uvm_glue.c revision 1.113.2.1 1 /* $NetBSD: uvm_glue.c,v 1.113.2.1 2007/12/04 13:03:59 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.113.2.1 2007/12/04 13:03:59 ad Exp $");
71
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76
77 /*
78 * uvm_glue.c: glue functions
79 */
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 #include <sys/syncobj.h>
88 #include <sys/cpu.h>
89
90 #include <uvm/uvm.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout(struct lwp *);
97
98 #define UVM_NUAREA_HIWAT 20
99 #define UVM_NUAREA_LOWAT 16
100
101 #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
102
103 /*
104 * XXXCDC: do these really belong here?
105 */
106
107 /*
108 * uvm_kernacc: can the kernel access a region of memory
109 *
110 * - used only by /dev/kmem driver (mem.c)
111 */
112
113 bool
114 uvm_kernacc(void *addr, size_t len, int rw)
115 {
116 bool rv;
117 vaddr_t saddr, eaddr;
118 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
119
120 saddr = trunc_page((vaddr_t)addr);
121 eaddr = round_page((vaddr_t)addr + len);
122 vm_map_lock_read(kernel_map);
123 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
124 vm_map_unlock_read(kernel_map);
125
126 return(rv);
127 }
128
129 #ifdef KGDB
130 /*
131 * Change protections on kernel pages from addr to addr+len
132 * (presumably so debugger can plant a breakpoint).
133 *
134 * We force the protection change at the pmap level. If we were
135 * to use vm_map_protect a change to allow writing would be lazily-
136 * applied meaning we would still take a protection fault, something
137 * we really don't want to do. It would also fragment the kernel
138 * map unnecessarily. We cannot use pmap_protect since it also won't
139 * enforce a write-enable request. Using pmap_enter is the only way
140 * we can ensure the change takes place properly.
141 */
142 void
143 uvm_chgkprot(void *addr, size_t len, int rw)
144 {
145 vm_prot_t prot;
146 paddr_t pa;
147 vaddr_t sva, eva;
148
149 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
150 eva = round_page((vaddr_t)addr + len);
151 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
152 /*
153 * Extract physical address for the page.
154 */
155 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
156 panic("chgkprot: invalid page");
157 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
158 }
159 pmap_update(pmap_kernel());
160 }
161 #endif
162
163 /*
164 * uvm_vslock: wire user memory for I/O
165 *
166 * - called from physio and sys___sysctl
167 * - XXXCDC: consider nuking this (or making it a macro?)
168 */
169
170 int
171 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
172 {
173 struct vm_map *map;
174 vaddr_t start, end;
175 int error;
176
177 map = &vs->vm_map;
178 start = trunc_page((vaddr_t)addr);
179 end = round_page((vaddr_t)addr + len);
180 error = uvm_fault_wire(map, start, end, access_type, 0);
181 return error;
182 }
183
184 /*
185 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
186 *
187 * - called from physio and sys___sysctl
188 * - XXXCDC: consider nuking this (or making it a macro?)
189 */
190
191 void
192 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
193 {
194 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
195 round_page((vaddr_t)addr + len));
196 }
197
198 /*
199 * uvm_proc_fork: fork a virtual address space
200 *
201 * - the address space is copied as per parent map's inherit values
202 */
203 void
204 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
205 {
206
207 if (shared == true) {
208 p2->p_vmspace = NULL;
209 uvmspace_share(p1, p2);
210 } else {
211 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
212 }
213
214 cpu_proc_fork(p1, p2);
215 }
216
217
218 /*
219 * uvm_lwp_fork: fork a thread
220 *
221 * - a new "user" structure is allocated for the child process
222 * [filled in by MD layer...]
223 * - if specified, the child gets a new user stack described by
224 * stack and stacksize
225 * - NOTE: the kernel stack may be at a different location in the child
226 * process, and thus addresses of automatic variables may be invalid
227 * after cpu_lwp_fork returns in the child process. We do nothing here
228 * after cpu_lwp_fork returns.
