Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.110
      1 /*	$NetBSD: uvm_glue.c,v 1.110 2007/08/18 00:31:32 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.110 2007/08/18 00:31:32 ad Exp $");
     71 
     72 #include "opt_coredump.h"
     73 #include "opt_kgdb.h"
     74 #include "opt_kstack.h"
     75 #include "opt_uvmhist.h"
     76 
     77 /*
     78  * uvm_glue.c: glue functions
     79  */
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/user.h>
     87 #include <sys/syncobj.h>
     88 
     89 #include <uvm/uvm.h>
     90 
     91 #include <machine/cpu.h>
     92 
     93 /*
     94  * local prototypes
     95  */
     96 
     97 static void uvm_swapout(struct lwp *);
     98 
     99 #define UVM_NUAREA_HIWAT	20
    100 #define	UVM_NUAREA_LOWAT	16
    101 
    102 #define	UAREA_NEXTFREE(uarea)	(*(vaddr_t *)(UAREA_TO_USER(uarea)))
    103 
    104 void uvm_uarea_free(vaddr_t);
    105 
    106 /*
    107  * XXXCDC: do these really belong here?
    108  */
    109 
    110 /*
    111  * uvm_kernacc: can the kernel access a region of memory
    112  *
    113  * - used only by /dev/kmem driver (mem.c)
    114  */
    115 
    116 bool
    117 uvm_kernacc(void *addr, size_t len, int rw)
    118 {
    119 	bool rv;
    120 	vaddr_t saddr, eaddr;
    121 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    122 
    123 	saddr = trunc_page((vaddr_t)addr);
    124 	eaddr = round_page((vaddr_t)addr + len);
    125 	vm_map_lock_read(kernel_map);
    126 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    127 	vm_map_unlock_read(kernel_map);
    128 
    129 	return(rv);
    130 }
    131 
    132 #ifdef KGDB
    133 /*
    134  * Change protections on kernel pages from addr to addr+len
    135  * (presumably so debugger can plant a breakpoint).
    136  *
    137  * We force the protection change at the pmap level.  If we were
    138  * to use vm_map_protect a change to allow writing would be lazily-
    139  * applied meaning we would still take a protection fault, something
    140  * we really don't want to do.  It would also fragment the kernel
    141  * map unnecessarily.  We cannot use pmap_protect since it also won't
    142  * enforce a write-enable request.  Using pmap_enter is the only way
    143  * we can ensure the change takes place properly.
    144  */
    145 void
    146 uvm_chgkprot(void *addr, size_t len, int rw)
    147 {
    148 	vm_prot_t prot;
    149 	paddr_t pa;
    150 	vaddr_t sva, eva;
    151 
    152 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    153 	eva = round_page((vaddr_t)addr + len);
    154 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    155 		/*
    156 		 * Extract physical address for the page.
    157 		 */
    158 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    159 			panic("chgkprot: invalid page");
    160 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    161 	}
    162 	pmap_update(pmap_kernel());
    163 }
    164 #endif
    165 
    166 /*
    167  * uvm_vslock: wire user memory for I/O
    168  *
    169  * - called from physio and sys___sysctl
    170  * - XXXCDC: consider nuking this (or making it a macro?)
    171  */
    172 
    173 int
    174 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    175 {
    176 	struct vm_map *map;
    177 	vaddr_t start, end;
    178 	int error;
    179 
    180 	map = &vs->vm_map;
    181 	start = trunc_page((vaddr_t)addr);
    182 	end = round_page((vaddr_t)addr + len);
    183 	error = uvm_fault_wire(map, start, end, access_type, 0);
    184 	return error;
    185 }
    186 
    187 /*
    188  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    189  *
    190  * - called from physio and sys___sysctl
    191  * - XXXCDC: consider nuking this (or making it a macro?)
