Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.129
      1 /*	$NetBSD: uvm_glue.c,v 1.129 2008/06/09 11:49:54 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.129 2008/06/09 11:49:54 ad Exp $");
     71 
     72 #include "opt_coredump.h"
     73 #include "opt_kgdb.h"
     74 #include "opt_kstack.h"
     75 #include "opt_uvmhist.h"
     76 
     77 /*
     78  * uvm_glue.c: glue functions
     79  */
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/user.h>
     87 #include <sys/syncobj.h>
     88 #include <sys/cpu.h>
     89 #include <sys/atomic.h>
     90 
     91 #include <uvm/uvm.h>
     92 
     93 /*
     94  * local prototypes
     95  */
     96 
     97 static void uvm_swapout(struct lwp *);
     98 static int uarea_swapin(vaddr_t);
     99 
    100 /*
    101  * XXXCDC: do these really belong here?
    102  */
    103 
    104 /*
    105  * uvm_kernacc: can the kernel access a region of memory
    106  *
    107  * - used only by /dev/kmem driver (mem.c)
    108  */
    109 
    110 bool
    111 uvm_kernacc(void *addr, size_t len, int rw)
    112 {
    113 	bool rv;
    114 	vaddr_t saddr, eaddr;
    115 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    116 
    117 	saddr = trunc_page((vaddr_t)addr);
    118 	eaddr = round_page((vaddr_t)addr + len);
    119 	vm_map_lock_read(kernel_map);
    120 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    121 	vm_map_unlock_read(kernel_map);
    122 
    123 	return(rv);
    124 }
    125 
    126 #ifdef KGDB
    127 /*
    128  * Change protections on kernel pages from addr to addr+len
    129  * (presumably so debugger can plant a breakpoint).
    130  *
    131  * We force the protection change at the pmap level.  If we were
    132  * to use vm_map_protect a change to allow writing would be lazily-
    133  * applied meaning we would still take a protection fault, something
    134  * we really don't want to do.  It would also fragment the kernel
    135  * map unnecessarily.  We cannot use pmap_protect since it also won't
    136  * enforce a write-enable request.  Using pmap_enter is the only way
    137  * we can ensure the change takes place properly.
    138  */
    139 void
    140 uvm_chgkprot(void *addr, size_t len, int rw)
    141 {
    142 	vm_prot_t prot;
    143 	paddr_t pa;
    144 	vaddr_t sva, eva;
    145 
    146 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    147 	eva = round_page((vaddr_t)addr + len);
    148 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    149 		/*
    150 		 * Extract physical address for the page.
    151 		 */
    152 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    153 			panic("%s: invalid page", __func__);
    154 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    155 	}
    156 	pmap_update(pmap_kernel());
    157 }
    158 #endif
    159 
    160 /*
    161  * uvm_vslock: wire user memory for I/O
    162  *
    163  * - called from physio and sys___sysctl
    164  * - XXXCDC: consider nuking this (or making it a macro?)
    165  */
    166 
    167 int
    168 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    169 {
    170 	struct vm_map *map;
    171 	vaddr_t start, end;
    172 	int error;
    173 
    174 	map = &vs->vm_map;
    175 	start = trunc_page((vaddr_t)addr);
    176 	end = round_page((vaddr_t)addr + len);
    177 	error = uvm_fault_wire(map, start, end, access_type, 0);
    178 	return error;
    179 }
    180 
    181 /*
    182  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    183  *
    184  * - called from physio and sys___sysctl
    185  * - XXXCDC: consider nuking this (or making it a macro?)
    186  */
    187 
    188 void
    189 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    190 {
    191 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    192 		round_page((vaddr_t)addr + len));
    193 }
    194 
    195 /*
    196  * uvm_proc_fork: fork a virtual address space
    197  *
    198  * - the address space is copied as per parent map's inherit values
    199  */
    200 void
    201 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    202 {
    203 
    204 	if (shared == true) {
    205 		p2->p_vmspace = NULL;
    206 		uvmspace_share(p1, p2);
    207 	} else {
    208 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    209 	}
    210 
    211 	cpu_proc_fork(p1, p2);
    212 }
    213 
    214 
    215 /*
    216  * uvm_lwp_fork: fork a thread
    217  *
    218  * - a new "user" structure is allocated for the child process
    219  *	[filled in by MD layer...]
    220  * - if specified, the child gets a new user stack described by
    221  *	stack and stacksize
    222  * - NOTE: the kernel stack may be at a different location in the child
    223  *	process, and thus addresses of automatic variables may be invalid
    224  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    225  *	after cpu_lwp_fork returns.
