Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.127
      1 /*	$NetBSD: uvm_glue.c,v 1.127 2008/05/31 21:26:01 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.127 2008/05/31 21:26:01 ad Exp $");
     71 
     72 #include "opt_coredump.h"
     73 #include "opt_kgdb.h"
     74 #include "opt_kstack.h"
     75 #include "opt_uvmhist.h"
     76 
     77 /*
     78  * uvm_glue.c: glue functions
     79  */
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/user.h>
     87 #include <sys/syncobj.h>
     88 #include <sys/cpu.h>
     89 #include <sys/atomic.h>
     90 
     91 #include <uvm/uvm.h>
     92 
     93 /*
     94  * local prototypes
     95  */
     96 
     97 static void uvm_swapout(struct lwp *);
     98 static int uarea_swapin(vaddr_t);
     99 
    100 #define UVM_NUAREA_HIWAT	20
    101 #define	UVM_NUAREA_LOWAT	16
    102 
    103 #define	UAREA_NEXTFREE(uarea)	(*(vaddr_t *)(UAREA_TO_USER(uarea)))
    104 
    105 /*
    106  * XXXCDC: do these really belong here?
    107  */
    108 
    109 /*
    110  * uvm_kernacc: can the kernel access a region of memory
    111  *
    112  * - used only by /dev/kmem driver (mem.c)
    113  */
    114 
    115 bool
    116 uvm_kernacc(void *addr, size_t len, int rw)
    117 {
    118 	bool rv;
    119 	vaddr_t saddr, eaddr;
    120 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    121 
    122 	saddr = trunc_page((vaddr_t)addr);
    123 	eaddr = round_page((vaddr_t)addr + len);
    124 	vm_map_lock_read(kernel_map);
    125 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    126 	vm_map_unlock_read(kernel_map);
    127 
    128 	return(rv);
    129 }
    130 
    131 #ifdef KGDB
    132 /*
    133  * Change protections on kernel pages from addr to addr+len
    134  * (presumably so debugger can plant a breakpoint).
    135  *
    136  * We force the protection change at the pmap level.  If we were
    137  * to use vm_map_protect a change to allow writing would be lazily-
    138  * applied meaning we would still take a protection fault, something
    139  * we really don't want to do.  It would also fragment the kernel
    140  * map unnecessarily.  We cannot use pmap_protect since it also won't
    141  * enforce a write-enable request.  Using pmap_enter is the only way
    142  * we can ensure the change takes place properly.
    143  */
    144 void
    145 uvm_chgkprot(void *addr, size_t len, int rw)
    146 {
    147 	vm_prot_t prot;
    148 	paddr_t pa;
    149 	vaddr_t sva, eva;
    150 
    151 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    152 	eva = round_page((vaddr_t)addr + len);
    153 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    154 		/*
    155 		 * Extract physical address for the page.
    156 		 */
    157 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    158 			panic("%s: invalid page", __func__);
    159 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    160 	}
    161 	pmap_update(pmap_kernel());
    162 }
    163 #endif
    164 
    165 /*
    166  * uvm_vslock: wire user memory for I/O
    167  *
    168  * - called from physio and sys___sysctl
    169  * - XXXCDC: consider nuking this (or making it a macro?)
    170  */
    171 
    172 int
    173 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    174 {
    175 	struct vm_map *map;
    176 	vaddr_t start, end;
    177 	int error;
    178 
    179 	map = &vs->vm_map;
    180 	start = trunc_page((vaddr_t)addr);
    181 	end = round_page((vaddr_t)addr + len);
    182 	error = uvm_fault_wire(map, start, end, access_type, 0);
    183 	return error;
    184 }
    185 
    186 /*
    187  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    188  *
    189  * - called from physio and sys___sysctl
    190  * - XXXCDC: consider nuking this (or making it a macro?)
