uvm_glue.c revision 1.133.4.2 1 /* $NetBSD: uvm_glue.c,v 1.133.4.2 2009/03/03 18:34:40 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.133.4.2 2009/03/03 18:34:40 skrll Exp $");
71
72 #include "opt_kgdb.h"
73 #include "opt_kstack.h"
74 #include "opt_uvmhist.h"
75
76 /*
77 * uvm_glue.c: glue functions
78 */
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/user.h>
86 #include <sys/syncobj.h>
87 #include <sys/cpu.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout(struct lwp *);
97 static int uarea_swapin(vaddr_t);
98
99 /*
100 * XXXCDC: do these really belong here?
101 */
102
103 /*
104 * uvm_kernacc: can the kernel access a region of memory
105 *
106 * - used only by /dev/kmem driver (mem.c)
107 */
108
109 bool
110 uvm_kernacc(void *addr, size_t len, int rw)
111 {
112 bool rv;
113 vaddr_t saddr, eaddr;
114 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115
116 saddr = trunc_page((vaddr_t)addr);
117 eaddr = round_page((vaddr_t)addr + len);
118 vm_map_lock_read(kernel_map);
119 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 vm_map_unlock_read(kernel_map);
121
122 return(rv);
123 }
124
125 #ifdef KGDB
126 /*
127 * Change protections on kernel pages from addr to addr+len
128 * (presumably so debugger can plant a breakpoint).
129 *
130 * We force the protection change at the pmap level. If we were
131 * to use vm_map_protect a change to allow writing would be lazily-
132 * applied meaning we would still take a protection fault, something
133 * we really don't want to do. It would also fragment the kernel
134 * map unnecessarily. We cannot use pmap_protect since it also won't
135 * enforce a write-enable request. Using pmap_enter is the only way
136 * we can ensure the change takes place properly.
137 */
138 void
139 uvm_chgkprot(void *addr, size_t len, int rw)
140 {
141 vm_prot_t prot;
142 paddr_t pa;
143 vaddr_t sva, eva;
144
145 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 eva = round_page((vaddr_t)addr + len);
147 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 /*
149 * Extract physical address for the page.
150 */
151 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 panic("%s: invalid page", __func__);
153 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 }
155 pmap_update(pmap_kernel());
156 }
157 #endif
158
159 /*
160 * uvm_vslock: wire user memory for I/O
161 *
162 * - called from physio and sys___sysctl
163 * - XXXCDC: consider nuking this (or making it a macro?)
164 */
165
166 int
167 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 {
169 struct vm_map *map;
170 vaddr_t start, end;
171 int error;
172
173 map = &vs->vm_map;
174 start = trunc_page((vaddr_t)addr);
175 end = round_page((vaddr_t)addr + len);
176 error = uvm_fault_wire(map, start, end, access_type, 0);
177 return error;
178 }
179
180 /*
181 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 *
183 * - called from physio and sys___sysctl
184 * - XXXCDC: consider nuking this (or making it a macro?)
185 */
186
187 void
188 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 {
190 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 round_page((vaddr_t)addr + len));
192 }
193
194 /*
195 * uvm_proc_fork: fork a virtual address space
196 *
197 * - the address space is copied as per parent map's inherit values
198 */
199 void
200 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 {
202
203 if (shared == true) {
204 p2->p_vmspace = NULL;
205 uvmspace_share(p1, p2);
206 } else {
207 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 }
209
210 cpu_proc_fork(p1, p2);
211 }
212
213
214 /*
215 * uvm_lwp_fork: fork a thread
216 *
217 * - a new "user" structure is allocated for the child process
218 * [filled in by MD layer...]
219 * - if specified, the child gets a new user stack described by
220 * stack and stacksize
221 * - NOTE: the kernel stack may be at a different location in the child
222 * process, and thus addresses of automatic variables may be invalid
223 * after cpu_lwp_fork returns in the child process. We do nothing here
224 * after cpu_lwp_fork returns.