229 * - XXXCDC: we need a way for this to return a failure value rather
230 * than just hang
231 */
232 void
233 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
234 void (*func)(void *), void *arg)
235 {
236 int error;
237
238 /*
239 * Wire down the U-area for the process, which contains the PCB
240 * and the kernel stack. Wired state is stored in l->l_flag's
241 * L_INMEM bit rather than in the vm_map_entry's wired count
242 * to prevent kernel_map fragmentation. If we reused a cached U-area,
243 * L_INMEM will already be set and we don't need to do anything.
244 *
245 * Note the kernel stack gets read/write accesses right off the bat.
246 */
247
248 if ((l2->l_flag & LW_INMEM) == 0) {
249 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
250
251 error = uvm_fault_wire(kernel_map, uarea,
252 uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
253 if (error)
254 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
255 #ifdef PMAP_UAREA
256 /* Tell the pmap this is a u-area mapping */
257 PMAP_UAREA(uarea);
258 #endif
259 l2->l_flag |= LW_INMEM;
260 }
261
262 #ifdef KSTACK_CHECK_MAGIC
263 /*
264 * fill stack with magic number
265 */
266 kstack_setup_magic(l2);
267 #endif
268
269 /*
270 * cpu_lwp_fork() copy and update the pcb, and make the child ready
271 * to run. If this is a normal user fork, the child will exit
272 * directly to user mode via child_return() on its first time
273 * slice and will not return here. If this is a kernel thread,
274 * the specified entry point will be executed.
275 */
276 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
277 }
278
279 /*
280 * uvm_cpu_attach: initialize per-CPU data structures.
281 */
282
283 void
284 uvm_cpu_attach(struct cpu_info *ci)
285 {
286
287 mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
288 ci->ci_data.cpu_uarea_cnt = 0;
289 ci->ci_data.cpu_uarea_list = 0;
290 }
291
292 /*
293 * uvm_uarea_alloc: allocate a u-area
294 */
295
296 bool
297 uvm_uarea_alloc(vaddr_t *uaddrp)
298 {
299 struct cpu_info *ci;
300 vaddr_t uaddr;
301
302 #ifndef USPACE_ALIGN
303 #define USPACE_ALIGN 0
304 #endif
305
306 ci = curcpu();
307
308 if (ci->ci_data.cpu_uarea_cnt > 0) {
309 mutex_enter(&ci->ci_data.cpu_uarea_lock);
310 if (ci->ci_data.cpu_uarea_cnt == 0) {
311 mutex_exit(&ci->ci_data.cpu_uarea_lock);
312 } else {
313 uaddr = ci->ci_data.cpu_uarea_list;
314 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
315 ci->ci_data.cpu_uarea_cnt--;
316 mutex_exit(&ci->ci_data.cpu_uarea_lock);
317 *uaddrp = uaddr;
318 return true;
319 }
320 }
321
322 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
323 UVM_KMF_PAGEABLE);
324 return false;
325 }
326
327 /*
328 * uvm_uarea_free: free a u-area
329 */
330
331 void
332 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
333 {
334
335 mutex_enter(&ci->ci_data.cpu_uarea_lock);
336 UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
337 ci->ci_data.cpu_uarea_list = uaddr;
338 ci->ci_data.cpu_uarea_cnt++;
339 mutex_exit(&ci->ci_data.cpu_uarea_lock);
340 }
341
342 /*
343 * uvm_uarea_drain: return memory of u-areas over limit
344 * back to system
345 *
346 * => if asked to drain as much as possible, drain all cpus.
347 * => if asked to drain to low water mark, drain local cpu only.