    191  */
    192 
    193 void
    194 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    195 {
    196 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    197 		round_page((vaddr_t)addr + len));
    198 }
    199 
    200 /*
    201  * uvm_proc_fork: fork a virtual address space
    202  *
    203  * - the address space is copied as per parent map's inherit values
    204  */
    205 void
    206 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    207 {
    208 
    209 	if (shared == true) {
    210 		p2->p_vmspace = NULL;
    211 		uvmspace_share(p1, p2);
    212 	} else {
    213 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    214 	}
    215 
    216 	cpu_proc_fork(p1, p2);
    217 }
    218 
    219 
    220 /*
    221  * uvm_lwp_fork: fork a thread
    222  *
    223  * - a new "user" structure is allocated for the child process
    224  *	[filled in by MD layer...]
    225  * - if specified, the child gets a new user stack described by
    226  *	stack and stacksize
    227  * - NOTE: the kernel stack may be at a different location in the child
    228  *	process, and thus addresses of automatic variables may be invalid
    229  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    230  *	after cpu_lwp_fork returns.
    231  * - XXXCDC: we need a way for this to return a failure value rather
    232  *   than just hang
    233  */
    234 void
    235 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    236     void (*func)(void *), void *arg)
    237 {
    238 	int error;
    239 
    240 	/*
    241 	 * Wire down the U-area for the process, which contains the PCB
    242 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    243 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    244 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    245 	 * L_INMEM will already be set and we don't need to do anything.
    246 	 *
    247 	 * Note the kernel stack gets read/write accesses right off the bat.
    248 	 */
    249 
    250 	if ((l2->l_flag & LW_INMEM) == 0) {
    251 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    252 
    253 		if ((error = uarea_swapin(uarea)) != 0)
    254 			panic("%s: uvm_fault_wire failed: %d", __func__, error);
    255 #ifdef PMAP_UAREA
    256 		/* Tell the pmap this is a u-area mapping */
    257 		PMAP_UAREA(uarea);
    258 #endif
    259 		l2->l_flag |= LW_INMEM;
    260 	}
    261 
    262 #ifdef KSTACK_CHECK_MAGIC
    263 	/*
    264 	 * fill stack with magic number
    265 	 */
    266 	kstack_setup_magic(l2);
    267 #endif
    268 
    269 	/*
    270 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    271  	 * to run.  If this is a normal user fork, the child will exit
    272 	 * directly to user mode via child_return() on its first time
    273 	 * slice and will not return here.  If this is a kernel thread,
    274 	 * the specified entry point will be executed.
    275 	 */
    276 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    277 }
    278 
    279 /*
    280  * uvm_cpu_attach: initialize per-CPU data structures.
    281  */
    282 
    283 void
    284 uvm_cpu_attach(struct cpu_info *ci)
    285 {
    286 
    287 }
    288 
    289 static int
    290 uarea_swapin(vaddr_t addr)
    291 {
    292 
    293 	return uvm_fault_wire(kernel_map, addr, addr + USPACE,
    294 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    295 }
    296 
    297 static void
    298 uarea_swapout(vaddr_t addr)
    299 {
    300 
    301 	uvm_fault_unwire(kernel_map, addr, addr + USPACE);
    302 }
    303 
    304 #ifndef USPACE_ALIGN
    305 #define	USPACE_ALIGN	0
    306 #endif
    307 
    308 static pool_cache_t uvm_uarea_cache;
    309 
    310 static int
    311 uarea_ctor(void *arg, void *obj, int flags)
    312 {
    313 
    314 	KASSERT((flags & PR_WAITOK) != 0);
    315 	return uarea_swapin((vaddr_t)obj);
    316 }
    317 
    318 static void *
    319 uarea_poolpage_alloc(struct pool *pp, int flags)
    320 {
    321 
    322 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    323 	    USPACE_ALIGN, UVM_KMF_PAGEABLE |
    324 	    ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
    325 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    326 }
    327 
    328 static void
    329 uarea_poolpage_free(struct pool *pp, void *addr)
    330 {
    331 
    332 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    333 	    UVM_KMF_PAGEABLE);
    334 }
    335 
    336 static struct pool_allocator uvm_uarea_allocator = {
    337 	.pa_alloc = uarea_poolpage_alloc,
    338 	.pa_free = uarea_poolpage_free,
    339 	.pa_pagesz = USPACE,
    340 };
    341 
    342 void
    343 uvm_uarea_init(void)
    344 {
    345 	int flags = PR_NOTOUCH;
    346 
    347 	/*
    348 	 * specify PR_NOALIGN unless the alignment provided by
    349 	 * the backend (USPACE_ALIGN) is sufficient to provide
    350 	 * pool page size (UPSACE) alignment.