225 * - XXXCDC: we need a way for this to return a failure value rather
226 * than just hang
227 */
228 void
229 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 void (*func)(void *), void *arg)
231 {
232 int error;
233
234 /*
235 * Wire down the U-area for the process, which contains the PCB
236 * and the kernel stack. Wired state is stored in l->l_flag's
237 * L_INMEM bit rather than in the vm_map_entry's wired count
238 * to prevent kernel_map fragmentation. If we reused a cached U-area,
239 * L_INMEM will already be set and we don't need to do anything.
240 *
241 * Note the kernel stack gets read/write accesses right off the bat.
242 */
243
244 if ((l2->l_flag & LW_INMEM) == 0) {
245 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246
247 if ((error = uarea_swapin(uarea)) != 0)
248 panic("%s: uvm_fault_wire failed: %d", __func__, error);
249 #ifdef PMAP_UAREA
250 /* Tell the pmap this is a u-area mapping */
251 PMAP_UAREA(uarea);
252 #endif
253 l2->l_flag |= LW_INMEM;
254 }
255
256 #ifdef KSTACK_CHECK_MAGIC
257 /*
258 * fill stack with magic number
259 */
260 kstack_setup_magic(l2);
261 #endif
262
263 /*
264 * cpu_lwp_fork() copy and update the pcb, and make the child ready
265 * to run. If this is a normal user fork, the child will exit
266 * directly to user mode via child_return() on its first time
267 * slice and will not return here. If this is a kernel thread,
268 * the specified entry point will be executed.
269 */
270 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
271 }
272
273 static int
274 uarea_swapin(vaddr_t addr)
275 {
276
277 return uvm_fault_wire(kernel_map, addr, addr + USPACE,
278 VM_PROT_READ | VM_PROT_WRITE, 0);
279 }
280
281 static void
282 uarea_swapout(vaddr_t addr)
283 {
284
285 uvm_fault_unwire(kernel_map, addr, addr + USPACE);
286 }
287
288 #ifndef USPACE_ALIGN
289 #define USPACE_ALIGN 0
290 #endif
291
292 static pool_cache_t uvm_uarea_cache;
293
294 static int
295 uarea_ctor(void *arg, void *obj, int flags)
296 {
297
298 KASSERT((flags & PR_WAITOK) != 0);
299 return uarea_swapin((vaddr_t)obj);
300 }
301
302 static void *
303 uarea_poolpage_alloc(struct pool *pp, int flags)
304 {
305
306 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
307 USPACE_ALIGN, UVM_KMF_PAGEABLE |
308 ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
309 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
310 }
311
312 static void
313 uarea_poolpage_free(struct pool *pp, void *addr)
314 {
315
316 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
317 UVM_KMF_PAGEABLE);
318 }
319
320 static struct pool_allocator uvm_uarea_allocator = {
321 .pa_alloc = uarea_poolpage_alloc,
322 .pa_free = uarea_poolpage_free,
323 .pa_pagesz = USPACE,
324 };
325
326 void
327 uvm_uarea_init(void)
328 {
329 int flags = PR_NOTOUCH;
330
331 /*
332 * specify PR_NOALIGN unless the alignment provided by
333 * the backend (USPACE_ALIGN) is sufficient to provide
334 * pool page size (UPSACE) alignment.
335 */
336
337 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
338 (USPACE_ALIGN % USPACE) != 0) {
339 flags |= PR_NOALIGN;
340 }
341
342 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
343 "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
344 }
345
346 /*
347 * uvm_uarea_alloc: allocate a u-area
348 */
349
350 bool
351 uvm_uarea_alloc(vaddr_t *uaddrp)
352 {
353
354 *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
355 return true;
356 }
357
358 /*
359 * uvm_uarea_free: free a u-area
360 */
361
362 void
363 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
364 {
365
366 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
367 }
368
369 /*
370 * uvm_proc_exit: exit a virtual address space
371 *
372 * - borrow proc0's address space because freeing the vmspace
373 * of the dead process may block.