    226  * - XXXCDC: we need a way for this to return a failure value rather
    227  *   than just hang
    228  */
    229 void
    230 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    231     void (*func)(void *), void *arg)
    232 {
    233 	int error;
    234 
    235 	/*
    236 	 * Wire down the U-area for the process, which contains the PCB
    237 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    238 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    239 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    240 	 * L_INMEM will already be set and we don't need to do anything.
    241 	 *
    242 	 * Note the kernel stack gets read/write accesses right off the bat.
    243 	 */
    244 
    245 	if ((l2->l_flag & LW_INMEM) == 0) {
    246 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    247 
    248 		if ((error = uarea_swapin(uarea)) != 0)
    249 			panic("%s: uvm_fault_wire failed: %d", __func__, error);
    250 #ifdef PMAP_UAREA
    251 		/* Tell the pmap this is a u-area mapping */
    252 		PMAP_UAREA(uarea);
    253 #endif
    254 		l2->l_flag |= LW_INMEM;
    255 	}
    256 
    257 #ifdef KSTACK_CHECK_MAGIC
    258 	/*
    259 	 * fill stack with magic number
    260 	 */
    261 	kstack_setup_magic(l2);
    262 #endif
    263 
    264 	/*
    265 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    266  	 * to run.  If this is a normal user fork, the child will exit
    267 	 * directly to user mode via child_return() on its first time
    268 	 * slice and will not return here.  If this is a kernel thread,
    269 	 * the specified entry point will be executed.
    270 	 */
    271 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    272 }
    273 
    274 static int
    275 uarea_swapin(vaddr_t addr)
    276 {
    277 
    278 	return uvm_fault_wire(kernel_map, addr, addr + USPACE,
    279 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    280 }
    281 
    282 static void
    283 uarea_swapout(vaddr_t addr)
    284 {
    285 
    286 	uvm_fault_unwire(kernel_map, addr, addr + USPACE);
    287 }
    288 
    289 #ifndef USPACE_ALIGN
    290 #define	USPACE_ALIGN	0
    291 #endif
    292 
    293 static pool_cache_t uvm_uarea_cache;
    294 
    295 static int
    296 uarea_ctor(void *arg, void *obj, int flags)
    297 {
    298 
    299 	KASSERT((flags & PR_WAITOK) != 0);
    300 	return uarea_swapin((vaddr_t)obj);
    301 }
    302 
    303 static void *
    304 uarea_poolpage_alloc(struct pool *pp, int flags)
    305 {
    306 
    307 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    308 	    USPACE_ALIGN, UVM_KMF_PAGEABLE |
    309 	    ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
    310 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    311 }
    312 
    313 static void
    314 uarea_poolpage_free(struct pool *pp, void *addr)
    315 {
    316 
    317 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    318 	    UVM_KMF_PAGEABLE);
    319 }
    320 
    321 static struct pool_allocator uvm_uarea_allocator = {
    322 	.pa_alloc = uarea_poolpage_alloc,
    323 	.pa_free = uarea_poolpage_free,
    324 	.pa_pagesz = USPACE,
    325 };
    326 
    327 void
    328 uvm_uarea_init(void)
    329 {
    330 	int flags = PR_NOTOUCH;
    331 
    332 	/*
    333 	 * specify PR_NOALIGN unless the alignment provided by
    334 	 * the backend (USPACE_ALIGN) is sufficient to provide
    335 	 * pool page size (UPSACE) alignment.
    336 	 */
    337 
    338 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    339 	    (USPACE_ALIGN % USPACE) != 0) {
    340 		flags |= PR_NOALIGN;
    341 	}
    342 
    343 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    344 	    "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
    345 }
    346 
    347 /*
    348  * uvm_uarea_alloc: allocate a u-area
    349  */
    350 
    351 bool
    352 uvm_uarea_alloc(vaddr_t *uaddrp)
    353 {
    354 
    355 	*uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    356 	return true;
    357 }
    358 
    359 /*
    360  * uvm_uarea_free: free a u-area
    361  */
    362 
    363 void
    364 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
    365 {
    366 
    367 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    368 }
    369 
    370 /*
    371  * uvm_proc_exit: exit a virtual address space
    372  *
    373  * - borrow proc0's address space because freeing the vmspace
    374  *   of the dead process may block.
