uvm_glue.c revision 1.129 1 /* $NetBSD: uvm_glue.c,v 1.129 2008/06/09 11:49:54 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.129 2008/06/09 11:49:54 ad Exp $");
71
72 #include "opt_coredump.h"
73 #include "opt_kgdb.h"
74 #include "opt_kstack.h"
75 #include "opt_uvmhist.h"
76
77 /*
78 * uvm_glue.c: glue functions
79 */
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/user.h>
87 #include <sys/syncobj.h>
88 #include <sys/cpu.h>
89 #include <sys/atomic.h>
90
91 #include <uvm/uvm.h>
92
93 /*
94 * local prototypes
95 */
96
97 static void uvm_swapout(struct lwp *);
98 static int uarea_swapin(vaddr_t);
99
100 /*
101 * XXXCDC: do these really belong here?
102 */
103
104 /*
105 * uvm_kernacc: can the kernel access a region of memory
106 *
107 * - used only by /dev/kmem driver (mem.c)
108 */
109
110 bool
111 uvm_kernacc(void *addr, size_t len, int rw)
112 {
113 bool rv;
114 vaddr_t saddr, eaddr;
115 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
116
117 saddr = trunc_page((vaddr_t)addr);
118 eaddr = round_page((vaddr_t)addr + len);
119 vm_map_lock_read(kernel_map);
120 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
121 vm_map_unlock_read(kernel_map);
122
123 return(rv);
124 }
125
126 #ifdef KGDB
127 /*
128 * Change protections on kernel pages from addr to addr+len
129 * (presumably so debugger can plant a breakpoint).
130 *
131 * We force the protection change at the pmap level. If we were
132 * to use vm_map_protect a change to allow writing would be lazily-
133 * applied meaning we would still take a protection fault, something
134 * we really don't want to do. It would also fragment the kernel
135 * map unnecessarily. We cannot use pmap_protect since it also won't
136 * enforce a write-enable request. Using pmap_enter is the only way
137 * we can ensure the change takes place properly.
138 */
139 void
140 uvm_chgkprot(void *addr, size_t len, int rw)
141 {
142 vm_prot_t prot;
143 paddr_t pa;
144 vaddr_t sva, eva;
145
146 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
147 eva = round_page((vaddr_t)addr + len);
148 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
149 /*
150 * Extract physical address for the page.
151 */
152 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
153 panic("%s: invalid page", __func__);
154 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
155 }
156 pmap_update(pmap_kernel());
157 }
158 #endif
159
160 /*
161 * uvm_vslock: wire user memory for I/O
162 *
163 * - called from physio and sys___sysctl
164 * - XXXCDC: consider nuking this (or making it a macro?)
165 */
166
167 int
168 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
169 {
170 struct vm_map *map;
171 vaddr_t start, end;
172 int error;
173
174 map = &vs->vm_map;
175 start = trunc_page((vaddr_t)addr);
176 end = round_page((vaddr_t)addr + len);
177 error = uvm_fault_wire(map, start, end, access_type, 0);
178 return error;
179 }
180
181 /*
182 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
183 *
184 * - called from physio and sys___sysctl
185 * - XXXCDC: consider nuking this (or making it a macro?)
186 */
187
188 void
189 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
190 {
191 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
192 round_page((vaddr_t)addr + len));
193 }
194
195 /*
196 * uvm_proc_fork: fork a virtual address space
197 *
198 * - the address space is copied as per parent map's inherit values
199 */
200 void
201 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
202 {
203
204 if (shared == true) {
205 p2->p_vmspace = NULL;
206 uvmspace_share(p1, p2);
207 } else {
208 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
209 }
210
211 cpu_proc_fork(p1, p2);
212 }
213
214
215 /*
216 * uvm_lwp_fork: fork a thread
217 *
218 * - a new "user" structure is allocated for the child process
219 * [filled in by MD layer...]