348 */
349
350 void
351 uvm_uarea_drain(bool empty)
352 {
353 CPU_INFO_ITERATOR cii;
354 struct cpu_info *ci;
355 vaddr_t uaddr, nuaddr;
356 int count;
357
358 if (empty) {
359 for (CPU_INFO_FOREACH(cii, ci)) {
360 mutex_enter(&ci->ci_data.cpu_uarea_lock);
361 count = ci->ci_data.cpu_uarea_cnt;
362 uaddr = ci->ci_data.cpu_uarea_list;
363 ci->ci_data.cpu_uarea_cnt = 0;
364 ci->ci_data.cpu_uarea_list = 0;
365 mutex_exit(&ci->ci_data.cpu_uarea_lock);
366
367 while (count != 0) {
368 nuaddr = UAREA_NEXTFREE(uaddr);
369 uvm_km_free(kernel_map, uaddr, USPACE,
370 UVM_KMF_PAGEABLE);
371 uaddr = nuaddr;
372 count--;
373 }
374 }
375 return;
376 }
377
378 ci = curcpu();
379 if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
380 mutex_enter(&ci->ci_data.cpu_uarea_lock);
381 while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
382 uaddr = ci->ci_data.cpu_uarea_list;
383 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
384 ci->ci_data.cpu_uarea_cnt--;
385 mutex_exit(&ci->ci_data.cpu_uarea_lock);
386 uvm_km_free(kernel_map, uaddr, USPACE,
387 UVM_KMF_PAGEABLE);
388 mutex_enter(&ci->ci_data.cpu_uarea_lock);
389 }
390 mutex_exit(&ci->ci_data.cpu_uarea_lock);
391 }
392 }
393
394 /*
395 * uvm_exit: exit a virtual address space
396 *
397 * - the process passed to us is a dead (pre-zombie) process; we
398 * are running on a different context now (the reaper).
399 * - borrow proc0's address space because freeing the vmspace
400 * of the dead process may block.
401 */
402
403 void
404 uvm_proc_exit(struct proc *p)
405 {
406 struct lwp *l = curlwp; /* XXX */
407 struct vmspace *ovm;
408
409 KASSERT(p == l->l_proc);
410 ovm = p->p_vmspace;
411
412 /*
413 * borrow proc0's address space.
414 */
415 pmap_deactivate(l);
416 p->p_vmspace = proc0.p_vmspace;
417 pmap_activate(l);
418
419 uvmspace_free(ovm);
420 }
421
422 void
423 uvm_lwp_exit(struct lwp *l)
424 {
425 vaddr_t va = USER_TO_UAREA(l->l_addr);
426
427 l->l_flag &= ~LW_INMEM;
428 uvm_uarea_free(va, l->l_cpu);
429 l->l_addr = NULL;
430 }
431
432 /*
433 * uvm_init_limit: init per-process VM limits
434 *
435 * - called for process 0 and then inherited by all others.
436 */
437
438 void
439 uvm_init_limits(struct proc *p)
440 {
441
442 /*
443 * Set up the initial limits on process VM. Set the maximum
444 * resident set size to be all of (reasonably) available memory.
445 * This causes any single, large process to start random page
446 * replacement once it fills memory.
447 */
448
449 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
450 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
451 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
452 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
453 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
454 }
455
456 #ifdef DEBUG
457 int enableswap = 1;
458 int swapdebug = 0;
459 #define SDB_FOLLOW 1
460 #define SDB_SWAPIN 2
461 #define SDB_SWAPOUT 4
462 #endif
463
464 /*
465 * uvm_swapin: swap in an lwp's u-area.
466 *
467 * - must be called with the LWP's swap lock held.
468 * - naturally, must not be called with l == curlwp
469 */
470
471 void
472 uvm_swapin(struct lwp *l)
473 {
474 vaddr_t addr;
475 int error;
476
477 /* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
478 KASSERT(l != curlwp);
479
480 addr = USER_TO_UAREA(l->l_addr);
481 /* make L_INMEM true */
482 error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
483 VM_PROT_READ | VM_PROT_WRITE, 0);
484 if (error) {
485 panic("uvm_swapin: rewiring stack failed: %d", error);
486 }
487
488 /*
489 * Some architectures need to be notified when the user area has
490 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
491 */
492 cpu_swapin(l);
493 lwp_lock(l);
494 if (l->l_stat == LSRUN)
495 sched_enqueue(l, false);
496 l->l_flag |= LW_INMEM;
497 l->l_swtime = 0;
498 lwp_unlock(l);
499 ++uvmexp.swapins;
500 }
501
502 /*
503 * uvm_kick_scheduler: kick the scheduler into action if not running.
504 *
505 * - called when swapped out processes have been awoken.
506 */
507
508 void
509 uvm_kick_scheduler(void)
510 {
511
512 if (uvm.swap_running == false)
513 return;
514
515 mutex_enter(&uvm_scheduler_mutex);
516 uvm.scheduler_kicked = true;
517 cv_signal(&uvm.scheduler_cv);
518 mutex_exit(&uvm_scheduler_mutex);
519 }
520
521 /*
522 * uvm_scheduler: process zero main loop
523 *
524 * - attempt to swapin every swaped-out, runnable process in order of
525 * priority.