    351 	 */
    352 
    353 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    354 	    (USPACE_ALIGN % USPACE) != 0) {
    355 		flags |= PR_NOALIGN;
    356 	}
    357 
    358 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    359 	    "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
    360 }
    361 
    362 /*
    363  * uvm_uarea_alloc: allocate a u-area
    364  */
    365 
    366 bool
    367 uvm_uarea_alloc(vaddr_t *uaddrp)
    368 {
    369 
    370 	*uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    371 	return true;
    372 }
    373 
    374 /*
    375  * uvm_uarea_free: free a u-area
    376  */
    377 
    378 void
    379 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
    380 {
    381 
    382 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    383 }
    384 
    385 /*
    386  * uvm_proc_exit: exit a virtual address space
    387  *
    388  * - borrow proc0's address space because freeing the vmspace
    389  *   of the dead process may block.
    390  */
    391 
    392 void
    393 uvm_proc_exit(struct proc *p)
    394 {
    395 	struct lwp *l = curlwp; /* XXX */
    396 	struct vmspace *ovm;
    397 
    398 	KASSERT(p == l->l_proc);
    399 	ovm = p->p_vmspace;
    400 
    401 	/*
    402 	 * borrow proc0's address space.
    403 	 */
    404 	kpreempt_disable();
    405 	pmap_deactivate(l);
    406 	p->p_vmspace = proc0.p_vmspace;
    407 	pmap_activate(l);
    408 	kpreempt_enable();
    409 
    410 	uvmspace_free(ovm);
    411 }
    412 
    413 void
    414 uvm_lwp_exit(struct lwp *l)
    415 {
    416 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    417 
    418 	l->l_flag &= ~LW_INMEM;
    419 	uvm_uarea_free(va, l->l_cpu);
    420 	l->l_addr = NULL;
    421 }
    422 
    423 /*
    424  * uvm_init_limit: init per-process VM limits
    425  *
    426  * - called for process 0 and then inherited by all others.
    427  */
    428 
    429 void
    430 uvm_init_limits(struct proc *p)
    431 {
    432 
    433 	/*
    434 	 * Set up the initial limits on process VM.  Set the maximum
    435 	 * resident set size to be all of (reasonably) available memory.
    436 	 * This causes any single, large process to start random page
    437 	 * replacement once it fills memory.
    438 	 */
    439 
    440 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    441 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    442 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    443 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    444 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    445 }
    446 
    447 #ifdef DEBUG
    448 int	enableswap = 1;
    449 int	swapdebug = 0;
    450 #define	SDB_FOLLOW	1
    451 #define SDB_SWAPIN	2
    452 #define SDB_SWAPOUT	4
    453 #endif
    454 
    455 /*
    456  * uvm_swapin: swap in an lwp's u-area.
    457  *
    458  * - must be called with the LWP's swap lock held.