220 * - if specified, the child gets a new user stack described by
221 * stack and stacksize
222 * - NOTE: the kernel stack may be at a different location in the child
223 * process, and thus addresses of automatic variables may be invalid
224 * after cpu_lwp_fork returns in the child process. We do nothing here
225 * after cpu_lwp_fork returns.
226 * - XXXCDC: we need a way for this to return a failure value rather
227 * than just hang
228 */
229 void
230 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
231 void (*func)(void *), void *arg)
232 {
233 int error;
234
235 /*
236 * Wire down the U-area for the process, which contains the PCB
237 * and the kernel stack. Wired state is stored in l->l_flag's
238 * L_INMEM bit rather than in the vm_map_entry's wired count
239 * to prevent kernel_map fragmentation. If we reused a cached U-area,
240 * L_INMEM will already be set and we don't need to do anything.
241 *
242 * Note the kernel stack gets read/write accesses right off the bat.
243 */
244
245 if ((l2->l_flag & LW_INMEM) == 0) {
246 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
247
248 if ((error = uarea_swapin(uarea)) != 0)
249 panic("%s: uvm_fault_wire failed: %d", __func__, error);
250 #ifdef PMAP_UAREA
251 /* Tell the pmap this is a u-area mapping */
252 PMAP_UAREA(uarea);
253 #endif
254 l2->l_flag |= LW_INMEM;
255 }
256
257 #ifdef KSTACK_CHECK_MAGIC
258 /*
259 * fill stack with magic number
260 */
261 kstack_setup_magic(l2);
262 #endif
263
264 /*
265 * cpu_lwp_fork() copy and update the pcb, and make the child ready
266 * to run. If this is a normal user fork, the child will exit
267 * directly to user mode via child_return() on its first time
268 * slice and will not return here. If this is a kernel thread,
269 * the specified entry point will be executed.
270 */
271 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
272 }
273
274 static int
275 uarea_swapin(vaddr_t addr)
276 {
277
278 return uvm_fault_wire(kernel_map, addr, addr + USPACE,
279 VM_PROT_READ | VM_PROT_WRITE, 0);
280 }
281
282 static void
283 uarea_swapout(vaddr_t addr)
284 {
285
286 uvm_fault_unwire(kernel_map, addr, addr + USPACE);
287 }
288
289 #ifndef USPACE_ALIGN
290 #define USPACE_ALIGN 0
291 #endif
292
293 static pool_cache_t uvm_uarea_cache;
294
295 static int
296 uarea_ctor(void *arg, void *obj, int flags)
297 {
298
299 KASSERT((flags & PR_WAITOK) != 0);
300 return uarea_swapin((vaddr_t)obj);
301 }
302
303 static void *
304 uarea_poolpage_alloc(struct pool *pp, int flags)
305 {
306
307 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
308 USPACE_ALIGN, UVM_KMF_PAGEABLE |
309 ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
310 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
311 }
312
313 static void
314 uarea_poolpage_free(struct pool *pp, void *addr)
315 {
316
317 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
318 UVM_KMF_PAGEABLE);
319 }
320
321 static struct pool_allocator uvm_uarea_allocator = {
322 .pa_alloc = uarea_poolpage_alloc,
323 .pa_free = uarea_poolpage_free,
324 .pa_pagesz = USPACE,
325 };
326
327 void
328 uvm_uarea_init(void)
329 {
330 int flags = PR_NOTOUCH;
331
332 /*
333 * specify PR_NOALIGN unless the alignment provided by
334 * the backend (USPACE_ALIGN) is sufficient to provide
335 * pool page size (UPSACE) alignment.
336 */
337
338 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
339 (USPACE_ALIGN % USPACE) != 0) {
340 flags |= PR_NOALIGN;
341 }
342
343 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
344 "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
345 }
346
347 /*
348 * uvm_uarea_alloc: allocate a u-area
349 */
350
351 bool
352 uvm_uarea_alloc(vaddr_t *uaddrp)
353 {
354
355 *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
356 return true;
357 }
358
359 /*
360 * uvm_uarea_free: free a u-area
361 */
362
363 void
364 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
365 {
366
367 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
368 }
369
370 /*
371 * uvm_proc_exit: exit a virtual address space
372 *
373 * - borrow proc0's address space because freeing the vmspace
374 * of the dead process may block.