374 */
375
376 void
377 uvm_proc_exit(struct proc *p)
378 {
379 struct lwp *l = curlwp; /* XXX */
380 struct vmspace *ovm;
381
382 KASSERT(p == l->l_proc);
383 ovm = p->p_vmspace;
384
385 /*
386 * borrow proc0's address space.
387 */
388 KPREEMPT_DISABLE(l);
389 pmap_deactivate(l);
390 p->p_vmspace = proc0.p_vmspace;
391 pmap_activate(l);
392 KPREEMPT_ENABLE(l);
393
394 uvmspace_free(ovm);
395 }
396
397 void
398 uvm_lwp_exit(struct lwp *l)
399 {
400 vaddr_t va = USER_TO_UAREA(l->l_addr);
401
402 l->l_flag &= ~LW_INMEM;
403 uvm_uarea_free(va, l->l_cpu);
404 l->l_addr = NULL;
405 }
406
407 /*
408 * uvm_init_limit: init per-process VM limits
409 *
410 * - called for process 0 and then inherited by all others.
411 */
412
413 void
414 uvm_init_limits(struct proc *p)
415 {
416
417 /*
418 * Set up the initial limits on process VM. Set the maximum
419 * resident set size to be all of (reasonably) available memory.
420 * This causes any single, large process to start random page
421 * replacement once it fills memory.
422 */
423
424 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
425 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
426 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
427 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
428 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
429 }
430
431 #ifdef DEBUG
432 int enableswap = 1;
433 int swapdebug = 0;
434 #define SDB_FOLLOW 1
435 #define SDB_SWAPIN 2
436 #define SDB_SWAPOUT 4
437 #endif
438
439 /*
440 * uvm_swapin: swap in an lwp's u-area.
441 *
442 * - must be called with the LWP's swap lock held.
443 * - naturally, must not be called with l == curlwp
444 */
445
446 void
447 uvm_swapin(struct lwp *l)
448 {
449 int error;
450
451 KASSERT(mutex_owned(&l->l_swaplock));
452 KASSERT(l != curlwp);
453
454 error = uarea_swapin(USER_TO_UAREA(l->l_addr));
455 if (error) {
456 panic("%s: rewiring stack failed: %d", __func__, error);
457 }
458
459 /*
460 * Some architectures need to be notified when the user area has
461 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
462 */
463 cpu_swapin(l);
464 lwp_lock(l);
465 if (l->l_stat == LSRUN)
466 sched_enqueue(l, false);
467 l->l_flag |= LW_INMEM;
468 l->l_swtime = 0;
469 lwp_unlock(l);
470 ++uvmexp.swapins;
471 }
472
473 /*
474 * uvm_kick_scheduler: kick the scheduler into action if not running.
475 *
476 * - called when swapped out processes have been awoken.
477 */
478
479 void
480 uvm_kick_scheduler(void)
481 {
482
483 if (uvm.swap_running == false)
484 return;
485
486 mutex_enter(&uvm_scheduler_mutex);
487 uvm.scheduler_kicked = true;
488 cv_signal(&uvm.scheduler_cv);
489 mutex_exit(&uvm_scheduler_mutex);
490 }
491
492 /*
493 * uvm_scheduler: process zero main loop
494 *
495 * - attempt to swapin every swaped-out, runnable process in order of
496 * priority.
497 * - if not enough memory, wake the pagedaemon and let it clear space.