    459  * - naturally, must not be called with l == curlwp
    460  */
    461 
    462 void
    463 uvm_swapin(struct lwp *l)
    464 {
    465 	int error;
    466 
    467 	/* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
    468 	KASSERT(l != curlwp);
    469 
    470 	error = uarea_swapin(USER_TO_UAREA(l->l_addr));
    471 	if (error) {
    472 		panic("%s: rewiring stack failed: %d", __func__, error);
    473 	}
    474 
    475 	/*
    476 	 * Some architectures need to be notified when the user area has
    477 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    478 	 */
    479 	cpu_swapin(l);
    480 	lwp_lock(l);
    481 	if (l->l_stat == LSRUN)
    482 		sched_enqueue(l, false);
    483 	l->l_flag |= LW_INMEM;
    484 	l->l_swtime = 0;
    485 	lwp_unlock(l);
    486 	++uvmexp.swapins;
    487 }
    488 
    489 /*
    490  * uvm_kick_scheduler: kick the scheduler into action if not running.
    491  *
    492  * - called when swapped out processes have been awoken.
    493  */
    494 
    495 void
    496 uvm_kick_scheduler(void)
    497 {
    498 
    499 	if (uvm.swap_running == false)
    500 		return;
    501 
    502 	mutex_enter(&uvm_scheduler_mutex);
    503 	uvm.scheduler_kicked = true;
    504 	cv_signal(&uvm.scheduler_cv);
    505 	mutex_exit(&uvm_scheduler_mutex);
    506 }
    507 
    508 /*
    509  * uvm_scheduler: process zero main loop
    510  *
    511  * - attempt to swapin every swaped-out, runnable process in order of
    512  *	priority.
    513  * - if not enough memory, wake the pagedaemon and let it clear space.
    514  */
    515 
    516 void
    517 uvm_scheduler(void)
    518 {
    519 	struct lwp *l, *ll;
    520 	int pri;
    521 	int ppri;
    522 
    523 	l = curlwp;
    524 	lwp_lock(l);
    525 	l->l_priority = PRI_VM;
    526 	l->l_class = SCHED_FIFO;
    527 	lwp_unlock(l);
    528 
    529 	for (;;) {
    530 #ifdef DEBUG
    531 		mutex_enter(&uvm_scheduler_mutex);
    532 		while (!enableswap)
    533 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
    534 		mutex_exit(&uvm_scheduler_mutex);
    535 #endif
    536 		ll = NULL;		/* process to choose */
    537 		ppri = INT_MIN;		/* its priority */
    538 
    539 		mutex_enter(proc_lock);
    540 		LIST_FOREACH(l, &alllwp, l_list) {
    541 			/* is it a runnable swapped out process? */
    542 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
    543 				pri = l->l_swtime + l->l_slptime -
    544 				    (l->l_proc->p_nice - NZERO) * 8;
    545 				if (pri > ppri) {   /* higher priority? */
    546 					ll = l;
    547 					ppri = pri;
    548 				}
    549 			}
    550 		}
    551 #ifdef DEBUG
    552 		if (swapdebug & SDB_FOLLOW)
    553 			printf("%s: running, procp %p pri %d\n", __func__, ll,
    554 			    ppri);
    555 #endif
    556 		/*
    557 		 * Nothing to do, back to sleep
    558 		 */
    559 		if ((l = ll) == NULL) {
    560 			mutex_exit(proc_lock);
    561 			mutex_enter(&uvm_scheduler_mutex);
    562 			if (uvm.scheduler_kicked == false)
    563 				cv_wait(&uvm.scheduler_cv,
    564 				    &uvm_scheduler_mutex);
    565 			uvm.scheduler_kicked = false;
    566 			mutex_exit(&uvm_scheduler_mutex);
    567 			continue;
    568 		}
    569 
    570 		/*
    571 		 * we have found swapped out process which we would like
    572 		 * to bring back in.
