uvm_glue.c revision 1.112 1 /* $NetBSD: uvm_glue.c,v 1.112 2007/09/21 00:18:35 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.112 2007/09/21 00:18:35 ad Exp $");
71
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76
77 /*
78 * uvm_glue.c: glue functions
79 */
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 #include <sys/syncobj.h>
88 #include <sys/cpu.h>
89
90 #include <uvm/uvm.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout(struct lwp *);
97
98 #define UVM_NUAREA_HIWAT 20
99 #define UVM_NUAREA_LOWAT 16
100
101 #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
102
103 void uvm_uarea_free(vaddr_t);
104
105 /*
106 * XXXCDC: do these really belong here?
107 */
108
109 /*
110 * uvm_kernacc: can the kernel access a region of memory
111 *
112 * - used only by /dev/kmem driver (mem.c)
113 */
114
115 bool
116 uvm_kernacc(void *addr, size_t len, int rw)
117 {
118 bool rv;
119 vaddr_t saddr, eaddr;
120 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
121
122 saddr = trunc_page((vaddr_t)addr);
123 eaddr = round_page((vaddr_t)addr + len);
124 vm_map_lock_read(kernel_map);
125 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
126 vm_map_unlock_read(kernel_map);
127
128 return(rv);
129 }
130
131 #ifdef KGDB
132 /*
133 * Change protections on kernel pages from addr to addr+len
134 * (presumably so debugger can plant a breakpoint).
135 *
136 * We force the protection change at the pmap level. If we were
137 * to use vm_map_protect a change to allow writing would be lazily-
138 * applied meaning we would still take a protection fault, something
139 * we really don't want to do. It would also fragment the kernel
140 * map unnecessarily. We cannot use pmap_protect since it also won't
141 * enforce a write-enable request. Using pmap_enter is the only way
142 * we can ensure the change takes place properly.
143 */
144 void
145 uvm_chgkprot(void *addr, size_t len, int rw)
146 {
147 vm_prot_t prot;
148 paddr_t pa;
149 vaddr_t sva, eva;
150
151 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
152 eva = round_page((vaddr_t)addr + len);
153 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
154 /*
155 * Extract physical address for the page.
156 */
157 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
158 panic("chgkprot: invalid page");
159 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
160 }
161 pmap_update(pmap_kernel());
162 }
163 #endif
164
165 /*
166 * uvm_vslock: wire user memory for I/O
167 *
168 * - called from physio and sys___sysctl
169 * - XXXCDC: consider nuking this (or making it a macro?)
170 */
171
172 int
173 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
174 {
175 struct vm_map *map;
176 vaddr_t start, end;
177 int error;
178
179 map = &vs->vm_map;
180 start = trunc_page((vaddr_t)addr);
181 end = round_page((vaddr_t)addr + len);
182 error = uvm_fault_wire(map, start, end, access_type, 0);
183 return error;
184 }
185
186 /*
187 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
188 *
189 * - called from physio and sys___sysctl
190 * - XXXCDC: consider nuking this (or making it a macro?)
191 */
192
193 void
194 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
195 {
196 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
197 round_page((vaddr_t)addr + len));
198 }
199
200 /*
201 * uvm_proc_fork: fork a virtual address space
202 *
203 * - the address space is copied as per parent map's inherit values
204 */
205 void
206 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
207 {
208
209 if (shared == true) {
210 p2->p_vmspace = NULL;
211 uvmspace_share(p1, p2);
212 } else {
213 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
214 }
215
216 cpu_proc_fork(p1, p2);
217 }
218
219
220 /*
221 * uvm_lwp_fork: fork a thread
222 *
223 * - a new "user" structure is allocated for the child process
224 * [filled in by MD layer...]
225 * - if specified, the child gets a new user stack described by
226 * stack and stacksize
227 * - NOTE: the kernel stack may be at a different location in the child
228 * process, and thus addresses of automatic variables may be invalid
229 * after cpu_lwp_fork returns in the child process. We do nothing here
230 * after cpu_lwp_fork returns.