    192  */
    193 
    194 void
    195 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    196 {
    197 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    198 		round_page((vaddr_t)addr + len));
    199 }
    200 
    201 /*
    202  * uvm_proc_fork: fork a virtual address space
    203  *
    204  * - the address space is copied as per parent map's inherit values
    205  */
    206 void
    207 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    208 {
    209 
    210 	if (shared == true) {
    211 		p2->p_vmspace = NULL;
    212 		uvmspace_share(p1, p2);
    213 	} else {
    214 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    215 	}
    216 
    217 	cpu_proc_fork(p1, p2);
    218 }
    219 
    220 
    221 /*
    222  * uvm_lwp_fork: fork a thread
    223  *
    224  * - a new "user" structure is allocated for the child process
    225  *	[filled in by MD layer...]
    226  * - if specified, the child gets a new user stack described by
    227  *	stack and stacksize
    228  * - NOTE: the kernel stack may be at a different location in the child
    229  *	process, and thus addresses of automatic variables may be invalid
    230  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    231  *	after cpu_lwp_fork returns.
    232  * - XXXCDC: we need a way for this to return a failure value rather
    233  *   than just hang
    234  */
    235 void
    236 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    237     void (*func)(void *), void *arg)
    238 {
    239 	int error;
    240 
    241 	/*
    242 	 * Wire down the U-area for the process, which contains the PCB
    243 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    244 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    245 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    246 	 * L_INMEM will already be set and we don't need to do anything.
    247 	 *
    248 	 * Note the kernel stack gets read/write accesses right off the bat.
    249 	 */
    250 
    251 	if ((l2->l_flag & LW_INMEM) == 0) {
    252 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    253 
    254 		error = uvm_fault_wire(kernel_map, uarea,
    255 		    uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
    256 		if (error)
    257 			panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
    258 #ifdef PMAP_UAREA
    259 		/* Tell the pmap this is a u-area mapping */
    260 		PMAP_UAREA(uarea);
    261 #endif
    262 		l2->l_flag |= LW_INMEM;
    263 	}
    264 
    265 #ifdef KSTACK_CHECK_MAGIC
    266 	/*
    267 	 * fill stack with magic number
    268 	 */
    269 	kstack_setup_magic(l2);
    270 #endif
    271 
    272 	/*
    273 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    274  	 * to run.  If this is a normal user fork, the child will exit
    275 	 * directly to user mode via child_return() on its first time
    276 	 * slice and will not return here.  If this is a kernel thread,
    277 	 * the specified entry point will be executed.
    278 	 */
    279 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    280 }
    281 
    282 /*
    283  * uvm_cpu_attach: initialize per-CPU data structures.
    284  */
    285 
    286 void
    287 uvm_cpu_attach(struct cpu_info *ci)
    288 {
    289 
    290 	mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
    291 	ci->ci_data.cpu_uarea_cnt = 0;
    292 	ci->ci_data.cpu_uarea_list = 0;
    293 }
    294 
    295 /*
    296  * uvm_uarea_alloc: allocate a u-area
    297  */
    298 
    299 bool
    300 uvm_uarea_alloc(vaddr_t *uaddrp)
    301 {
    302 	struct cpu_info *ci;
    303 	vaddr_t uaddr;
    304 
    305 #ifndef USPACE_ALIGN
    306 #define USPACE_ALIGN    0
    307 #endif
    308 
    309 	ci = curcpu();
    310 
    311 	if (ci->ci_data.cpu_uarea_cnt > 0) {
    312 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
    313 		if (ci->ci_data.cpu_uarea_cnt == 0) {
    314 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    315 		} else {
    316 			uaddr = ci->ci_data.cpu_uarea_list;
    317 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
    318 			ci->ci_data.cpu_uarea_cnt--;
    319 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    320 			*uaddrp = uaddr;
    321 			return true;
    322 		}
    323 	}
    324 
    325 	*uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
    326 	    UVM_KMF_PAGEABLE);
    327 	return false;
    328 }
    329 
    330 /*
    331  * uvm_uarea_free: free a u-area
    332  */
    333 
    334 void
    335 uvm_uarea_free(vaddr_t uaddr)
    336 {
    337 	struct cpu_info *ci;
    338 
    339 	ci = curcpu();
    340 
    341 	mutex_enter(&ci->ci_data.cpu_uarea_lock);
    342 	UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
    343 	ci->ci_data.cpu_uarea_list = uaddr;
    344 	ci->ci_data.cpu_uarea_cnt++;
    345 	mutex_exit(&ci->ci_data.cpu_uarea_lock);
    346 }
    347 
    348 /*
    349  * uvm_uarea_drain: return memory of u-areas over limit
    350  * back to system
    351  *
    352  * => if asked to drain as much as possible, drain all cpus.