    375  */
    376 
    377 void
    378 uvm_proc_exit(struct proc *p)
    379 {
    380 	struct lwp *l = curlwp; /* XXX */
    381 	struct vmspace *ovm;
    382 
    383 	KASSERT(p == l->l_proc);
    384 	ovm = p->p_vmspace;
    385 
    386 	/*
    387 	 * borrow proc0's address space.
    388 	 */
    389 	KPREEMPT_DISABLE(l);
    390 	pmap_deactivate(l);
    391 	p->p_vmspace = proc0.p_vmspace;
    392 	pmap_activate(l);
    393 	KPREEMPT_ENABLE(l);
    394 
    395 	uvmspace_free(ovm);
    396 }
    397 
    398 void
    399 uvm_lwp_exit(struct lwp *l)
    400 {
    401 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    402 
    403 	l->l_flag &= ~LW_INMEM;
    404 	uvm_uarea_free(va, l->l_cpu);
    405 	l->l_addr = NULL;
    406 }
    407 
    408 /*
    409  * uvm_init_limit: init per-process VM limits
    410  *
    411  * - called for process 0 and then inherited by all others.
    412  */
    413 
    414 void
    415 uvm_init_limits(struct proc *p)
    416 {
    417 
    418 	/*
    419 	 * Set up the initial limits on process VM.  Set the maximum
    420 	 * resident set size to be all of (reasonably) available memory.
    421 	 * This causes any single, large process to start random page
    422 	 * replacement once it fills memory.
    423 	 */
    424 
    425 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    426 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    427 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    428 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    429 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    430 }
    431 
    432 #ifdef DEBUG
    433 int	enableswap = 1;
    434 int	swapdebug = 0;
    435 #define	SDB_FOLLOW	1
    436 #define SDB_SWAPIN	2
    437 #define SDB_SWAPOUT	4
    438 #endif
    439 
    440 /*
    441  * uvm_swapin: swap in an lwp's u-area.
    442  *
    443  * - must be called with the LWP's swap lock held.
    444  * - naturally, must not be called with l == curlwp
    445  */
    446 
    447 void
    448 uvm_swapin(struct lwp *l)
    449 {
    450 	int error;
    451 
    452 	/* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
    453 	KASSERT(l != curlwp);
    454 
    455 	error = uarea_swapin(USER_TO_UAREA(l->l_addr));
    456 	if (error) {
    457 		panic("%s: rewiring stack failed: %d", __func__, error);
    458 	}
    459 
    460 	/*
    461 	 * Some architectures need to be notified when the user area has
    462 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    463 	 */
    464 	cpu_swapin(l);
    465 	lwp_lock(l);
    466 	if (l->l_stat == LSRUN)
    467 		sched_enqueue(l, false);
    468 	l->l_flag |= LW_INMEM;
    469 	l->l_swtime = 0;
    470 	lwp_unlock(l);
    471 	++uvmexp.swapins;
    472 }
    473 
    474 /*
    475  * uvm_kick_scheduler: kick the scheduler into action if not running.
    476  *
    477  * - called when swapped out processes have been awoken.
    478  */
    479 
    480 void
    481 uvm_kick_scheduler(void)
    482 {
    483 
    484 	if (uvm.swap_running == false)
    485 		return;
    486 
    487 	mutex_enter(&uvm_scheduler_mutex);
    488 	uvm.scheduler_kicked = true;
    489 	cv_signal(&uvm.scheduler_cv);
    490 	mutex_exit(&uvm_scheduler_mutex);
    491 }
    492 
    493 /*
    494  * uvm_scheduler: process zero main loop
    495  *
    496  * - attempt to swapin every swaped-out, runnable process in order of
    497  *	priority.
    498  * - if not enough memory, wake the pagedaemon and let it clear space.