231 * - XXXCDC: we need a way for this to return a failure value rather
232 * than just hang
233 */
234 void
235 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
236 void (*func)(void *), void *arg)
237 {
238 int error;
239
240 /*
241 * Wire down the U-area for the process, which contains the PCB
242 * and the kernel stack. Wired state is stored in l->l_flag's
243 * L_INMEM bit rather than in the vm_map_entry's wired count
244 * to prevent kernel_map fragmentation. If we reused a cached U-area,
245 * L_INMEM will already be set and we don't need to do anything.
246 *
247 * Note the kernel stack gets read/write accesses right off the bat.
248 */
249
250 if ((l2->l_flag & LW_INMEM) == 0) {
251 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
252
253 error = uvm_fault_wire(kernel_map, uarea,
254 uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
255 if (error)
256 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
257 #ifdef PMAP_UAREA
258 /* Tell the pmap this is a u-area mapping */
259 PMAP_UAREA(uarea);
260 #endif
261 l2->l_flag |= LW_INMEM;
262 }
263
264 #ifdef KSTACK_CHECK_MAGIC
265 /*
266 * fill stack with magic number
267 */
268 kstack_setup_magic(l2);
269 #endif
270
271 /*
272 * cpu_lwp_fork() copy and update the pcb, and make the child ready
273 * to run. If this is a normal user fork, the child will exit
274 * directly to user mode via child_return() on its first time
275 * slice and will not return here. If this is a kernel thread,
276 * the specified entry point will be executed.
277 */
278 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
279 }
280
281 /*
282 * uvm_cpu_attach: initialize per-CPU data structures.
283 */
284
285 void
286 uvm_cpu_attach(struct cpu_info *ci)
287 {
288
289 mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
290 ci->ci_data.cpu_uarea_cnt = 0;
291 ci->ci_data.cpu_uarea_list = 0;
292 }
293
294 /*
295 * uvm_uarea_alloc: allocate a u-area
296 */
297
298 bool
299 uvm_uarea_alloc(vaddr_t *uaddrp)
300 {
301 struct cpu_info *ci;
302 vaddr_t uaddr;
303
304 #ifndef USPACE_ALIGN
305 #define USPACE_ALIGN 0
306 #endif
307
308 ci = curcpu();
309
310 if (ci->ci_data.cpu_uarea_cnt > 0) {
311 mutex_enter(&ci->ci_data.cpu_uarea_lock);
312 if (ci->ci_data.cpu_uarea_cnt == 0) {
313 mutex_exit(&ci->ci_data.cpu_uarea_lock);
314 } else {
315 uaddr = ci->ci_data.cpu_uarea_list;
316 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
317 ci->ci_data.cpu_uarea_cnt--;
318 mutex_exit(&ci->ci_data.cpu_uarea_lock);
319 *uaddrp = uaddr;
320 return true;
321 }
322 }
323
324 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
325 UVM_KMF_PAGEABLE);
326 return false;
327 }
328
329 /*
330 * uvm_uarea_free: free a u-area
331 */
332
333 void
334 uvm_uarea_free(vaddr_t uaddr)
335 {
336 struct cpu_info *ci;
337
338 ci = curcpu();
339
340 mutex_enter(&ci->ci_data.cpu_uarea_lock);
341 UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
342 ci->ci_data.cpu_uarea_list = uaddr;
343 ci->ci_data.cpu_uarea_cnt++;
344 mutex_exit(&ci->ci_data.cpu_uarea_lock);
345 }
346
347 /*
348 * uvm_uarea_drain: return memory of u-areas over limit
349 * back to system
350 *
351 * => if asked to drain as much as possible, drain all cpus.
352 * => if asked to drain to low water mark, drain local cpu only.