    353  * => if asked to drain to low water mark, drain local cpu only.
    354  */
    355 
    356 void
    357 uvm_uarea_drain(bool empty)
    358 {
    359 	CPU_INFO_ITERATOR cii;
    360 	struct cpu_info *ci;
    361 	vaddr_t uaddr, nuaddr;
    362 	int count;
    363 
    364 	if (empty) {
    365 		for (CPU_INFO_FOREACH(cii, ci)) {
    366 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
    367 			count = ci->ci_data.cpu_uarea_cnt;
    368 			uaddr = ci->ci_data.cpu_uarea_list;
    369 			ci->ci_data.cpu_uarea_cnt = 0;
    370 			ci->ci_data.cpu_uarea_list = 0;
    371 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    372 
    373 			while (count != 0) {
    374 				nuaddr = UAREA_NEXTFREE(uaddr);
    375 				uvm_km_free(kernel_map, uaddr, USPACE,
    376 				    UVM_KMF_PAGEABLE);
    377 				uaddr = nuaddr;
    378 				count--;
    379 			}
    380 		}
    381 		return;
    382 	}
    383 
    384 	ci = curcpu();
    385 	if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
    386 		mutex_enter(&ci->ci_data.cpu_uarea_lock);
    387 		while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
    388 			uaddr = ci->ci_data.cpu_uarea_list;
    389 			ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
    390 			ci->ci_data.cpu_uarea_cnt--;
    391 			mutex_exit(&ci->ci_data.cpu_uarea_lock);
    392 			uvm_km_free(kernel_map, uaddr, USPACE,
    393 			    UVM_KMF_PAGEABLE);
    394 			mutex_enter(&ci->ci_data.cpu_uarea_lock);
    395 		}
    396 		mutex_exit(&ci->ci_data.cpu_uarea_lock);
    397 	}
    398 }
    399 
    400 /*
    401  * uvm_exit: exit a virtual address space
    402  *
    403  * - the process passed to us is a dead (pre-zombie) process; we
    404  *   are running on a different context now (the reaper).
    405  * - borrow proc0's address space because freeing the vmspace
    406  *   of the dead process may block.
    407  */
    408 
    409 void
    410 uvm_proc_exit(struct proc *p)
    411 {
    412 	struct lwp *l = curlwp; /* XXX */
    413 	struct vmspace *ovm;
    414 
    415 	KASSERT(p == l->l_proc);
    416 	ovm = p->p_vmspace;
    417 
    418 	/*
    419 	 * borrow proc0's address space.
    420 	 */
    421 	pmap_deactivate(l);
    422 	p->p_vmspace = proc0.p_vmspace;
    423 	pmap_activate(l);
    424 
    425 	uvmspace_free(ovm);
    426 }
    427 
    428 void
    429 uvm_lwp_exit(struct lwp *l)
    430 {
    431 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    432 
    433 	l->l_flag &= ~LW_INMEM;
    434 	uvm_uarea_free(va);
    435 	l->l_addr = NULL;
    436 }
    437 
    438 /*
    439  * uvm_init_limit: init per-process VM limits
    440  *
    441  * - called for process 0 and then inherited by all others.
    442  */
    443 
    444 void
    445 uvm_init_limits(struct proc *p)
    446 {
    447 
    448 	/*
    449 	 * Set up the initial limits on process VM.  Set the maximum
    450 	 * resident set size to be all of (reasonably) available memory.
    451 	 * This causes any single, large process to start random page
    452 	 * replacement once it fills memory.
    453 	 */
    454 
    455 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    456 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    457 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    458 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    459 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    460 }
    461 
    462 #ifdef DEBUG
    463 int	enableswap = 1;
    464 int	swapdebug = 0;
    465 #define	SDB_FOLLOW	1
    466 #define SDB_SWAPIN	2
    467 #define SDB_SWAPOUT	4
    468 #endif
    469 
    470 /*
    471  * uvm_swapin: swap in an lwp's u-area.