    573 		 *
    574 		 * XXX: this part is really bogus cuz we could deadlock
    575 		 * on memory despite our feeble check
    576 		 */
    577 		if (uvmexp.free > atop(USPACE)) {
    578 #ifdef DEBUG
    579 			if (swapdebug & SDB_SWAPIN)
    580 				printf("swapin: pid %d(%s)@%p, pri %d "
    581 				    "free %d\n", l->l_proc->p_pid,
    582 				    l->l_proc->p_comm, l->l_addr, ppri,
    583 				    uvmexp.free);
    584 #endif
    585 			mutex_enter(&l->l_swaplock);
    586 			mutex_exit(proc_lock);
    587 			uvm_swapin(l);
    588 			mutex_exit(&l->l_swaplock);
    589 			continue;
    590 		} else {
    591 			/*
    592 			 * not enough memory, jab the pageout daemon and
    593 			 * wait til the coast is clear
    594 			 */
    595 			mutex_exit(proc_lock);
    596 #ifdef DEBUG
    597 			if (swapdebug & SDB_FOLLOW)
    598 				printf("%s: no room for pid %d(%s),"
    599 				    " free %d\n", __func__, l->l_proc->p_pid,
    600 				    l->l_proc->p_comm, uvmexp.free);
    601 #endif
    602 			uvm_wait("schedpwait");
    603 #ifdef DEBUG
    604 			if (swapdebug & SDB_FOLLOW)
    605 				printf("%s: room again, free %d\n", __func__,
    606 				    uvmexp.free);
    607 #endif
    608 		}
    609 	}
    610 }
    611 
    612 /*
    613  * swappable: is LWP "l" swappable?
    614  */
    615 
    616 static bool
    617 swappable(struct lwp *l)
    618 {
    619 
    620 	if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
    621 		return false;
    622 	if ((l->l_pflag & LP_RUNNING) != 0)
    623 		return false;
    624 	if (l->l_holdcnt != 0)
    625 		return false;
    626 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
    627 		return false;
    628 	return true;
    629 }
    630 
    631 /*
    632  * swapout_threads: find threads that can be swapped and unwire their
    633  *	u-areas.
    634  *
    635  * - called by the pagedaemon
    636  * - try and swap at least one processs
    637  * - processes that are sleeping or stopped for maxslp or more seconds
    638  *   are swapped... otherwise the longest-sleeping or stopped process
    639  *   is swapped, otherwise the longest resident process...
    640  */
    641 
    642 void
    643 uvm_swapout_threads(void)
    644 {
    645 	struct lwp *l;
    646 	struct lwp *outl, *outl2;
    647 	int outpri, outpri2;
    648 	int didswap = 0;
    649 	extern int maxslp;
    650 	bool gotit;
    651 
    652 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    653 
    654 #ifdef DEBUG
    655 	if (!enableswap)
    656 		return;
    657 #endif
    658 
    659 	/*
    660 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    661 	 * outl2/outpri2: the longest resident thread (its swap time)
    662 	 */
    663 	outl = outl2 = NULL;
    664 	outpri = outpri2 = 0;
    665 
    666  restart:
    667 	mutex_enter(proc_lock);
    668 	LIST_FOREACH(l, &alllwp, l_list) {
    669 		KASSERT(l->l_proc != NULL);
    670 		if (!mutex_tryenter(&l->l_swaplock))
    671 			continue;
    672 		if (!swappable(l)) {
    673 			mutex_exit(&l->l_swaplock);
    674 			continue;
    675 		}
    676 		switch (l->l_stat) {
    677 		case LSONPROC:
    678 			break;
    679 
    680 		case LSRUN:
    681 			if (l->l_swtime > outpri2) {
    682 				outl2 = l;
    683 				outpri2 = l->l_swtime;
    684 			}
    685 			break;
    686 
    687 		case LSSLEEP:
    688 		case LSSTOP:
    689 			if (l->l_slptime >= maxslp) {
    690 				mutex_exit(proc_lock);
    691 				uvm_swapout(l);
    692 				/*
    693 				 * Locking in the wrong direction -
    694 				 * try to prevent the LWP from exiting.