353 */
354
355 void
356 uvm_uarea_drain(bool empty)
357 {
358 CPU_INFO_ITERATOR cii;
359 struct cpu_info *ci;
360 vaddr_t uaddr, nuaddr;
361 int count;
362
363 if (empty) {
364 for (CPU_INFO_FOREACH(cii, ci)) {
365 mutex_enter(&ci->ci_data.cpu_uarea_lock);
366 count = ci->ci_data.cpu_uarea_cnt;
367 uaddr = ci->ci_data.cpu_uarea_list;
368 ci->ci_data.cpu_uarea_cnt = 0;
369 ci->ci_data.cpu_uarea_list = 0;
370 mutex_exit(&ci->ci_data.cpu_uarea_lock);
371
372 while (count != 0) {
373 nuaddr = UAREA_NEXTFREE(uaddr);
374 uvm_km_free(kernel_map, uaddr, USPACE,
375 UVM_KMF_PAGEABLE);
376 uaddr = nuaddr;
377 count--;
378 }
379 }
380 return;
381 }
382
383 ci = curcpu();
384 if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
385 mutex_enter(&ci->ci_data.cpu_uarea_lock);
386 while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
387 uaddr = ci->ci_data.cpu_uarea_list;
388 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
389 ci->ci_data.cpu_uarea_cnt--;
390 mutex_exit(&ci->ci_data.cpu_uarea_lock);
391 uvm_km_free(kernel_map, uaddr, USPACE,
392 UVM_KMF_PAGEABLE);
393 mutex_enter(&ci->ci_data.cpu_uarea_lock);
394 }
395 mutex_exit(&ci->ci_data.cpu_uarea_lock);
396 }
397 }
398
399 /*
400 * uvm_exit: exit a virtual address space
401 *
402 * - the process passed to us is a dead (pre-zombie) process; we
403 * are running on a different context now (the reaper).
404 * - borrow proc0's address space because freeing the vmspace
405 * of the dead process may block.
406 */
407
408 void
409 uvm_proc_exit(struct proc *p)
410 {
411 struct lwp *l = curlwp; /* XXX */
412 struct vmspace *ovm;
413
414 KASSERT(p == l->l_proc);
415 ovm = p->p_vmspace;
416
417 /*
418 * borrow proc0's address space.
419 */
420 pmap_deactivate(l);
421 p->p_vmspace = proc0.p_vmspace;
422 pmap_activate(l);
423
424 uvmspace_free(ovm);
425 }
426
427 void
428 uvm_lwp_exit(struct lwp *l)
429 {
430 vaddr_t va = USER_TO_UAREA(l->l_addr);
431
432 l->l_flag &= ~LW_INMEM;
433 uvm_uarea_free(va);
434 l->l_addr = NULL;
435 }
436
437 /*
438 * uvm_init_limit: init per-process VM limits
439 *
440 * - called for process 0 and then inherited by all others.
441 */
442
443 void
444 uvm_init_limits(struct proc *p)
445 {
446
447 /*
448 * Set up the initial limits on process VM. Set the maximum
449 * resident set size to be all of (reasonably) available memory.
450 * This causes any single, large process to start random page
451 * replacement once it fills memory.
452 */
453
454 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
455 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
456 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
457 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
458 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
459 }
460
461 #ifdef DEBUG
462 int enableswap = 1;
463 int swapdebug = 0;
464 #define SDB_FOLLOW 1
465 #define SDB_SWAPIN 2
466 #define SDB_SWAPOUT 4
467 #endif
468
469 /*
470 * uvm_swapin: swap in an lwp's u-area.
471 *
472 * - must be called with the LWP's swap lock held.
473 * - naturally, must not be called with l == curlwp
474 */
475
476 void
477 uvm_swapin(struct lwp *l)
478 {
479 vaddr_t addr;
480 int error;
481
482 /* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
483 KASSERT(l != curlwp);
484
485 addr = USER_TO_UAREA(l->l_addr);
486 /* make L_INMEM true */
487 error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
488 VM_PROT_READ | VM_PROT_WRITE, 0);
489 if (error) {
490 panic("uvm_swapin: rewiring stack failed: %d", error);
491 }
492
493 /*
494 * Some architectures need to be notified when the user area has
495 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
496 */
497 cpu_swapin(l);
498 lwp_lock(l);
499 if (l->l_stat == LSRUN)
500 sched_enqueue(l, false);
501 l->l_flag |= LW_INMEM;
502 l->l_swtime = 0;
503 lwp_unlock(l);
504 ++uvmexp.swapins;
505 }
506
507 /*
508 * uvm_kick_scheduler: kick the scheduler into action if not running.
509 *
510 * - called when swapped out processes have been awoken.
511 */
512
513 void
514 uvm_kick_scheduler(void)
515 {
516
517 if (uvm.swap_running == false)
518 return;
519
520 mutex_enter(&uvm_scheduler_mutex);
521 uvm.scheduler_kicked = true;
522 cv_signal(&uvm.scheduler_cv);
523 mutex_exit(&uvm_scheduler_mutex);
524 }
525
526 /*
527 * uvm_scheduler: process zero main loop
528 *
529 * - attempt to swapin every swaped-out, runnable process in order of
530 * priority.