375 */
376
377 void
378 uvm_proc_exit(struct proc *p)
379 {
380 struct lwp *l = curlwp; /* XXX */
381 struct vmspace *ovm;
382
383 KASSERT(p == l->l_proc);
384 ovm = p->p_vmspace;
385
386 /*
387 * borrow proc0's address space.
388 */
389 KPREEMPT_DISABLE(l);
390 pmap_deactivate(l);
391 p->p_vmspace = proc0.p_vmspace;
392 pmap_activate(l);
393 KPREEMPT_ENABLE(l);
394
395 uvmspace_free(ovm);
396 }
397
398 void
399 uvm_lwp_exit(struct lwp *l)
400 {
401 vaddr_t va = USER_TO_UAREA(l->l_addr);
402
403 l->l_flag &= ~LW_INMEM;
404 uvm_uarea_free(va, l->l_cpu);
405 l->l_addr = NULL;
406 }
407
408 /*
409 * uvm_init_limit: init per-process VM limits
410 *
411 * - called for process 0 and then inherited by all others.
412 */
413
414 void
415 uvm_init_limits(struct proc *p)
416 {
417
418 /*
419 * Set up the initial limits on process VM. Set the maximum
420 * resident set size to be all of (reasonably) available memory.
421 * This causes any single, large process to start random page
422 * replacement once it fills memory.
423 */
424
425 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
426 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
427 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
428 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
429 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
430 }
431
432 #ifdef DEBUG
433 int enableswap = 1;
434 int swapdebug = 0;
435 #define SDB_FOLLOW 1
436 #define SDB_SWAPIN 2
437 #define SDB_SWAPOUT 4
438 #endif
439
440 /*
441 * uvm_swapin: swap in an lwp's u-area.
442 *
443 * - must be called with the LWP's swap lock held.
444 * - naturally, must not be called with l == curlwp
445 */
446
447 void
448 uvm_swapin(struct lwp *l)
449 {
450 int error;
451
452 /* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
453 KASSERT(l != curlwp);
454
455 error = uarea_swapin(USER_TO_UAREA(l->l_addr));
456 if (error) {
457 panic("%s: rewiring stack failed: %d", __func__, error);
458 }
459
460 /*
461 * Some architectures need to be notified when the user area has
462 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
463 */
464 cpu_swapin(l);
465 lwp_lock(l);
466 if (l->l_stat == LSRUN)
467 sched_enqueue(l, false);
468 l->l_flag |= LW_INMEM;
469 l->l_swtime = 0;
470 lwp_unlock(l);
471 ++uvmexp.swapins;
472 }
473
474 /*
475 * uvm_kick_scheduler: kick the scheduler into action if not running.
476 *
477 * - called when swapped out processes have been awoken.
478 */
479
480 void
481 uvm_kick_scheduler(void)
482 {
483
484 if (uvm.swap_running == false)
485 return;
486
487 mutex_enter(&uvm_scheduler_mutex);
488 uvm.scheduler_kicked = true;
489 cv_signal(&uvm.scheduler_cv);
490 mutex_exit(&uvm_scheduler_mutex);
491 }
492
493 /*
494 * uvm_scheduler: process zero main loop
495 *
496 * - attempt to swapin every swaped-out, runnable process in order of
497 * priority.
498 * - if not enough memory, wake the pagedaemon and let it clear space.