    472  *
    473  * - must be called with the LWP's swap lock held.
    474  * - naturally, must not be called with l == curlwp
    475  */
    476 
    477 void
    478 uvm_swapin(struct lwp *l)
    479 {
    480 	vaddr_t addr;
    481 	int error;
    482 
    483 	KASSERT(mutex_owned(&l->l_swaplock));
    484 	KASSERT(l != curlwp);
    485 
    486 	addr = USER_TO_UAREA(l->l_addr);
    487 	/* make L_INMEM true */
    488 	error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
    489 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    490 	if (error) {
    491 		panic("uvm_swapin: rewiring stack failed: %d", error);
    492 	}
    493 
    494 	/*
    495 	 * Some architectures need to be notified when the user area has
    496 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    497 	 */
    498 	cpu_swapin(l);
    499 	lwp_lock(l);
    500 	if (l->l_stat == LSRUN)
    501 		sched_enqueue(l, false);
    502 	l->l_flag |= LW_INMEM;
    503 	l->l_swtime = 0;
    504 	lwp_unlock(l);
    505 	++uvmexp.swapins;
    506 }
    507 
    508 /*
    509  * uvm_kick_scheduler: kick the scheduler into action if not running.
    510  *
    511  * - called when swapped out processes have been awoken.
    512  */
    513 
    514 void
    515 uvm_kick_scheduler(void)
    516 {
    517 
    518 	if (uvm.swap_running == false)
    519 		return;
    520 
    521 	mutex_enter(&uvm_scheduler_mutex);
    522 	uvm.scheduler_kicked = true;
    523 	cv_signal(&uvm.scheduler_cv);
    524 	mutex_exit(&uvm_scheduler_mutex);
    525 }
    526 
    527 /*
    528  * uvm_scheduler: process zero main loop
    529  *
    530  * - attempt to swapin every swaped-out, runnable process in order of
    531  *	priority.
    532  * - if not enough memory, wake the pagedaemon and let it clear space.
    533  */
    534 
    535 void
    536 uvm_scheduler(void)
    537 {
    538 	struct lwp *l, *ll;
    539 	int pri;
    540 	int ppri;
    541 
    542 	l = curlwp;
    543 	lwp_lock(l);
    544 	l->l_priority = PVM;
    545 	l->l_usrpri = PVM;
    546 	lwp_unlock(l);
    547 
    548 	for (;;) {
    549 #ifdef DEBUG
    550 		mutex_enter(&uvm_scheduler_mutex);
    551 		while (!enableswap)
    552 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
    553 		mutex_exit(&uvm_scheduler_mutex);
    554 #endif
    555 		ll = NULL;		/* process to choose */
    556 		ppri = INT_MIN;		/* its priority */
    557 
    558 		mutex_enter(&proclist_lock);
    559 		LIST_FOREACH(l, &alllwp, l_list) {
    560 			/* is it a runnable swapped out process? */
    561 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
    562 				pri = l->l_swtime + l->l_slptime -
    563 				    (l->l_proc->p_nice - NZERO) * 8;
    564 				if (pri > ppri) {   /* higher priority? */
    565 					ll = l;
    566 					ppri = pri;
    567 				}
    568 			}
    569 		}
    570 #ifdef DEBUG
    571 		if (swapdebug & SDB_FOLLOW)
    572 			printf("scheduler: running, procp %p pri %d\n", ll,
    573 			    ppri);
    574 #endif
    575 		/*
    576 		 * Nothing to do, back to sleep
    577 		 */
    578 		if ((l = ll) == NULL) {
    579 			mutex_exit(&proclist_lock);
    580 			mutex_enter(&uvm_scheduler_mutex);
    581 			if (uvm.scheduler_kicked == false)
    582 				cv_wait(&uvm.scheduler_cv,
    583 				    &uvm_scheduler_mutex);
    584 			uvm.scheduler_kicked = false;
    585 			mutex_exit(&uvm_scheduler_mutex);
    586 			continue;
    587 		}
    588 
    589 		/*
    590 		 * we have found swapped out process which we would like
    591 		 * to bring back in.