526 * - if not enough memory, wake the pagedaemon and let it clear space.
527 */
528
529 void
530 uvm_scheduler(void)
531 {
532 struct lwp *l, *ll;
533 int pri;
534 int ppri;
535
536 l = curlwp;
537 lwp_lock(l);
538 l->l_priority = PRI_VM;
539 l->l_class = SCHED_FIFO;
540 lwp_unlock(l);
541
542 for (;;) {
543 #ifdef DEBUG
544 mutex_enter(&uvm_scheduler_mutex);
545 while (!enableswap)
546 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
547 mutex_exit(&uvm_scheduler_mutex);
548 #endif
549 ll = NULL; /* process to choose */
550 ppri = INT_MIN; /* its priority */
551
552 mutex_enter(&proclist_lock);
553 LIST_FOREACH(l, &alllwp, l_list) {
554 /* is it a runnable swapped out process? */
555 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
556 pri = l->l_swtime + l->l_slptime -
557 (l->l_proc->p_nice - NZERO) * 8;
558 if (pri > ppri) { /* higher priority? */
559 ll = l;
560 ppri = pri;
561 }
562 }
563 }
564 #ifdef DEBUG
565 if (swapdebug & SDB_FOLLOW)
566 printf("scheduler: running, procp %p pri %d\n", ll,
567 ppri);
568 #endif
569 /*
570 * Nothing to do, back to sleep
571 */
572 if ((l = ll) == NULL) {
573 mutex_exit(&proclist_lock);
574 mutex_enter(&uvm_scheduler_mutex);
575 if (uvm.scheduler_kicked == false)
576 cv_wait(&uvm.scheduler_cv,
577 &uvm_scheduler_mutex);
578 uvm.scheduler_kicked = false;
579 mutex_exit(&uvm_scheduler_mutex);
580 continue;
581 }
582
583 /*
584 * we have found swapped out process which we would like
585 * to bring back in.
586 *
587 * XXX: this part is really bogus cuz we could deadlock
588 * on memory despite our feeble check
589 */
590 if (uvmexp.free > atop(USPACE)) {
591 #ifdef DEBUG
592 if (swapdebug & SDB_SWAPIN)
593 printf("swapin: pid %d(%s)@%p, pri %d "
594 "free %d\n", l->l_proc->p_pid,
595 l->l_proc->p_comm, l->l_addr, ppri,
596 uvmexp.free);
597 #endif
598 mutex_enter(&l->l_swaplock);
599 mutex_exit(&proclist_lock);
600 uvm_swapin(l);
601 mutex_exit(&l->l_swaplock);
602 continue;
603 } else {
604 /*
605 * not enough memory, jab the pageout daemon and
606 * wait til the coast is clear
607 */
608 mutex_exit(&proclist_lock);
609 #ifdef DEBUG
610 if (swapdebug & SDB_FOLLOW)
611 printf("scheduler: no room for pid %d(%s),"
612 " free %d\n", l->l_proc->p_pid,
613 l->l_proc->p_comm, uvmexp.free);
614 #endif
615 uvm_wait("schedpwait");
616 #ifdef DEBUG
617 if (swapdebug & SDB_FOLLOW)
618 printf("scheduler: room again, free %d\n",
619 uvmexp.free);
620 #endif
621 }
622 }
623 }
624
625 /*
626 * swappable: is LWP "l" swappable?
627 */
628
629 static bool
630 swappable(struct lwp *l)
631 {
632
633 if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
634 return false;
635 if (l->l_holdcnt != 0)
636 return false;
637 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
638 return false;
639 return true;
640 }
641
642 /*
643 * swapout_threads: find threads that can be swapped and unwire their
644 * u-areas.
645 *
646 * - called by the pagedaemon
647 * - try and swap at least one processs
648 * - processes that are sleeping or stopped for maxslp or more seconds
649 * are swapped... otherwise the longest-sleeping or stopped process
650 * is swapped, otherwise the longest resident process...