    499  */
    500 
    501 void
    502 uvm_scheduler(void)
    503 {
    504 	struct lwp *l, *ll;
    505 	int pri;
    506 	int ppri;
    507 
    508 	l = curlwp;
    509 	lwp_lock(l);
    510 	l->l_priority = PRI_VM;
    511 	l->l_class = SCHED_FIFO;
    512 	lwp_unlock(l);
    513 
    514 	for (;;) {
    515 #ifdef DEBUG
    516 		mutex_enter(&uvm_scheduler_mutex);
    517 		while (!enableswap)
    518 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
    519 		mutex_exit(&uvm_scheduler_mutex);
    520 #endif
    521 		ll = NULL;		/* process to choose */
    522 		ppri = INT_MIN;		/* its priority */
    523 
    524 		mutex_enter(proc_lock);
    525 		LIST_FOREACH(l, &alllwp, l_list) {
    526 			/* is it a runnable swapped out process? */
    527 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
    528 				pri = l->l_swtime + l->l_slptime -
    529 				    (l->l_proc->p_nice - NZERO) * 8;
    530 				if (pri > ppri) {   /* higher priority? */
    531 					ll = l;
    532 					ppri = pri;
    533 				}
    534 			}
    535 		}
    536 #ifdef DEBUG
    537 		if (swapdebug & SDB_FOLLOW)
    538 			printf("%s: running, procp %p pri %d\n", __func__, ll,
    539 			    ppri);
    540 #endif
    541 		/*
    542 		 * Nothing to do, back to sleep
    543 		 */
    544 		if ((l = ll) == NULL) {
    545 			mutex_exit(proc_lock);
    546 			mutex_enter(&uvm_scheduler_mutex);
    547 			if (uvm.scheduler_kicked == false)
    548 				cv_wait(&uvm.scheduler_cv,
    549 				    &uvm_scheduler_mutex);
    550 			uvm.scheduler_kicked = false;
    551 			mutex_exit(&uvm_scheduler_mutex);
    552 			continue;
    553 		}
    554 
    555 		/*
    556 		 * we have found swapped out process which we would like
    557 		 * to bring back in.
    558 		 *
    559 		 * XXX: this part is really bogus cuz we could deadlock
    560 		 * on memory despite our feeble check
    561 		 */
    562 		if (uvmexp.free > atop(USPACE)) {
    563 #ifdef DEBUG
    564 			if (swapdebug & SDB_SWAPIN)
    565 				printf("swapin: pid %d(%s)@%p, pri %d "
    566 				    "free %d\n", l->l_proc->p_pid,
    567 				    l->l_proc->p_comm, l->l_addr, ppri,
    568 				    uvmexp.free);
    569 #endif
    570 			mutex_enter(&l->l_swaplock);
    571 			mutex_exit(proc_lock);
    572 			uvm_swapin(l);
    573 			mutex_exit(&l->l_swaplock);
    574 			continue;
    575 		} else {
    576 			/*
    577 			 * not enough memory, jab the pageout daemon and
    578 			 * wait til the coast is clear
    579 			 */
    580 			mutex_exit(proc_lock);
    581 #ifdef DEBUG
    582 			if (swapdebug & SDB_FOLLOW)
    583 				printf("%s: no room for pid %d(%s),"
    584 				    " free %d\n", __func__, l->l_proc->p_pid,
    585 				    l->l_proc->p_comm, uvmexp.free);
    586 #endif
    587 			uvm_wait("schedpwait");
    588 #ifdef DEBUG
    589 			if (swapdebug & SDB_FOLLOW)
    590 				printf("%s: room again, free %d\n", __func__,
    591 				    uvmexp.free);
    592 #endif
    593 		}
    594 	}
    595 }
    596 
    597 /*
    598  * swappable: is LWP "l" swappable?
    599  */
    600 
    601 static bool
    602 swappable(struct lwp *l)
    603 {
    604 
    605 	if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
    606 		return false;
    607 	if ((l->l_pflag & LP_RUNNING) != 0)
    608 		return false;
    609 	if (l->l_holdcnt != 0)
    610 		return false;
    611 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
    612 		return false;
    613 	return true;
    614 }
    615 
    616 /*
    617  * swapout_threads: find threads that can be swapped and unwire their
    618  *	u-areas.
    619  *
    620  * - called by the pagedaemon
    621  * - try and swap at least one processs
    622  * - processes that are sleeping or stopped for maxslp or more seconds
    623  *   are swapped... otherwise the longest-sleeping or stopped process
    624  *   is swapped, otherwise the longest resident process...
