uvm_glue.c revision 1.114 1 /* $NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $");
71
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76
77 /*
78 * uvm_glue.c: glue functions
79 */
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 #include <sys/syncobj.h>
88 #include <sys/cpu.h>
89 #include <sys/atomic.h>
90
91 #include <uvm/uvm.h>
92
93 /*
94 * local prototypes
95 */
96
97 static void uvm_swapout(struct lwp *);
98
99 #define UVM_NUAREA_HIWAT 20
100 #define UVM_NUAREA_LOWAT 16
101
102 #define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
103
104 /*
105 * XXXCDC: do these really belong here?
106 */
107
108 /*
109 * uvm_kernacc: can the kernel access a region of memory
110 *
111 * - used only by /dev/kmem driver (mem.c)
112 */
113
114 bool
115 uvm_kernacc(void *addr, size_t len, int rw)
116 {
117 bool rv;
118 vaddr_t saddr, eaddr;
119 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120
121 saddr = trunc_page((vaddr_t)addr);
122 eaddr = round_page((vaddr_t)addr + len);
123 vm_map_lock_read(kernel_map);
124 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 vm_map_unlock_read(kernel_map);
126
127 return(rv);
128 }
129
130 #ifdef KGDB
131 /*
132 * Change protections on kernel pages from addr to addr+len
133 * (presumably so debugger can plant a breakpoint).
134 *
135 * We force the protection change at the pmap level. If we were
136 * to use vm_map_protect a change to allow writing would be lazily-
137 * applied meaning we would still take a protection fault, something
138 * we really don't want to do. It would also fragment the kernel
139 * map unnecessarily. We cannot use pmap_protect since it also won't
140 * enforce a write-enable request. Using pmap_enter is the only way
141 * we can ensure the change takes place properly.
142 */
143 void
144 uvm_chgkprot(void *addr, size_t len, int rw)
145 {
146 vm_prot_t prot;
147 paddr_t pa;
148 vaddr_t sva, eva;
149
150 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
151 eva = round_page((vaddr_t)addr + len);
152 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
153 /*
154 * Extract physical address for the page.
155 */
156 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
157 panic("chgkprot: invalid page");
158 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
159 }
160 pmap_update(pmap_kernel());
161 }
162 #endif
163
164 /*
165 * uvm_vslock: wire user memory for I/O
166 *
167 * - called from physio and sys___sysctl
168 * - XXXCDC: consider nuking this (or making it a macro?)
169 */
170
171 int
172 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
173 {
174 struct vm_map *map;
175 vaddr_t start, end;
176 int error;
177
178 map = &vs->vm_map;
179 start = trunc_page((vaddr_t)addr);
180 end = round_page((vaddr_t)addr + len);
181 error = uvm_fault_wire(map, start, end, access_type, 0);
182 return error;
183 }
184
185 /*
186 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
187 *
188 * - called from physio and sys___sysctl
189 * - XXXCDC: consider nuking this (or making it a macro?)
190 */
191
192 void
193 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
194 {
195 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
196 round_page((vaddr_t)addr + len));
197 }
198
199 /*
200 * uvm_proc_fork: fork a virtual address space
201 *
202 * - the address space is copied as per parent map's inherit values
203 */
204 void
205 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
206 {
207
208 if (shared == true) {
209 p2->p_vmspace = NULL;
210 uvmspace_share(p1, p2);
211 } else {
212 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
213 }
214
215 cpu_proc_fork(p1, p2);
216 }
217
218
219 /*
220 * uvm_lwp_fork: fork a thread
221 *
222 * - a new "user" structure is allocated for the child process
223 * [filled in by MD layer...]
224 * - if specified, the child gets a new user stack described by
225 * stack and stacksize
226 * - NOTE: the kernel stack may be at a different location in the child
227 * process, and thus addresses of automatic variables may be invalid
228 * after cpu_lwp_fork returns in the child process. We do nothing here
229 * after cpu_lwp_fork returns.
230 * - XXXCDC: we need a way for this to return a failure value rather
231 * than just hang
232 */
233 void
234 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
235 void (*func)(void *), void *arg)
236 {
237 int error;
238
239 /*
240 * Wire down the U-area for the process, which contains the PCB
241 * and the kernel stack. Wired state is stored in l->l_flag's
242 * L_INMEM bit rather than in the vm_map_entry's wired count
243 * to prevent kernel_map fragmentation. If we reused a cached U-area,
244 * L_INMEM will already be set and we don't need to do anything.