651 */
652
653 void
654 uvm_swapout_threads(void)
655 {
656 struct lwp *l;
657 struct lwp *outl, *outl2;
658 int outpri, outpri2;
659 int didswap = 0;
660 extern int maxslp;
661 bool gotit;
662
663 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
664
665 #ifdef DEBUG
666 if (!enableswap)
667 return;
668 #endif
669
670 /*
671 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
672 * outl2/outpri2: the longest resident thread (its swap time)
673 */
674 outl = outl2 = NULL;
675 outpri = outpri2 = 0;
676
677 restart:
678 mutex_enter(&proclist_lock);
679 LIST_FOREACH(l, &alllwp, l_list) {
680 KASSERT(l->l_proc != NULL);
681 if (!mutex_tryenter(&l->l_swaplock))
682 continue;
683 if (!swappable(l)) {
684 mutex_exit(&l->l_swaplock);
685 continue;
686 }
687 switch (l->l_stat) {
688 case LSONPROC:
689 break;
690
691 case LSRUN:
692 if (l->l_swtime > outpri2) {
693 outl2 = l;
694 outpri2 = l->l_swtime;
695 }
696 break;
697
698 case LSSLEEP:
699 case LSSTOP:
700 if (l->l_slptime >= maxslp) {
701 mutex_exit(&proclist_lock);
702 uvm_swapout(l);
703 /*
704 * Locking in the wrong direction -
705 * try to prevent the LWP from exiting.
706 */
707 gotit = mutex_tryenter(&proclist_lock);
708 mutex_exit(&l->l_swaplock);
709 didswap++;
710 if (!gotit)
711 goto restart;
712 continue;
713 } else if (l->l_slptime > outpri) {
714 outl = l;
715 outpri = l->l_slptime;
716 }
717 break;
718 }
719 mutex_exit(&l->l_swaplock);
720 }
721
722 /*
723 * If we didn't get rid of any real duds, toss out the next most
724 * likely sleeping/stopped or running candidate. We only do this
725 * if we are real low on memory since we don't gain much by doing
726 * it (USPACE bytes).
727 */
728 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
729 if ((l = outl) == NULL)
730 l = outl2;
731 #ifdef DEBUG
732 if (swapdebug & SDB_SWAPOUT)
733 printf("swapout_threads: no duds, try procp %p\n", l);
734 #endif
735 if (l) {
736 mutex_enter(&l->l_swaplock);
737 mutex_exit(&proclist_lock);
738 if (swappable(l))
739 uvm_swapout(l);
740 mutex_exit(&l->l_swaplock);
741 return;
742 }
743 }
744
745 mutex_exit(&proclist_lock);
746 }
747
748 /*
749 * uvm_swapout: swap out lwp "l"
750 *
751 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
752 * the pmap.
753 * - must be called with l->l_swaplock held.
754 * - XXXCDC: should deactivate all process' private anonymous memory
755 */
756
757 static void
758 uvm_swapout(struct lwp *l)
759 {
760 vaddr_t addr;
761 struct proc *p = l->l_proc;
762
763 KASSERT(mutex_owned(&l->l_swaplock));
764
765 #ifdef DEBUG
766 if (swapdebug & SDB_SWAPOUT)
767 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
768 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
769 l->l_slptime, uvmexp.free);
770 #endif
771
772 /*
773 * Mark it as (potentially) swapped out.
774 */
775 lwp_lock(l);
776 if (!swappable(l)) {
777 KDASSERT(l->l_cpu != curcpu());
778 lwp_unlock(l);
779 return;
780 }
781 l->l_flag &= ~LW_INMEM;
782 l->l_swtime = 0;
783 if (l->l_stat == LSRUN)
784 sched_dequeue(l);
785 lwp_unlock(l);
786 p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
787 ++uvmexp.swapouts;
788
789 /*
790 * Do any machine-specific actions necessary before swapout.
791 * This can include saving floating point state, etc.
792 */
793 cpu_swapout(l);
794
795 /*
796 * Unwire the to-be-swapped process's user struct and kernel stack.
797 */
798 addr = USER_TO_UAREA(l->l_addr);
799 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
800 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
801 }
802
803 /*
804 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
805 * back into memory if it is currently swapped.