531 * - if not enough memory, wake the pagedaemon and let it clear space.
532 */
533
534 void
535 uvm_scheduler(void)
536 {
537 struct lwp *l, *ll;
538 int pri;
539 int ppri;
540
541 l = curlwp;
542 lwp_lock(l);
543 l->l_priority = PVM;
544 l->l_usrpri = PVM;
545 lwp_unlock(l);
546
547 for (;;) {
548 #ifdef DEBUG
549 mutex_enter(&uvm_scheduler_mutex);
550 while (!enableswap)
551 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
552 mutex_exit(&uvm_scheduler_mutex);
553 #endif
554 ll = NULL; /* process to choose */
555 ppri = INT_MIN; /* its priority */
556
557 mutex_enter(&proclist_lock);
558 LIST_FOREACH(l, &alllwp, l_list) {
559 /* is it a runnable swapped out process? */
560 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
561 pri = l->l_swtime + l->l_slptime -
562 (l->l_proc->p_nice - NZERO) * 8;
563 if (pri > ppri) { /* higher priority? */
564 ll = l;
565 ppri = pri;
566 }
567 }
568 }
569 #ifdef DEBUG
570 if (swapdebug & SDB_FOLLOW)
571 printf("scheduler: running, procp %p pri %d\n", ll,
572 ppri);
573 #endif
574 /*
575 * Nothing to do, back to sleep
576 */
577 if ((l = ll) == NULL) {
578 mutex_exit(&proclist_lock);
579 mutex_enter(&uvm_scheduler_mutex);
580 if (uvm.scheduler_kicked == false)
581 cv_wait(&uvm.scheduler_cv,
582 &uvm_scheduler_mutex);
583 uvm.scheduler_kicked = false;
584 mutex_exit(&uvm_scheduler_mutex);
585 continue;
586 }
587
588 /*
589 * we have found swapped out process which we would like
590 * to bring back in.
591 *
592 * XXX: this part is really bogus cuz we could deadlock
593 * on memory despite our feeble check
594 */
595 if (uvmexp.free > atop(USPACE)) {
596 #ifdef DEBUG
597 if (swapdebug & SDB_SWAPIN)
598 printf("swapin: pid %d(%s)@%p, pri %d "
599 "free %d\n", l->l_proc->p_pid,
600 l->l_proc->p_comm, l->l_addr, ppri,
601 uvmexp.free);
602 #endif
603 mutex_enter(&l->l_swaplock);
604 mutex_exit(&proclist_lock);
605 uvm_swapin(l);
606 mutex_exit(&l->l_swaplock);
607 continue;
608 } else {
609 /*
610 * not enough memory, jab the pageout daemon and
611 * wait til the coast is clear
612 */
613 mutex_exit(&proclist_lock);
614 #ifdef DEBUG
615 if (swapdebug & SDB_FOLLOW)
616 printf("scheduler: no room for pid %d(%s),"
617 " free %d\n", l->l_proc->p_pid,
618 l->l_proc->p_comm, uvmexp.free);
619 #endif
620 uvm_wait("schedpwait");
621 #ifdef DEBUG
622 if (swapdebug & SDB_FOLLOW)
623 printf("scheduler: room again, free %d\n",
624 uvmexp.free);
625 #endif
626 }
627 }
628 }
629
630 /*
631 * swappable: is LWP "l" swappable?
632 */
633
634 static bool
635 swappable(struct lwp *l)
636 {
637
638 if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
639 return false;
640 if (l->l_holdcnt != 0)
641 return false;
642 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
643 return false;
644 return true;
645 }
646
647 /*
648 * swapout_threads: find threads that can be swapped and unwire their
649 * u-areas.
650 *
651 * - called by the pagedaemon
652 * - try and swap at least one processs
653 * - processes that are sleeping or stopped for maxslp or more seconds
654 * are swapped... otherwise the longest-sleeping or stopped process
655 * is swapped, otherwise the longest resident process...