499 */
500
501 void
502 uvm_scheduler(void)
503 {
504 struct lwp *l, *ll;
505 int pri;
506 int ppri;
507
508 l = curlwp;
509 lwp_lock(l);
510 l->l_priority = PRI_VM;
511 l->l_class = SCHED_FIFO;
512 lwp_unlock(l);
513
514 for (;;) {
515 #ifdef DEBUG
516 mutex_enter(&uvm_scheduler_mutex);
517 while (!enableswap)
518 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
519 mutex_exit(&uvm_scheduler_mutex);
520 #endif
521 ll = NULL; /* process to choose */
522 ppri = INT_MIN; /* its priority */
523
524 mutex_enter(proc_lock);
525 LIST_FOREACH(l, &alllwp, l_list) {
526 /* is it a runnable swapped out process? */
527 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
528 pri = l->l_swtime + l->l_slptime -
529 (l->l_proc->p_nice - NZERO) * 8;
530 if (pri > ppri) { /* higher priority? */
531 ll = l;
532 ppri = pri;
533 }
534 }
535 }
536 #ifdef DEBUG
537 if (swapdebug & SDB_FOLLOW)
538 printf("%s: running, procp %p pri %d\n", __func__, ll,
539 ppri);
540 #endif
541 /*
542 * Nothing to do, back to sleep
543 */
544 if ((l = ll) == NULL) {
545 mutex_exit(proc_lock);
546 mutex_enter(&uvm_scheduler_mutex);
547 if (uvm.scheduler_kicked == false)
548 cv_wait(&uvm.scheduler_cv,
549 &uvm_scheduler_mutex);
550 uvm.scheduler_kicked = false;
551 mutex_exit(&uvm_scheduler_mutex);
552 continue;
553 }
554
555 /*
556 * we have found swapped out process which we would like
557 * to bring back in.
558 *
559 * XXX: this part is really bogus cuz we could deadlock
560 * on memory despite our feeble check
561 */
562 if (uvmexp.free > atop(USPACE)) {
563 #ifdef DEBUG
564 if (swapdebug & SDB_SWAPIN)
565 printf("swapin: pid %d(%s)@%p, pri %d "
566 "free %d\n", l->l_proc->p_pid,
567 l->l_proc->p_comm, l->l_addr, ppri,
568 uvmexp.free);
569 #endif
570 mutex_enter(&l->l_swaplock);
571 mutex_exit(proc_lock);
572 uvm_swapin(l);
573 mutex_exit(&l->l_swaplock);
574 continue;
575 } else {
576 /*
577 * not enough memory, jab the pageout daemon and
578 * wait til the coast is clear
579 */
580 mutex_exit(proc_lock);
581 #ifdef DEBUG
582 if (swapdebug & SDB_FOLLOW)
583 printf("%s: no room for pid %d(%s),"
584 " free %d\n", __func__, l->l_proc->p_pid,
585 l->l_proc->p_comm, uvmexp.free);
586 #endif
587 uvm_wait("schedpwait");
588 #ifdef DEBUG
589 if (swapdebug & SDB_FOLLOW)
590 printf("%s: room again, free %d\n", __func__,
591 uvmexp.free);
592 #endif
593 }
594 }
595 }
596
597 /*
598 * swappable: is LWP "l" swappable?
599 */
600
601 static bool
602 swappable(struct lwp *l)
603 {
604
605 if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
606 return false;
607 if ((l->l_pflag & LP_RUNNING) != 0)
608 return false;
609 if (l->l_holdcnt != 0)
610 return false;
611 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
612 return false;
613 return true;
614 }
615
616 /*
617 * swapout_threads: find threads that can be swapped and unwire their
618 * u-areas.
619 *
620 * - called by the pagedaemon
621 * - try and swap at least one processs
622 * - processes that are sleeping or stopped for maxslp or more seconds
623 * are swapped... otherwise the longest-sleeping or stopped process
624 * is swapped, otherwise the longest resident process...