    592 		 *
    593 		 * XXX: this part is really bogus cuz we could deadlock
    594 		 * on memory despite our feeble check
    595 		 */
    596 		if (uvmexp.free > atop(USPACE)) {
    597 #ifdef DEBUG
    598 			if (swapdebug & SDB_SWAPIN)
    599 				printf("swapin: pid %d(%s)@%p, pri %d "
    600 				    "free %d\n", l->l_proc->p_pid,
    601 				    l->l_proc->p_comm, l->l_addr, ppri,
    602 				    uvmexp.free);
    603 #endif
    604 			mutex_enter(&l->l_swaplock);
    605 			mutex_exit(&proclist_lock);
    606 			uvm_swapin(l);
    607 			mutex_exit(&l->l_swaplock);
    608 			continue;
    609 		} else {
    610 			/*
    611 			 * not enough memory, jab the pageout daemon and
    612 			 * wait til the coast is clear
    613 			 */
    614 			mutex_exit(&proclist_lock);
    615 #ifdef DEBUG
    616 			if (swapdebug & SDB_FOLLOW)
    617 				printf("scheduler: no room for pid %d(%s),"
    618 				    " free %d\n", l->l_proc->p_pid,
    619 				    l->l_proc->p_comm, uvmexp.free);
    620 #endif
    621 			uvm_wait("schedpwait");
    622 #ifdef DEBUG
    623 			if (swapdebug & SDB_FOLLOW)
    624 				printf("scheduler: room again, free %d\n",
    625 				    uvmexp.free);
    626 #endif
    627 		}
    628 	}
    629 }
    630 
    631 /*
    632  * swappable: is LWP "l" swappable?
    633  */
    634 
    635 static bool
    636 swappable(struct lwp *l)
    637 {
    638 
    639 	if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
    640 		return false;
    641 	if (l->l_holdcnt != 0)
    642 		return false;
    643 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
    644 		return false;
    645 	return true;
    646 }
    647 
    648 /*
    649  * swapout_threads: find threads that can be swapped and unwire their
    650  *	u-areas.
    651  *
    652  * - called by the pagedaemon
    653  * - try and swap at least one processs
    654  * - processes that are sleeping or stopped for maxslp or more seconds
    655  *   are swapped... otherwise the longest-sleeping or stopped process
    656  *   is swapped, otherwise the longest resident process...
    657  */
    658 
    659 void
    660 uvm_swapout_threads(void)
    661 {
    662 	struct lwp *l;
    663 	struct lwp *outl, *outl2;
    664 	int outpri, outpri2;
    665 	int didswap = 0;
    666 	extern int maxslp;
    667 	bool gotit;
    668 
    669 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    670 
    671 #ifdef DEBUG
    672 	if (!enableswap)
    673 		return;
    674 #endif
    675 
    676 	/*
    677 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    678 	 * outl2/outpri2: the longest resident thread (its swap time)
    679 	 */
    680 	outl = outl2 = NULL;
    681 	outpri = outpri2 = 0;
    682 
    683  restart:
    684 	mutex_enter(&proclist_lock);
    685 	LIST_FOREACH(l, &alllwp, l_list) {
    686 		KASSERT(l->l_proc != NULL);
    687 		if (!mutex_tryenter(&l->l_swaplock))
    688 			continue;
    689 		if (!swappable(l)) {
    690 			mutex_exit(&l->l_swaplock);
    691 			continue;
    692 		}
    693 		switch (l->l_stat) {
    694 		case LSONPROC:
    695 			break;
    696 
    697 		case LSRUN:
    698 			if (l->l_swtime > outpri2) {
    699 				outl2 = l;
    700 				outpri2 = l->l_swtime;
    701 			}
    702 			break;
    703 
    704 		case LSSLEEP:
    705 		case LSSTOP:
    706 			if (l->l_slptime >= maxslp) {
    707 				mutex_exit(&proclist_lock);
    708 				uvm_swapout(l);
    709 				/*
    710 				 * Locking in the wrong direction -
    711 				 * try to prevent the LWP from exiting.