245 *
246 * Note the kernel stack gets read/write accesses right off the bat.
247 */
248
249 if ((l2->l_flag & LW_INMEM) == 0) {
250 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
251
252 error = uvm_fault_wire(kernel_map, uarea,
253 uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
254 if (error)
255 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
256 #ifdef PMAP_UAREA
257 /* Tell the pmap this is a u-area mapping */
258 PMAP_UAREA(uarea);
259 #endif
260 l2->l_flag |= LW_INMEM;
261 }
262
263 #ifdef KSTACK_CHECK_MAGIC
264 /*
265 * fill stack with magic number
266 */
267 kstack_setup_magic(l2);
268 #endif
269
270 /*
271 * cpu_lwp_fork() copy and update the pcb, and make the child ready
272 * to run. If this is a normal user fork, the child will exit
273 * directly to user mode via child_return() on its first time
274 * slice and will not return here. If this is a kernel thread,
275 * the specified entry point will be executed.
276 */
277 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
278 }
279
280 /*
281 * uvm_cpu_attach: initialize per-CPU data structures.
282 */
283
284 void
285 uvm_cpu_attach(struct cpu_info *ci)
286 {
287
288 mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
289 ci->ci_data.cpu_uarea_cnt = 0;
290 ci->ci_data.cpu_uarea_list = 0;
291 }
292
293 /*
294 * uvm_uarea_alloc: allocate a u-area
295 */
296
297 bool
298 uvm_uarea_alloc(vaddr_t *uaddrp)
299 {
300 struct cpu_info *ci;
301 vaddr_t uaddr;
302
303 #ifndef USPACE_ALIGN
304 #define USPACE_ALIGN 0
305 #endif
306
307 ci = curcpu();
308
309 if (ci->ci_data.cpu_uarea_cnt > 0) {
310 mutex_enter(&ci->ci_data.cpu_uarea_lock);
311 if (ci->ci_data.cpu_uarea_cnt == 0) {
312 mutex_exit(&ci->ci_data.cpu_uarea_lock);
313 } else {
314 uaddr = ci->ci_data.cpu_uarea_list;
315 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
316 ci->ci_data.cpu_uarea_cnt--;
317 mutex_exit(&ci->ci_data.cpu_uarea_lock);
318 *uaddrp = uaddr;
319 return true;
320 }
321 }
322
323 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
324 UVM_KMF_PAGEABLE);
325 return false;
326 }
327
328 /*
329 * uvm_uarea_free: free a u-area
330 */
331
332 void
333 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
334 {
335
336 mutex_enter(&ci->ci_data.cpu_uarea_lock);
337 UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
338 ci->ci_data.cpu_uarea_list = uaddr;
339 ci->ci_data.cpu_uarea_cnt++;
340 mutex_exit(&ci->ci_data.cpu_uarea_lock);
341 }
342
343 /*
344 * uvm_uarea_drain: return memory of u-areas over limit
345 * back to system
346 *
347 * => if asked to drain as much as possible, drain all cpus.
348 * => if asked to drain to low water mark, drain local cpu only.