625 */
626
627 void
628 uvm_swapout_threads(void)
629 {
630 struct lwp *l;
631 struct lwp *outl, *outl2;
632 int outpri, outpri2;
633 int didswap = 0;
634 extern int maxslp;
635 bool gotit;
636
637 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
638
639 #ifdef DEBUG
640 if (!enableswap)
641 return;
642 #endif
643
644 /*
645 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
646 * outl2/outpri2: the longest resident thread (its swap time)
647 */
648 outl = outl2 = NULL;
649 outpri = outpri2 = 0;
650
651 restart:
652 mutex_enter(proc_lock);
653 LIST_FOREACH(l, &alllwp, l_list) {
654 KASSERT(l->l_proc != NULL);
655 if (!mutex_tryenter(&l->l_swaplock))
656 continue;
657 if (!swappable(l)) {
658 mutex_exit(&l->l_swaplock);
659 continue;
660 }
661 switch (l->l_stat) {
662 case LSONPROC:
663 break;
664
665 case LSRUN:
666 if (l->l_swtime > outpri2) {
667 outl2 = l;
668 outpri2 = l->l_swtime;
669 }
670 break;
671
672 case LSSLEEP:
673 case LSSTOP:
674 if (l->l_slptime >= maxslp) {
675 mutex_exit(proc_lock);
676 uvm_swapout(l);
677 /*
678 * Locking in the wrong direction -
679 * try to prevent the LWP from exiting.
680 */
681 gotit = mutex_tryenter(proc_lock);
682 mutex_exit(&l->l_swaplock);
683 didswap++;
684 if (!gotit)
685 goto restart;
686 continue;
687 } else if (l->l_slptime > outpri) {
688 outl = l;
689 outpri = l->l_slptime;
690 }
691 break;
692 }
693 mutex_exit(&l->l_swaplock);
694 }
695
696 /*
697 * If we didn't get rid of any real duds, toss out the next most
698 * likely sleeping/stopped or running candidate. We only do this
699 * if we are real low on memory since we don't gain much by doing
700 * it (USPACE bytes).
701 */
702 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
703 if ((l = outl) == NULL)
704 l = outl2;
705 #ifdef DEBUG
706 if (swapdebug & SDB_SWAPOUT)
707 printf("%s: no duds, try procp %p\n", __func__, l);
708 #endif
709 if (l) {
710 mutex_enter(&l->l_swaplock);
711 mutex_exit(proc_lock);
712 if (swappable(l))
713 uvm_swapout(l);
714 mutex_exit(&l->l_swaplock);
715 return;
716 }
717 }
718
719 mutex_exit(proc_lock);
720 }
721
722 /*
723 * uvm_swapout: swap out lwp "l"
724 *
725 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
726 * the pmap.
727 * - must be called with l->l_swaplock held.
728 * - XXXCDC: should deactivate all process' private anonymous memory
729 */
730
731 static void
732 uvm_swapout(struct lwp *l)
733 {
734 KASSERT(mutex_owned(&l->l_swaplock));
735
736 #ifdef DEBUG
737 if (swapdebug & SDB_SWAPOUT)
738 printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
739 __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
740 l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
741 #endif
742
743 /*
744 * Mark it as (potentially) swapped out.
745 */
746 lwp_lock(l);
747 if (!swappable(l)) {
748 KDASSERT(l->l_cpu != curcpu());
749 lwp_unlock(l);
750 return;
751 }
752 l->l_flag &= ~LW_INMEM;
753 l->l_swtime = 0;
754 if (l->l_stat == LSRUN)
755 sched_dequeue(l);
756 lwp_unlock(l);
757 l->l_ru.ru_nswap++;
758 ++uvmexp.swapouts;
759
760 /*
761 * Do any machine-specific actions necessary before swapout.
762 * This can include saving floating point state, etc.
763 */
764 cpu_swapout(l);
765
766 /*
767 * Unwire the to-be-swapped process's user struct and kernel stack.
768 */
769 uarea_swapout(USER_TO_UAREA(l->l_addr));
770 pmap_collect(vm_map_pmap(&l->l_proc->p_vmspace->vm_map));
771 }
772
773 /*
774 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
775 * back into memory if it is currently swapped.
776 */
777
778 void
779 uvm_lwp_hold(struct lwp *l)
780 {
781
782 if (l == curlwp) {
783 atomic_inc_uint(&l->l_holdcnt);
784 } else {
785 mutex_enter(&l->l_swaplock);
786 if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
787 (l->l_flag & LW_INMEM) == 0)
788 uvm_swapin(l);
789 mutex_exit(&l->l_swaplock);
790 }
791 }
792
793 /*
794 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
795 * drops to zero, it's eligable to be swapped.