806 */
807
808 void
809 uvm_lwp_hold(struct lwp *l)
810 {
811
812 mutex_enter(&l->l_swaplock);
813 if (l->l_holdcnt++ == 0 && (l->l_flag & LW_INMEM) == 0)
814 uvm_swapin(l);
815 mutex_exit(&l->l_swaplock);
816 }
817
818 /*
819 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
820 * drops to zero, it's eligable to be swapped.
821 */
822
823 void
824 uvm_lwp_rele(struct lwp *l)
825 {
826
827 KASSERT(l->l_holdcnt != 0);
828
829 mutex_enter(&l->l_swaplock);
830 l->l_holdcnt--;
831 mutex_exit(&l->l_swaplock);
832 }
833
834 #ifdef COREDUMP
835 /*
836 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
837 * a core file.
838 */
839
840 int
841 uvm_coredump_walkmap(struct proc *p, void *iocookie,
842 int (*func)(struct proc *, void *, struct uvm_coredump_state *),
843 void *cookie)
844 {
845 struct uvm_coredump_state state;
846 struct vmspace *vm = p->p_vmspace;
847 struct vm_map *map = &vm->vm_map;
848 struct vm_map_entry *entry;
849 int error;
850
851 entry = NULL;
852 vm_map_lock_read(map);
853 state.end = 0;
854 for (;;) {
855 if (entry == NULL)
856 entry = map->header.next;
857 else if (!uvm_map_lookup_entry(map, state.end, &entry))
858 entry = entry->next;
859 if (entry == &map->header)
860 break;
861
862 state.cookie = cookie;
863 if (state.end > entry->start) {
864 state.start = state.end;
865 } else {
866 state.start = entry->start;
867 }
868 state.realend = entry->end;
869 state.end = entry->end;
870 state.prot = entry->protection;
871 state.flags = 0;
872
873 /*
874 * Dump the region unless one of the following is true:
875 *
876 * (1) the region has neither object nor amap behind it
877 * (ie. it has never been accessed).
878 *
879 * (2) the region has no amap and is read-only
880 * (eg. an executable text section).
881 *
882 * (3) the region's object is a device.
883 *
884 * (4) the region is unreadable by the process.
885 */
886
887 KASSERT(!UVM_ET_ISSUBMAP(entry));
888 KASSERT(state.start < VM_MAXUSER_ADDRESS);
889 KASSERT(state.end <= VM_MAXUSER_ADDRESS);
890 if (entry->object.uvm_obj == NULL &&
891 entry->aref.ar_amap == NULL) {
892 state.realend = state.start;
893 } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
894 entry->aref.ar_amap == NULL) {
895 state.realend = state.start;
896 } else if (entry->object.uvm_obj != NULL &&
897 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
898 state.realend = state.start;
899 } else if ((entry->protection & VM_PROT_READ) == 0) {
900 state.realend = state.start;
901 } else {
902 if (state.start >= (vaddr_t)vm->vm_maxsaddr)
903 state.flags |= UVM_COREDUMP_STACK;
904
905 /*
906 * If this an anonymous entry, only dump instantiated
907 * pages.
908 */
909 if (entry->object.uvm_obj == NULL) {
910 vaddr_t end;
911
912 amap_lock(entry->aref.ar_amap);
913 for (end = state.start;
914 end < state.end; end += PAGE_SIZE) {
915 struct vm_anon *anon;
916 anon = amap_lookup(&entry->aref,
917 end - entry->start);
918 /*
919 * If we have already encountered an
920 * uninstantiated page, stop at the
921 * first instantied page.
922 */
923 if (anon != NULL &&
924 state.realend != state.end) {
925 state.end = end;
926 break;
927 }
928
929 /*
930 * If this page is the first
931 * uninstantiated page, mark this as
932 * the real ending point. Continue to
933 * counting uninstantiated pages.
934 */
935 if (anon == NULL &&
936 state.realend == state.end) {
937 state.realend = end;
938 }
939 }
940 amap_unlock(entry->aref.ar_amap);
941 }
942 }
943
944
945 vm_map_unlock_read(map);
946 error = (*func)(p, iocookie, &state);
947 if (error)
948 return (error);
949 vm_map_lock_read(map);
950 }
951 vm_map_unlock_read(map);
952
953 return (0);
954 }
955 #endif /* COREDUMP */
956