349 */
350
351 void
352 uvm_uarea_drain(bool empty)
353 {
354 CPU_INFO_ITERATOR cii;
355 struct cpu_info *ci;
356 vaddr_t uaddr, nuaddr;
357 int count;
358
359 if (empty) {
360 for (CPU_INFO_FOREACH(cii, ci)) {
361 mutex_enter(&ci->ci_data.cpu_uarea_lock);
362 count = ci->ci_data.cpu_uarea_cnt;
363 uaddr = ci->ci_data.cpu_uarea_list;
364 ci->ci_data.cpu_uarea_cnt = 0;
365 ci->ci_data.cpu_uarea_list = 0;
366 mutex_exit(&ci->ci_data.cpu_uarea_lock);
367
368 while (count != 0) {
369 nuaddr = UAREA_NEXTFREE(uaddr);
370 uvm_km_free(kernel_map, uaddr, USPACE,
371 UVM_KMF_PAGEABLE);
372 uaddr = nuaddr;
373 count--;
374 }
375 }
376 return;
377 }
378
379 ci = curcpu();
380 if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
381 mutex_enter(&ci->ci_data.cpu_uarea_lock);
382 while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
383 uaddr = ci->ci_data.cpu_uarea_list;
384 ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
385 ci->ci_data.cpu_uarea_cnt--;
386 mutex_exit(&ci->ci_data.cpu_uarea_lock);
387 uvm_km_free(kernel_map, uaddr, USPACE,
388 UVM_KMF_PAGEABLE);
389 mutex_enter(&ci->ci_data.cpu_uarea_lock);
390 }
391 mutex_exit(&ci->ci_data.cpu_uarea_lock);
392 }
393 }
394
395 /*
396 * uvm_exit: exit a virtual address space
397 *
398 * - the process passed to us is a dead (pre-zombie) process; we
399 * are running on a different context now (the reaper).
400 * - borrow proc0's address space because freeing the vmspace
401 * of the dead process may block.
402 */
403
404 void
405 uvm_proc_exit(struct proc *p)
406 {
407 struct lwp *l = curlwp; /* XXX */
408 struct vmspace *ovm;
409
410 KASSERT(p == l->l_proc);
411 ovm = p->p_vmspace;
412
413 /*
414 * borrow proc0's address space.
415 */
416 pmap_deactivate(l);
417 p->p_vmspace = proc0.p_vmspace;
418 pmap_activate(l);
419
420 uvmspace_free(ovm);
421 }
422
423 void
424 uvm_lwp_exit(struct lwp *l)
425 {
426 vaddr_t va = USER_TO_UAREA(l->l_addr);
427
428 l->l_flag &= ~LW_INMEM;
429 uvm_uarea_free(va, l->l_cpu);
430 l->l_addr = NULL;
431 }
432
433 /*
434 * uvm_init_limit: init per-process VM limits
435 *
436 * - called for process 0 and then inherited by all others.
437 */
438
439 void
440 uvm_init_limits(struct proc *p)
441 {
442
443 /*
444 * Set up the initial limits on process VM. Set the maximum
445 * resident set size to be all of (reasonably) available memory.
446 * This causes any single, large process to start random page
447 * replacement once it fills memory.
448 */
449
450 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
451 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
452 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
453 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
454 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
455 }
456
457 #ifdef DEBUG
458 int enableswap = 1;
459 int swapdebug = 0;
460 #define SDB_FOLLOW 1
461 #define SDB_SWAPIN 2
462 #define SDB_SWAPOUT 4
463 #endif
464
465 /*
466 * uvm_swapin: swap in an lwp's u-area.
467 *
468 * - must be called with the LWP's swap lock held.
469 * - naturally, must not be called with l == curlwp
470 */
471
472 void
473 uvm_swapin(struct lwp *l)
474 {
475 vaddr_t addr;
476 int error;
477
478 /* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
479 KASSERT(l != curlwp);
480
481 addr = USER_TO_UAREA(l->l_addr);
482 /* make L_INMEM true */
483 error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
484 VM_PROT_READ | VM_PROT_WRITE, 0);
485 if (error) {
486 panic("uvm_swapin: rewiring stack failed: %d", error);
487 }
488
489 /*
490 * Some architectures need to be notified when the user area has
491 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
492 */
493 cpu_swapin(l);
494 lwp_lock(l);
495 if (l->l_stat == LSRUN)
496 sched_enqueue(l, false);
497 l->l_flag |= LW_INMEM;
498 l->l_swtime = 0;
499 lwp_unlock(l);
500 ++uvmexp.swapins;
501 }
502
503 /*
504 * uvm_kick_scheduler: kick the scheduler into action if not running.
505 *
506 * - called when swapped out processes have been awoken.
507 */
508
509 void
510 uvm_kick_scheduler(void)
511 {
512
513 if (uvm.swap_running == false)
514 return;
515
516 mutex_enter(&uvm_scheduler_mutex);
517 uvm.scheduler_kicked = true;
518 cv_signal(&uvm.scheduler_cv);
519 mutex_exit(&uvm_scheduler_mutex);
520 }
521
522 /*
523 * uvm_scheduler: process zero main loop
524 *
525 * - attempt to swapin every swaped-out, runnable process in order of
526 * priority.
