
852 }
853 vm_map_unlock_read(map);
854
855 return (0);
856 }
857 #endif /* COREDUMP */
858