656 */
657
658 void
659 uvm_swapout_threads(void)
660 {
661 struct lwp *l;
662 struct lwp *outl, *outl2;
663 int outpri, outpri2;
664 int didswap = 0;
665 extern int maxslp;
666 bool gotit;
667
668 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
669
670 #ifdef DEBUG
671 if (!enableswap)
672 return;
673 #endif
674
675 /*
676 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
677 * outl2/outpri2: the longest resident thread (its swap time)
678 */
679 outl = outl2 = NULL;
680 outpri = outpri2 = 0;
681
682 restart:
683 mutex_enter(&proclist_lock);
684 LIST_FOREACH(l, &alllwp, l_list) {
685 KASSERT(l->l_proc != NULL);
686 if (!mutex_tryenter(&l->l_swaplock))
687 continue;
688 if (!swappable(l)) {
689 mutex_exit(&l->l_swaplock);
690 continue;
691 }
692 switch (l->l_stat) {
693 case LSONPROC:
694 break;
695
696 case LSRUN:
697 if (l->l_swtime > outpri2) {
698 outl2 = l;
699 outpri2 = l->l_swtime;
700 }
701 break;
702
703 case LSSLEEP:
704 case LSSTOP:
705 if (l->l_slptime >= maxslp) {
706 mutex_exit(&proclist_lock);
707 uvm_swapout(l);
708 /*
709 * Locking in the wrong direction -
710 * try to prevent the LWP from exiting.
711 */
712 gotit = mutex_tryenter(&proclist_lock);
713 mutex_exit(&l->l_swaplock);
714 didswap++;
715 if (!gotit)
716 goto restart;
717 continue;
718 } else if (l->l_slptime > outpri) {
719 outl = l;
720 outpri = l->l_slptime;
721 }
722 break;
723 }
724 mutex_exit(&l->l_swaplock);
725 }
726
727 /*
728 * If we didn't get rid of any real duds, toss out the next most
729 * likely sleeping/stopped or running candidate. We only do this
730 * if we are real low on memory since we don't gain much by doing
731 * it (USPACE bytes).
732 */
733 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
734 if ((l = outl) == NULL)
735 l = outl2;
736 #ifdef DEBUG
737 if (swapdebug & SDB_SWAPOUT)
738 printf("swapout_threads: no duds, try procp %p\n", l);
739 #endif
740 if (l) {
741 mutex_enter(&l->l_swaplock);
742 mutex_exit(&proclist_lock);
743 if (swappable(l))
744 uvm_swapout(l);
745 mutex_exit(&l->l_swaplock);
746 return;
747 }
748 }
749
750 mutex_exit(&proclist_lock);
751 }
752
753 /*
754 * uvm_swapout: swap out lwp "l"
755 *
756 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
757 * the pmap.
758 * - must be called with l->l_swaplock held.
759 * - XXXCDC: should deactivate all process' private anonymous memory
760 */
761
762 static void
763 uvm_swapout(struct lwp *l)
764 {
765 vaddr_t addr;
766 struct proc *p = l->l_proc;
767
768 KASSERT(mutex_owned(&l->l_swaplock));
769
770 #ifdef DEBUG
771 if (swapdebug & SDB_SWAPOUT)
772 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
773 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
774 l->l_slptime, uvmexp.free);
775 #endif
776
777 /*
778 * Mark it as (potentially) swapped out.
779 */
780 lwp_lock(l);
781 if (!swappable(l)) {
782 KDASSERT(l->l_cpu != curcpu());
783 lwp_unlock(l);
784 return;
785 }
786 l->l_flag &= ~LW_INMEM;
787 l->l_swtime = 0;
788 if (l->l_stat == LSRUN)
789 sched_dequeue(l);
790 lwp_unlock(l);
791 p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
792 ++uvmexp.swapouts;
793
794 /*
795 * Do any machine-specific actions necessary before swapout.
796 * This can include saving floating point state, etc.
797 */
798 cpu_swapout(l);
799
800 /*
801 * Unwire the to-be-swapped process's user struct and kernel stack.
802 */
803 addr = USER_TO_UAREA(l->l_addr);
804 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
805 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
806 }
807
808 /*
809 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
810 * back into memory if it is currently swapped.