527 * - if not enough memory, wake the pagedaemon and let it clear space.
528 */
529
530 void
531 uvm_scheduler(void)
532 {
533 struct lwp *l, *ll;
534 int pri;
535 int ppri;
536
537 l = curlwp;
538 lwp_lock(l);
539 l->l_priority = PRI_VM;
540 l->l_class = SCHED_FIFO;
541 lwp_unlock(l);
542
543 for (;;) {
544 #ifdef DEBUG
545 mutex_enter(&uvm_scheduler_mutex);
546 while (!enableswap)
547 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
548 mutex_exit(&uvm_scheduler_mutex);
549 #endif
550 ll = NULL; /* process to choose */
551 ppri = INT_MIN; /* its priority */
552
553 mutex_enter(&proclist_lock);
554 LIST_FOREACH(l, &alllwp, l_list) {
555 /* is it a runnable swapped out process? */
556 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
557 pri = l->l_swtime + l->l_slptime -
558 (l->l_proc->p_nice - NZERO) * 8;
559 if (pri > ppri) { /* higher priority? */
560 ll = l;
561 ppri = pri;
562 }
563 }
564 }
565 #ifdef DEBUG
566 if (swapdebug & SDB_FOLLOW)
567 printf("scheduler: running, procp %p pri %d\n", ll,
568 ppri);
569 #endif
570 /*
571 * Nothing to do, back to sleep
572 */
573 if ((l = ll) == NULL) {
574 mutex_exit(&proclist_lock);
575 mutex_enter(&uvm_scheduler_mutex);
576 if (uvm.scheduler_kicked == false)
577 cv_wait(&uvm.scheduler_cv,
578 &uvm_scheduler_mutex);
579 uvm.scheduler_kicked = false;
580 mutex_exit(&uvm_scheduler_mutex);
581 continue;
582 }
583
584 /*
585 * we have found swapped out process which we would like
586 * to bring back in.
587 *
588 * XXX: this part is really bogus cuz we could deadlock
589 * on memory despite our feeble check
590 */
591 if (uvmexp.free > atop(USPACE)) {
592 #ifdef DEBUG
593 if (swapdebug & SDB_SWAPIN)
594 printf("swapin: pid %d(%s)@%p, pri %d "
595 "free %d\n", l->l_proc->p_pid,
596 l->l_proc->p_comm, l->l_addr, ppri,
597 uvmexp.free);
598 #endif
599 mutex_enter(&l->l_swaplock);
600 mutex_exit(&proclist_lock);
601 uvm_swapin(l);
602 mutex_exit(&l->l_swaplock);
603 continue;
604 } else {
605 /*
606 * not enough memory, jab the pageout daemon and
607 * wait til the coast is clear
608 */
609 mutex_exit(&proclist_lock);
610 #ifdef DEBUG
611 if (swapdebug & SDB_FOLLOW)
612 printf("scheduler: no room for pid %d(%s),"
613 " free %d\n", l->l_proc->p_pid,
614 l->l_proc->p_comm, uvmexp.free);
615 #endif
616 uvm_wait("schedpwait");
617 #ifdef DEBUG
618 if (swapdebug & SDB_FOLLOW)
619 printf("scheduler: room again, free %d\n",
620 uvmexp.free);
621 #endif
622 }
623 }
624 }
625
626 /*
627 * swappable: is LWP "l" swappable?
628 */
629
630 static bool
631 swappable(struct lwp *l)
632 {
633
634 if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
635 return false;
636 if (l->l_holdcnt != 0)
637 return false;
638 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
639 return false;
640 return true;
641 }
642
643 /*
644 * swapout_threads: find threads that can be swapped and unwire their
645 * u-areas.
646 *
647 * - called by the pagedaemon
648 * - try and swap at least one processs
649 * - processes that are sleeping or stopped for maxslp or more seconds
650 * are swapped... otherwise the longest-sleeping or stopped process
651 * is swapped, otherwise the longest resident process...