796 */
797
798 void
799 uvm_lwp_rele(struct lwp *l)
800 {
801
802 KASSERT(l->l_holdcnt != 0);
803
804 atomic_dec_uint(&l->l_holdcnt);
805 }
806
807 #ifdef COREDUMP
808 /*
809 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
810 * a core file.
811 */
812
813 int
814 uvm_coredump_walkmap(struct proc *p, void *iocookie,
815 int (*func)(struct proc *, void *, struct uvm_coredump_state *),
816 void *cookie)
817 {
818 struct uvm_coredump_state state;
819 struct vmspace *vm = p->p_vmspace;
820 struct vm_map *map = &vm->vm_map;
821 struct vm_map_entry *entry;
822 int error;
823
824 entry = NULL;
825 vm_map_lock_read(map);
826 state.end = 0;
827 for (;;) {
828 if (entry == NULL)
829 entry = map->header.next;
830 else if (!uvm_map_lookup_entry(map, state.end, &entry))
831 entry = entry->next;
832 if (entry == &map->header)
833 break;
834
835 state.cookie = cookie;
836 if (state.end > entry->start) {
837 state.start = state.end;
838 } else {
839 state.start = entry->start;
840 }
841 state.realend = entry->end;
842 state.end = entry->end;
843 state.prot = entry->protection;
844 state.flags = 0;
845
846 /*
847 * Dump the region unless one of the following is true:
848 *
849 * (1) the region has neither object nor amap behind it
850 * (ie. it has never been accessed).
851 *
852 * (2) the region has no amap and is read-only
853 * (eg. an executable text section).
854 *
855 * (3) the region's object is a device.
856 *
857 * (4) the region is unreadable by the process.
858 */
859
860 KASSERT(!UVM_ET_ISSUBMAP(entry));
861 KASSERT(state.start < VM_MAXUSER_ADDRESS);
862 KASSERT(state.end <= VM_MAXUSER_ADDRESS);
863 if (entry->object.uvm_obj == NULL &&
864 entry->aref.ar_amap == NULL) {
865 state.realend = state.start;
866 } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
867 entry->aref.ar_amap == NULL) {
868 state.realend = state.start;
869 } else if (entry->object.uvm_obj != NULL &&
870 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
871 state.realend = state.start;
872 } else if ((entry->protection & VM_PROT_READ) == 0) {
873 state.realend = state.start;
874 } else {
875 if (state.start >= (vaddr_t)vm->vm_maxsaddr)
876 state.flags |= UVM_COREDUMP_STACK;
877
878 /*
879 * If this an anonymous entry, only dump instantiated
880 * pages.
881 */
882 if (entry->object.uvm_obj == NULL) {
883 vaddr_t end;
884
885 amap_lock(entry->aref.ar_amap);
886 for (end = state.start;
887 end < state.end; end += PAGE_SIZE) {
888 struct vm_anon *anon;
889 anon = amap_lookup(&entry->aref,
890 end - entry->start);
891 /*
892 * If we have already encountered an
893 * uninstantiated page, stop at the
894 * first instantied page.
895 */
896 if (anon != NULL &&
897 state.realend != state.end) {
898 state.end = end;
899 break;
900 }
901
902 /*
903 * If this page is the first
904 * uninstantiated page, mark this as
905 * the real ending point. Continue to
906 * counting uninstantiated pages.
907 */
908 if (anon == NULL &&
909 state.realend == state.end) {
910 state.realend = end;
911 }
912 }
913 amap_unlock(entry->aref.ar_amap);
914 }
915 }
916
917
918 vm_map_unlock_read(map);
919 error = (*func)(p, iocookie, &state);
920 if (error)
921 return (error);
922 vm_map_lock_read(map);
923 }
924 vm_map_unlock_read(map);
925
926 return (0);
927 }
928 #endif /* COREDUMP */
929