811 */
812
813 void
814 uvm_lwp_hold(struct lwp *l)
815 {
816
817 /* XXXSMP mutex_enter(&l->l_swaplock); */
818 if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0)
819 uvm_swapin(l);
820 /* XXXSMP mutex_exit(&l->l_swaplock); */
821 }
822
823 /*
824 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
825 * drops to zero, it's eligable to be swapped.
826 */
827
828 void
829 uvm_lwp_rele(struct lwp *l)
830 {
831
832 KASSERT(l->l_holdcnt != 0);
833
834 /* XXXSMP mutex_enter(&l->l_swaplock); */
835 l->l_holdcnt--;
836 /* XXXSMP mutex_exit(&l->l_swaplock); */
837 }
838
839 #ifdef COREDUMP
840 /*
841 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
842 * a core file.
843 */
844
845 int
846 uvm_coredump_walkmap(struct proc *p, void *iocookie,
847 int (*func)(struct proc *, void *, struct uvm_coredump_state *),
848 void *cookie)
849 {
850 struct uvm_coredump_state state;
851 struct vmspace *vm = p->p_vmspace;
852 struct vm_map *map = &vm->vm_map;
853 struct vm_map_entry *entry;
854 int error;
855
856 entry = NULL;
857 vm_map_lock_read(map);
858 state.end = 0;
859 for (;;) {
860 if (entry == NULL)
861 entry = map->header.next;
862 else if (!uvm_map_lookup_entry(map, state.end, &entry))
863 entry = entry->next;
864 if (entry == &map->header)
865 break;
866
867 state.cookie = cookie;
868 if (state.end > entry->start) {
869 state.start = state.end;
870 } else {
871 state.start = entry->start;
872 }
873 state.realend = entry->end;
874 state.end = entry->end;
875 state.prot = entry->protection;
876 state.flags = 0;
877
878 /*
879 * Dump the region unless one of the following is true:
880 *
881 * (1) the region has neither object nor amap behind it
882 * (ie. it has never been accessed).
883 *
884 * (2) the region has no amap and is read-only
885 * (eg. an executable text section).
886 *
887 * (3) the region's object is a device.
888 *
889 * (4) the region is unreadable by the process.
890 */
891
892 KASSERT(!UVM_ET_ISSUBMAP(entry));
893 KASSERT(state.start < VM_MAXUSER_ADDRESS);
894 KASSERT(state.end <= VM_MAXUSER_ADDRESS);
895 if (entry->object.uvm_obj == NULL &&
896 entry->aref.ar_amap == NULL) {
897 state.realend = state.start;
898 } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
899 entry->aref.ar_amap == NULL) {
900 state.realend = state.start;
901 } else if (entry->object.uvm_obj != NULL &&
902 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
903 state.realend = state.start;
904 } else if ((entry->protection & VM_PROT_READ) == 0) {
905 state.realend = state.start;
906 } else {
907 if (state.start >= (vaddr_t)vm->vm_maxsaddr)
908 state.flags |= UVM_COREDUMP_STACK;
909
910 /*
911 * If this an anonymous entry, only dump instantiated
912 * pages.
913 */
914 if (entry->object.uvm_obj == NULL) {
915 vaddr_t end;
916
917 amap_lock(entry->aref.ar_amap);
918 for (end = state.start;
919 end < state.end; end += PAGE_SIZE) {
920 struct vm_anon *anon;
921 anon = amap_lookup(&entry->aref,
922 end - entry->start);
923 /*
924 * If we have already encountered an
925 * uninstantiated page, stop at the
926 * first instantied page.
927 */
928 if (anon != NULL &&
929 state.realend != state.end) {
930 state.end = end;
931 break;
932 }
933
934 /*
935 * If this page is the first
936 * uninstantiated page, mark this as
937 * the real ending point. Continue to
938 * counting uninstantiated pages.
939 */
940 if (anon == NULL &&
941 state.realend == state.end) {
942 state.realend = end;
943 }
944 }
945 amap_unlock(entry->aref.ar_amap);
946 }
947 }
948
949
950 vm_map_unlock_read(map);
951 error = (*func)(p, iocookie, &state);
952 if (error)
953 return (error);
954 vm_map_lock_read(map);
955 }
956 vm_map_unlock_read(map);
957
958 return (0);
959 }
960 #endif /* COREDUMP */
961