652 */
653
654 void
655 uvm_swapout_threads(void)
656 {
657 struct lwp *l;
658 struct lwp *outl, *outl2;
659 int outpri, outpri2;
660 int didswap = 0;
661 extern int maxslp;
662 bool gotit;
663
664 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
665
666 #ifdef DEBUG
667 if (!enableswap)
668 return;
669 #endif
670
671 /*
672 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
673 * outl2/outpri2: the longest resident thread (its swap time)
674 */
675 outl = outl2 = NULL;
676 outpri = outpri2 = 0;
677
678 restart:
679 mutex_enter(&proclist_lock);
680 LIST_FOREACH(l, &alllwp, l_list) {
681 KASSERT(l->l_proc != NULL);
682 if (!mutex_tryenter(&l->l_swaplock))
683 continue;
684 if (!swappable(l)) {
685 mutex_exit(&l->l_swaplock);
686 continue;
687 }
688 switch (l->l_stat) {
689 case LSONPROC:
690 break;
691
692 case LSRUN:
693 if (l->l_swtime > outpri2) {
694 outl2 = l;
695 outpri2 = l->l_swtime;
696 }
697 break;
698
699 case LSSLEEP:
700 case LSSTOP:
701 if (l->l_slptime >= maxslp) {
702 mutex_exit(&proclist_lock);
703 uvm_swapout(l);
704 /*
705 * Locking in the wrong direction -
706 * try to prevent the LWP from exiting.
707 */
708 gotit = mutex_tryenter(&proclist_lock);
709 mutex_exit(&l->l_swaplock);
710 didswap++;
711 if (!gotit)
712 goto restart;
713 continue;
714 } else if (l->l_slptime > outpri) {
715 outl = l;
716 outpri = l->l_slptime;
717 }
718 break;
719 }
720 mutex_exit(&l->l_swaplock);
721 }
722
723 /*
724 * If we didn't get rid of any real duds, toss out the next most
725 * likely sleeping/stopped or running candidate. We only do this
726 * if we are real low on memory since we don't gain much by doing
727 * it (USPACE bytes).
728 */
729 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
730 if ((l = outl) == NULL)
731 l = outl2;
732 #ifdef DEBUG
733 if (swapdebug & SDB_SWAPOUT)
734 printf("swapout_threads: no duds, try procp %p\n", l);
735 #endif
736 if (l) {
737 mutex_enter(&l->l_swaplock);
738 mutex_exit(&proclist_lock);
739 if (swappable(l))
740 uvm_swapout(l);
741 mutex_exit(&l->l_swaplock);
742 return;
743 }
744 }
745
746 mutex_exit(&proclist_lock);
747 }
748
749 /*
750 * uvm_swapout: swap out lwp "l"
751 *
752 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
753 * the pmap.
754 * - must be called with l->l_swaplock held.
755 * - XXXCDC: should deactivate all process' private anonymous memory
756 */
757
758 static void
759 uvm_swapout(struct lwp *l)
760 {
761 vaddr_t addr;
762 struct proc *p = l->l_proc;
763
764 KASSERT(mutex_owned(&l->l_swaplock));
765
766 #ifdef DEBUG
767 if (swapdebug & SDB_SWAPOUT)
768 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
769 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
770 l->l_slptime, uvmexp.free);
771 #endif
772
773 /*
774 * Mark it as (potentially) swapped out.
775 */
776 lwp_lock(l);
777 if (!swappable(l)) {
778 KDASSERT(l->l_cpu != curcpu());
779 lwp_unlock(l);
780 return;
781 }
782 l->l_flag &= ~LW_INMEM;
783 l->l_swtime = 0;
784 if (l->l_stat == LSRUN)
785 sched_dequeue(l);
786 lwp_unlock(l);
787 p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
788 ++uvmexp.swapouts;
789
790 /*
791 * Do any machine-specific actions necessary before swapout.
792 * This can include saving floating point state, etc.
793 */
794 cpu_swapout(l);
795
796 /*
797 * Unwire the to-be-swapped process's user struct and kernel stack.
798 */
799 addr = USER_TO_UAREA(l->l_addr);
800 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
801 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
802 }
803
804 /*
805 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
806 * back into memory if it is currently swapped.