    712 				 */
    713 				gotit = mutex_tryenter(&proclist_lock);
    714 				mutex_exit(&l->l_swaplock);
    715 				didswap++;
    716 				if (!gotit)
    717 					goto restart;
    718 				continue;
    719 			} else if (l->l_slptime > outpri) {
    720 				outl = l;
    721 				outpri = l->l_slptime;
    722 			}
    723 			break;
    724 		}
    725 		mutex_exit(&l->l_swaplock);
    726 	}
    727 
    728 	/*
    729 	 * If we didn't get rid of any real duds, toss out the next most
    730 	 * likely sleeping/stopped or running candidate.  We only do this
    731 	 * if we are real low on memory since we don't gain much by doing
    732 	 * it (USPACE bytes).
    733 	 */
    734 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    735 		if ((l = outl) == NULL)
    736 			l = outl2;
    737 #ifdef DEBUG
    738 		if (swapdebug & SDB_SWAPOUT)
    739 			printf("swapout_threads: no duds, try procp %p\n", l);
    740 #endif
    741 		if (l) {
    742 			mutex_enter(&l->l_swaplock);
    743 			mutex_exit(&proclist_lock);
    744 			if (swappable(l))
    745 				uvm_swapout(l);
    746 			mutex_exit(&l->l_swaplock);
    747 			return;
    748 		}
    749 	}
    750 
    751 	mutex_exit(&proclist_lock);
    752 }
    753 
    754 /*
    755  * uvm_swapout: swap out lwp "l"
    756  *
    757  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    758  *   the pmap.
    759  * - must be called with l->l_swaplock held.
    760  * - XXXCDC: should deactivate all process' private anonymous memory
    761  */
    762 
    763 static void
    764 uvm_swapout(struct lwp *l)
    765 {
    766 	vaddr_t addr;
    767 	struct proc *p = l->l_proc;
    768 
    769 	KASSERT(mutex_owned(&l->l_swaplock));
    770 
    771 #ifdef DEBUG
    772 	if (swapdebug & SDB_SWAPOUT)
    773 		printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    774 	   p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
    775 	   l->l_slptime, uvmexp.free);
    776 #endif
    777 
    778 	/*
    779 	 * Mark it as (potentially) swapped out.
    780 	 */
    781 	lwp_lock(l);
    782 	if (!swappable(l)) {
    783 		KDASSERT(l->l_cpu != curcpu());
    784 		lwp_unlock(l);
    785 		return;
    786 	}
    787 	l->l_flag &= ~LW_INMEM;
    788 	l->l_swtime = 0;
    789 	if (l->l_stat == LSRUN)
    790 		sched_dequeue(l);
    791 	lwp_unlock(l);
    792 	p->p_stats->p_ru.ru_nswap++;	/* XXXSMP */
    793 	++uvmexp.swapouts;
    794 
    795 	/*
    796 	 * Do any machine-specific actions necessary before swapout.
    797 	 * This can include saving floating point state, etc.
    798 	 */
    799 	cpu_swapout(l);
    800 
    801 	/*
    802 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    803 	 */
    804 	addr = USER_TO_UAREA(l->l_addr);
    805 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
    806 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
    807 }
    808 
    809 /*
    810  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
    811  * back into memory if it is currently swapped.
    812  */
    813 
    814 void
    815 uvm_lwp_hold(struct lwp *l)
    816 {
    817 
    818 	/* XXXSMP mutex_enter(&l->l_swaplock); */
    819 	if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0)
    820 		uvm_swapin(l);
    821 	/* XXXSMP mutex_exit(&l->l_swaplock); */
    822 }
    823 
    824 /*
    825  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
    826  * drops to zero, it's eligable to be swapped.