    625  */
    626 
    627 void
    628 uvm_swapout_threads(void)
    629 {
    630 	struct lwp *l;
    631 	struct lwp *outl, *outl2;
    632 	int outpri, outpri2;
    633 	int didswap = 0;
    634 	extern int maxslp;
    635 	bool gotit;
    636 
    637 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    638 
    639 #ifdef DEBUG
    640 	if (!enableswap)
    641 		return;
    642 #endif
    643 
    644 	/*
    645 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    646 	 * outl2/outpri2: the longest resident thread (its swap time)
    647 	 */
    648 	outl = outl2 = NULL;
    649 	outpri = outpri2 = 0;
    650 
    651  restart:
    652 	mutex_enter(proc_lock);
    653 	LIST_FOREACH(l, &alllwp, l_list) {
    654 		KASSERT(l->l_proc != NULL);
    655 		if (!mutex_tryenter(&l->l_swaplock))
    656 			continue;
    657 		if (!swappable(l)) {
    658 			mutex_exit(&l->l_swaplock);
    659 			continue;
    660 		}
    661 		switch (l->l_stat) {
    662 		case LSONPROC:
    663 			break;
    664 
    665 		case LSRUN:
    666 			if (l->l_swtime > outpri2) {
    667 				outl2 = l;
    668 				outpri2 = l->l_swtime;
    669 			}
    670 			break;
    671 
    672 		case LSSLEEP:
    673 		case LSSTOP:
    674 			if (l->l_slptime >= maxslp) {
    675 				mutex_exit(proc_lock);
    676 				uvm_swapout(l);
    677 				/*
    678 				 * Locking in the wrong direction -
    679 				 * try to prevent the LWP from exiting.
    680 				 */
    681 				gotit = mutex_tryenter(proc_lock);
    682 				mutex_exit(&l->l_swaplock);
    683 				didswap++;
    684 				if (!gotit)
    685 					goto restart;
    686 				continue;
    687 			} else if (l->l_slptime > outpri) {
    688 				outl = l;
    689 				outpri = l->l_slptime;
    690 			}
    691 			break;
    692 		}
    693 		mutex_exit(&l->l_swaplock);
    694 	}
    695 
    696 	/*
    697 	 * If we didn't get rid of any real duds, toss out the next most
    698 	 * likely sleeping/stopped or running candidate.  We only do this
    699 	 * if we are real low on memory since we don't gain much by doing
    700 	 * it (USPACE bytes).
    701 	 */
    702 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    703 		if ((l = outl) == NULL)
    704 			l = outl2;
    705 #ifdef DEBUG
    706 		if (swapdebug & SDB_SWAPOUT)
    707 			printf("%s: no duds, try procp %p\n", __func__, l);
    708 #endif
    709 		if (l) {
    710 			mutex_enter(&l->l_swaplock);
    711 			mutex_exit(proc_lock);
    712 			if (swappable(l))
    713 				uvm_swapout(l);
    714 			mutex_exit(&l->l_swaplock);
    715 			return;
    716 		}
    717 	}
    718 
    719 	mutex_exit(proc_lock);
    720 }
    721 
    722 /*
    723  * uvm_swapout: swap out lwp "l"
    724  *
    725  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    726  *   the pmap.
    727  * - must be called with l->l_swaplock held.
    728  * - XXXCDC: should deactivate all process' private anonymous memory
    729  */
    730 
    731 static void
    732 uvm_swapout(struct lwp *l)
    733 {
    734 	KASSERT(mutex_owned(&l->l_swaplock));
    735 
    736 #ifdef DEBUG
    737 	if (swapdebug & SDB_SWAPOUT)
    738 		printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    739 		   __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    740 		   l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
    741 #endif
    742 
    743 	/*
    744 	 * Mark it as (potentially) swapped out.
    745 	 */
    746 	lwp_lock(l);
    747 	if (!swappable(l)) {
    748 		KDASSERT(l->l_cpu != curcpu());
    749 		lwp_unlock(l);
    750 		return;
    751 	}
    752 	l->l_flag &= ~LW_INMEM;
    753 	l->l_swtime = 0;
    754 	if (l->l_stat == LSRUN)
    755 		sched_dequeue(l);
    756 	lwp_unlock(l);
    757 	l->l_ru.ru_nswap++;
    758 	++uvmexp.swapouts;
    759 
    760 	/*
    761 	 * Do any machine-specific actions necessary before swapout.
    762 	 * This can include saving floating point state, etc.
    763 	 */
    764 	cpu_swapout(l);
    765 
    766 	/*
    767 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    768 	 */
    769 	uarea_swapout(USER_TO_UAREA(l->l_addr));
    770 	pmap_collect(vm_map_pmap(&l->l_proc->p_vmspace->vm_map));
    771 }
    772 
    773 /*
    774  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
    775  * back into memory if it is currently swapped.
    776  */
    777 
    778 void
    779 uvm_lwp_hold(struct lwp *l)
    780 {
    781 
    782 	if (l == curlwp) {
    783 		atomic_inc_uint(&l->l_holdcnt);
    784 	} else {
    785 		mutex_enter(&l->l_swaplock);
    786 		if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
    787 		    (l->l_flag & LW_INMEM) == 0)
    788 			uvm_swapin(l);
    789 		mutex_exit(&l->l_swaplock);
    790 	}
    791 }
    792 
    793 /*
    794  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
    795  * drops to zero, it's eligable to be swapped.