807 */
808
809 void
810 uvm_lwp_hold(struct lwp *l)
811 {
812
813 if (l == curlwp) {
814 atomic_inc_uint(&l->l_holdcnt);
815 } else {
816 mutex_enter(&l->l_swaplock);
817 if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
818 (l->l_flag & LW_INMEM) == 0)
819 uvm_swapin(l);
820 mutex_exit(&l->l_swaplock);
821 }
822 }
823
824 /*
825 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
826 * drops to zero, it's eligable to be swapped.
827 */
828
829 void
830 uvm_lwp_rele(struct lwp *l)
831 {
832
833 KASSERT(l->l_holdcnt != 0);
834
835 atomic_dec_uint(&l->l_holdcnt);
836 }
837
838 #ifdef COREDUMP
839 /*
840 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
841 * a core file.
842 */
843
844 int
845 uvm_coredump_walkmap(struct proc *p, void *iocookie,
846 int (*func)(struct proc *, void *, struct uvm_coredump_state *),
847 void *cookie)
848 {
849 struct uvm_coredump_state state;
850 struct vmspace *vm = p->p_vmspace;
851 struct vm_map *map = &vm->vm_map;
852 struct vm_map_entry *entry;
853 int error;
854
855 entry = NULL;
856 vm_map_lock_read(map);
857 state.end = 0;
858 for (;;) {
859 if (entry == NULL)
860 entry = map->header.next;
861 else if (!uvm_map_lookup_entry(map, state.end, &entry))
862 entry = entry->next;
863 if (entry == &map->header)
864 break;
865
866 state.cookie = cookie;
867 if (state.end > entry->start) {
868 state.start = state.end;
869 } else {
870 state.start = entry->start;
871 }
872 state.realend = entry->end;
873 state.end = entry->end;
874 state.prot = entry->protection;
875 state.flags = 0;
876
877 /*
878 * Dump the region unless one of the following is true:
879 *
880 * (1) the region has neither object nor amap behind it
881 * (ie. it has never been accessed).
882 *
883 * (2) the region has no amap and is read-only
884 * (eg. an executable text section).
885 *
886 * (3) the region's object is a device.
887 *
888 * (4) the region is unreadable by the process.
889 */
890
891 KASSERT(!UVM_ET_ISSUBMAP(entry));
892 KASSERT(state.start < VM_MAXUSER_ADDRESS);
893 KASSERT(state.end <= VM_MAXUSER_ADDRESS);
894 if (entry->object.uvm_obj == NULL &&
895 entry->aref.ar_amap == NULL) {
896 state.realend = state.start;
897 } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
898 entry->aref.ar_amap == NULL) {
899 state.realend = state.start;
900 } else if (entry->object.uvm_obj != NULL &&
901 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
902 state.realend = state.start;
903 } else if ((entry->protection & VM_PROT_READ) == 0) {
904 state.realend = state.start;
905 } else {
906 if (state.start >= (vaddr_t)vm->vm_maxsaddr)
907 state.flags |= UVM_COREDUMP_STACK;
908
909 /*
910 * If this an anonymous entry, only dump instantiated
911 * pages.
912 */
913 if (entry->object.uvm_obj == NULL) {
914 vaddr_t end;
915
916 amap_lock(entry->aref.ar_amap);
917 for (end = state.start;
918 end < state.end; end += PAGE_SIZE) {
919 struct vm_anon *anon;
920 anon = amap_lookup(&entry->aref,
921 end - entry->start);
922 /*
923 * If we have already encountered an
924 * uninstantiated page, stop at the
925 * first instantied page.
926 */
927 if (anon != NULL &&
928 state.realend != state.end) {
929 state.end = end;
930 break;
931 }
932
933 /*
934 * If this page is the first
935 * uninstantiated page, mark this as
936 * the real ending point. Continue to
937 * counting uninstantiated pages.
938 */
939 if (anon == NULL &&
940 state.realend == state.end) {
941 state.realend = end;
942 }
943 }
944 amap_unlock(entry->aref.ar_amap);
945 }
946 }
947
948
949 vm_map_unlock_read(map);
950 error = (*func)(p, iocookie, &state);
951 if (error)
952 return (error);
953 vm_map_lock_read(map);
954 }
955 vm_map_unlock_read(map);
956
957 return (0);
958 }
959 #endif /* COREDUMP */
960