    827  */
    828 
    829 void
    830 uvm_lwp_rele(struct lwp *l)
    831 {
    832 
    833 	KASSERT(l->l_holdcnt != 0);
    834 
    835 	/* XXXSMP mutex_enter(&l->l_swaplock); */
    836 	l->l_holdcnt--;
    837 	/* XXXSMP mutex_exit(&l->l_swaplock); */
    838 }
    839 
    840 #ifdef COREDUMP
    841 /*
    842  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
    843  * a core file.
    844  */
    845 
    846 int
    847 uvm_coredump_walkmap(struct proc *p, void *iocookie,
    848     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
    849     void *cookie)
    850 {
    851 	struct uvm_coredump_state state;
    852 	struct vmspace *vm = p->p_vmspace;
    853 	struct vm_map *map = &vm->vm_map;
    854 	struct vm_map_entry *entry;
    855 	int error;
    856 
    857 	entry = NULL;
    858 	vm_map_lock_read(map);
    859 	state.end = 0;
    860 	for (;;) {
    861 		if (entry == NULL)
    862 			entry = map->header.next;
    863 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
    864 			entry = entry->next;
    865 		if (entry == &map->header)
    866 			break;
    867 
    868 		state.cookie = cookie;
    869 		if (state.end > entry->start) {
    870 			state.start = state.end;
    871 		} else {
    872 			state.start = entry->start;
    873 		}
    874 		state.realend = entry->end;
    875 		state.end = entry->end;
    876 		state.prot = entry->protection;
    877 		state.flags = 0;
    878 
    879 		/*
    880 		 * Dump the region unless one of the following is true:
    881 		 *
    882 		 * (1) the region has neither object nor amap behind it
    883 		 *     (ie. it has never been accessed).
    884 		 *
    885 		 * (2) the region has no amap and is read-only
    886 		 *     (eg. an executable text section).
    887 		 *
    888 		 * (3) the region's object is a device.
    889 		 *
    890 		 * (4) the region is unreadable by the process.
    891 		 */
    892 
    893 		KASSERT(!UVM_ET_ISSUBMAP(entry));
    894 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
    895 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
    896 		if (entry->object.uvm_obj == NULL &&
    897 		    entry->aref.ar_amap == NULL) {
    898 			state.realend = state.start;
    899 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
    900 		    entry->aref.ar_amap == NULL) {
    901 			state.realend = state.start;
    902 		} else if (entry->object.uvm_obj != NULL &&
    903 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
    904 			state.realend = state.start;
    905 		} else if ((entry->protection & VM_PROT_READ) == 0) {
    906 			state.realend = state.start;
    907 		} else {
    908 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
    909 				state.flags |= UVM_COREDUMP_STACK;
    910 
    911 			/*
    912 			 * If this an anonymous entry, only dump instantiated
    913 			 * pages.
    914 			 */
    915 			if (entry->object.uvm_obj == NULL) {
    916 				vaddr_t end;
    917 
    918 				amap_lock(entry->aref.ar_amap);
    919 				for (end = state.start;
    920 				     end < state.end; end += PAGE_SIZE) {
    921 					struct vm_anon *anon;
    922 					anon = amap_lookup(&entry->aref,
    923 					    end - entry->start);
    924 					/*
    925 					 * If we have already encountered an
    926 					 * uninstantiated page, stop at the
    927 					 * first instantied page.
    928 					 */
    929 					if (anon != NULL &&
    930 					    state.realend != state.end) {
    931 						state.end = end;
    932 						break;
    933 					}
    934 
    935 					/*
    936 					 * If this page is the first
    937 					 * uninstantiated page, mark this as
    938 					 * the real ending point.  Continue to
    939 					 * counting uninstantiated pages.
    940 					 */
    941 					if (anon == NULL &&
    942 					    state.realend == state.end) {
    943 						state.realend = end;
    944 					}
    945 				}
    946 				amap_unlock(entry->aref.ar_amap);
    947 			}
    948 		}
    949 
    950 
    951 		vm_map_unlock_read(map);
    952 		error = (*func)(p, iocookie, &state);
    953 		if (error)
    954 			return (error);
    955 		vm_map_lock_read(map);
    956 	}
    957 	vm_map_unlock_read(map);
    958 
    959 	return (0);
    960 }
    961 #endif /* COREDUMP */
    962