    695 				 */
    696 				gotit = mutex_tryenter(proc_lock);
    697 				mutex_exit(&l->l_swaplock);
    698 				didswap++;
    699 				if (!gotit)
    700 					goto restart;
    701 				continue;
    702 			} else if (l->l_slptime > outpri) {
    703 				outl = l;
    704 				outpri = l->l_slptime;
    705 			}
    706 			break;
    707 		}
    708 		mutex_exit(&l->l_swaplock);
    709 	}
    710 
    711 	/*
    712 	 * If we didn't get rid of any real duds, toss out the next most
    713 	 * likely sleeping/stopped or running candidate.  We only do this
    714 	 * if we are real low on memory since we don't gain much by doing
    715 	 * it (USPACE bytes).
    716 	 */
    717 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    718 		if ((l = outl) == NULL)
    719 			l = outl2;
    720 #ifdef DEBUG
    721 		if (swapdebug & SDB_SWAPOUT)
    722 			printf("%s: no duds, try procp %p\n", __func__, l);
    723 #endif
    724 		if (l) {
    725 			mutex_enter(&l->l_swaplock);
    726 			mutex_exit(proc_lock);
    727 			if (swappable(l))
    728 				uvm_swapout(l);
    729 			mutex_exit(&l->l_swaplock);
    730 			return;
    731 		}
    732 	}
    733 
    734 	mutex_exit(proc_lock);
    735 }
    736 
    737 /*
    738  * uvm_swapout: swap out lwp "l"
    739  *
    740  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    741  *   the pmap.
    742  * - must be called with l->l_swaplock held.
    743  * - XXXCDC: should deactivate all process' private anonymous memory
    744  */
    745 
    746 static void
    747 uvm_swapout(struct lwp *l)
    748 {
    749 	KASSERT(mutex_owned(&l->l_swaplock));
    750 
    751 #ifdef DEBUG
    752 	if (swapdebug & SDB_SWAPOUT)
    753 		printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    754 		   __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    755 		   l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
    756 #endif
    757 
    758 	/*
    759 	 * Mark it as (potentially) swapped out.
    760 	 */
    761 	lwp_lock(l);
    762 	if (!swappable(l)) {
    763 		KDASSERT(l->l_cpu != curcpu());
    764 		lwp_unlock(l);
    765 		return;
    766 	}
    767 	l->l_flag &= ~LW_INMEM;
    768 	l->l_swtime = 0;
    769 	if (l->l_stat == LSRUN)
    770 		sched_dequeue(l);
    771 	lwp_unlock(l);
    772 	l->l_ru.ru_nswap++;
    773 	++uvmexp.swapouts;
    774 
    775 	/*
    776 	 * Do any machine-specific actions necessary before swapout.
    777 	 * This can include saving floating point state, etc.
    778 	 */
    779 	cpu_swapout(l);
    780 
    781 	/*
    782 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    783 	 */
    784 	uarea_swapout(USER_TO_UAREA(l->l_addr));
    785 	pmap_collect(vm_map_pmap(&l->l_proc->p_vmspace->vm_map));
    786 }
    787 
    788 /*
    789  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
    790  * back into memory if it is currently swapped.
    791  */
    792 
    793 void
    794 uvm_lwp_hold(struct lwp *l)
    795 {
    796 
    797 	if (l == curlwp) {
    798 		atomic_inc_uint(&l->l_holdcnt);
    799 	} else {
    800 		mutex_enter(&l->l_swaplock);
    801 		if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
    802 		    (l->l_flag & LW_INMEM) == 0)
    803 			uvm_swapin(l);
    804 		mutex_exit(&l->l_swaplock);
    805 	}
    806 }
    807 
    808 /*
    809  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
    810  * drops to zero, it's eligable to be swapped.
    811  */
    812 
    813 void
    814 uvm_lwp_rele(struct lwp *l)
    815 {
    816 
    817 	KASSERT(l->l_holdcnt != 0);
    818 
    819 	atomic_dec_uint(&l->l_holdcnt);
    820 }
    821 
    822 #ifdef COREDUMP
    823 /*
    824  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
    825  * a core file.