    796  */
    797 
    798 void
    799 uvm_lwp_rele(struct lwp *l)
    800 {
    801 
    802 	KASSERT(l->l_holdcnt != 0);
    803 
    804 	atomic_dec_uint(&l->l_holdcnt);
    805 }
    806 
    807 #ifdef COREDUMP
    808 /*
    809  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
    810  * a core file.
    811  */
    812 
    813 int
    814 uvm_coredump_walkmap(struct proc *p, void *iocookie,
    815     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
    816     void *cookie)
    817 {
    818 	struct uvm_coredump_state state;
    819 	struct vmspace *vm = p->p_vmspace;
    820 	struct vm_map *map = &vm->vm_map;
    821 	struct vm_map_entry *entry;
    822 	int error;
    823 
    824 	entry = NULL;
    825 	vm_map_lock_read(map);
    826 	state.end = 0;
    827 	for (;;) {
    828 		if (entry == NULL)
    829 			entry = map->header.next;
    830 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
    831 			entry = entry->next;
    832 		if (entry == &map->header)
    833 			break;
    834 
    835 		state.cookie = cookie;
    836 		if (state.end > entry->start) {
    837 			state.start = state.end;
    838 		} else {
    839 			state.start = entry->start;
    840 		}
    841 		state.realend = entry->end;
    842 		state.end = entry->end;
    843 		state.prot = entry->protection;
    844 		state.flags = 0;
    845 
    846 		/*
    847 		 * Dump the region unless one of the following is true:
    848 		 *
    849 		 * (1) the region has neither object nor amap behind it
    850 		 *     (ie. it has never been accessed).
    851 		 *
    852 		 * (2) the region has no amap and is read-only
    853 		 *     (eg. an executable text section).
    854 		 *
    855 		 * (3) the region's object is a device.
    856 		 *
    857 		 * (4) the region is unreadable by the process.
    858 		 */
    859 
    860 		KASSERT(!UVM_ET_ISSUBMAP(entry));
    861 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
    862 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
    863 		if (entry->object.uvm_obj == NULL &&
    864 		    entry->aref.ar_amap == NULL) {
    865 			state.realend = state.start;
    866 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
    867 		    entry->aref.ar_amap == NULL) {
    868 			state.realend = state.start;
    869 		} else if (entry->object.uvm_obj != NULL &&
    870 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
    871 			state.realend = state.start;
    872 		} else if ((entry->protection & VM_PROT_READ) == 0) {
    873 			state.realend = state.start;
    874 		} else {
    875 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
    876 				state.flags |= UVM_COREDUMP_STACK;
    877 
    878 			/*
    879 			 * If this an anonymous entry, only dump instantiated
    880 			 * pages.
    881 			 */
    882 			if (entry->object.uvm_obj == NULL) {
    883 				vaddr_t end;
    884 
    885 				amap_lock(entry->aref.ar_amap);
    886 				for (end = state.start;
    887 				     end < state.end; end += PAGE_SIZE) {
    888 					struct vm_anon *anon;
    889 					anon = amap_lookup(&entry->aref,
    890 					    end - entry->start);
    891 					/*
    892 					 * If we have already encountered an
    893 					 * uninstantiated page, stop at the
    894 					 * first instantied page.
    895 					 */
    896 					if (anon != NULL &&
    897 					    state.realend != state.end) {
    898 						state.end = end;
    899 						break;
    900 					}
    901 
    902 					/*
    903 					 * If this page is the first
    904 					 * uninstantiated page, mark this as
    905 					 * the real ending point.  Continue to
    906 					 * counting uninstantiated pages.
    907 					 */
    908 					if (anon == NULL &&
    909 					    state.realend == state.end) {
    910 						state.realend = end;
    911 					}
    912 				}
    913 				amap_unlock(entry->aref.ar_amap);
    914 			}
    915 		}
    916 
    917 
    918 		vm_map_unlock_read(map);
    919 		error = (*func)(p, iocookie, &state);
    920 		if (error)
    921 			return (error);
    922 		vm_map_lock_read(map);
    923 	}
    924 	vm_map_unlock_read(map);
    925 
    926 	return (0);
    927 }
    928 #endif /* COREDUMP */
    929