    826  */
    827 
    828 int
    829 uvm_coredump_walkmap(struct proc *p, void *iocookie,
    830     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
    831     void *cookie)
    832 {
    833 	struct uvm_coredump_state state;
    834 	struct vmspace *vm = p->p_vmspace;
    835 	struct vm_map *map = &vm->vm_map;
    836 	struct vm_map_entry *entry;
    837 	int error;
    838 
    839 	entry = NULL;
    840 	vm_map_lock_read(map);
    841 	state.end = 0;
    842 	for (;;) {
    843 		if (entry == NULL)
    844 			entry = map->header.next;
    845 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
    846 			entry = entry->next;
    847 		if (entry == &map->header)
    848 			break;
    849 
    850 		state.cookie = cookie;
    851 		if (state.end > entry->start) {
    852 			state.start = state.end;
    853 		} else {
    854 			state.start = entry->start;
    855 		}
    856 		state.realend = entry->end;
    857 		state.end = entry->end;
    858 		state.prot = entry->protection;
    859 		state.flags = 0;
    860 
    861 		/*
    862 		 * Dump the region unless one of the following is true:
    863 		 *
    864 		 * (1) the region has neither object nor amap behind it
    865 		 *     (ie. it has never been accessed).
    866 		 *
    867 		 * (2) the region has no amap and is read-only
    868 		 *     (eg. an executable text section).
    869 		 *
    870 		 * (3) the region's object is a device.
    871 		 *
    872 		 * (4) the region is unreadable by the process.
    873 		 */
    874 
    875 		KASSERT(!UVM_ET_ISSUBMAP(entry));
    876 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
    877 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
    878 		if (entry->object.uvm_obj == NULL &&
    879 		    entry->aref.ar_amap == NULL) {
    880 			state.realend = state.start;
    881 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
    882 		    entry->aref.ar_amap == NULL) {
    883 			state.realend = state.start;
    884 		} else if (entry->object.uvm_obj != NULL &&
    885 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
    886 			state.realend = state.start;
    887 		} else if ((entry->protection & VM_PROT_READ) == 0) {
    888 			state.realend = state.start;
    889 		} else {
    890 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
    891 				state.flags |= UVM_COREDUMP_STACK;
    892 
    893 			/*
    894 			 * If this an anonymous entry, only dump instantiated
    895 			 * pages.
    896 			 */
    897 			if (entry->object.uvm_obj == NULL) {
    898 				vaddr_t end;
    899 
    900 				amap_lock(entry->aref.ar_amap);
    901 				for (end = state.start;
    902 				     end < state.end; end += PAGE_SIZE) {
    903 					struct vm_anon *anon;
    904 					anon = amap_lookup(&entry->aref,
    905 					    end - entry->start);
    906 					/*
    907 					 * If we have already encountered an
    908 					 * uninstantiated page, stop at the
    909 					 * first instantied page.
    910 					 */
    911 					if (anon != NULL &&
    912 					    state.realend != state.end) {
    913 						state.end = end;
    914 						break;
    915 					}
    916 
    917 					/*
    918 					 * If this page is the first
    919 					 * uninstantiated page, mark this as
    920 					 * the real ending point.  Continue to
    921 					 * counting uninstantiated pages.
    922 					 */
    923 					if (anon == NULL &&
    924 					    state.realend == state.end) {
    925 						state.realend = end;
    926 					}
    927 				}
    928 				amap_unlock(entry->aref.ar_amap);
    929 			}
    930 		}
    931 
    932 
    933 		vm_map_unlock_read(map);
    934 		error = (*func)(p, iocookie, &state);
    935 		if (error)
    936 			return (error);
    937 		vm_map_lock_read(map);
    938 	}
    939 	vm_map_unlock_read(map);
    940 
    941 	return (0);
    942 }
    943 #endif /* COREDUMP */
    944