498 */
499
500 void
501 uvm_scheduler(void)
502 {
503 struct lwp *l, *ll;
504 int pri;
505 int ppri;
506
507 l = curlwp;
508 lwp_lock(l);
509 l->l_priority = PRI_VM;
510 l->l_class = SCHED_FIFO;
511 lwp_unlock(l);
512
513 for (;;) {
514 #ifdef DEBUG
515 mutex_enter(&uvm_scheduler_mutex);
516 while (!enableswap)
517 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
518 mutex_exit(&uvm_scheduler_mutex);
519 #endif
520 ll = NULL; /* process to choose */
521 ppri = INT_MIN; /* its priority */
522
523 mutex_enter(proc_lock);
524 LIST_FOREACH(l, &alllwp, l_list) {
525 /* is it a runnable swapped out process? */
526 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
527 pri = l->l_swtime + l->l_slptime -
528 (l->l_proc->p_nice - NZERO) * 8;
529 if (pri > ppri) { /* higher priority? */
530 ll = l;
531 ppri = pri;
532 }
533 }
534 }
535 #ifdef DEBUG
536 if (swapdebug & SDB_FOLLOW)
537 printf("%s: running, procp %p pri %d\n", __func__, ll,
538 ppri);
539 #endif
540 /*
541 * Nothing to do, back to sleep
542 */
543 if ((l = ll) == NULL) {
544 mutex_exit(proc_lock);
545 mutex_enter(&uvm_scheduler_mutex);
546 if (uvm.scheduler_kicked == false)
547 cv_wait(&uvm.scheduler_cv,
548 &uvm_scheduler_mutex);
549 uvm.scheduler_kicked = false;
550 mutex_exit(&uvm_scheduler_mutex);
551 continue;
552 }
553
554 /*
555 * we have found swapped out process which we would like
556 * to bring back in.
557 *
558 * XXX: this part is really bogus cuz we could deadlock
559 * on memory despite our feeble check
560 */
561 if (uvmexp.free > atop(USPACE)) {
562 #ifdef DEBUG
563 if (swapdebug & SDB_SWAPIN)
564 printf("swapin: pid %d(%s)@%p, pri %d "
565 "free %d\n", l->l_proc->p_pid,
566 l->l_proc->p_comm, l->l_addr, ppri,
567 uvmexp.free);
568 #endif
569 mutex_enter(&l->l_swaplock);
570 mutex_exit(proc_lock);
571 uvm_swapin(l);
572 mutex_exit(&l->l_swaplock);
573 continue;
574 } else {
575 /*
576 * not enough memory, jab the pageout daemon and
577 * wait til the coast is clear
578 */
579 mutex_exit(proc_lock);
580 #ifdef DEBUG
581 if (swapdebug & SDB_FOLLOW)
582 printf("%s: no room for pid %d(%s),"
583 " free %d\n", __func__, l->l_proc->p_pid,
584 l->l_proc->p_comm, uvmexp.free);
585 #endif
586 uvm_wait("schedpwait");
587 #ifdef DEBUG
588 if (swapdebug & SDB_FOLLOW)
589 printf("%s: room again, free %d\n", __func__,
590 uvmexp.free);
591 #endif
592 }
593 }
594 }
595
596 /*
597 * swappable: is LWP "l" swappable?
598 */
599
600 static bool
601 swappable(struct lwp *l)
602 {
603
604 if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
605 return false;
606 if ((l->l_pflag & LP_RUNNING) != 0)
607 return false;
608 if (l->l_holdcnt != 0)
609 return false;
610 if (l->l_class != SCHED_OTHER)
611 return false;
612 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
613 return false;
614 if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
615 return false;
616 return true;
617 }
618
619 /*
620 * swapout_threads: find threads that can be swapped and unwire their
621 * u-areas.
622 *
623 * - called by the pagedaemon
624 * - try and swap at least one processs
625 * - processes that are sleeping or stopped for maxslp or more seconds
626 * are swapped... otherwise the longest-sleeping or stopped process
627 * is swapped, otherwise the longest resident process...
628 */
629
630 void
631 uvm_swapout_threads(void)
632 {
633 struct lwp *l;
634 struct lwp *outl, *outl2;
635 int outpri, outpri2;
636 int didswap = 0;
637 extern int maxslp;
638 bool gotit;
639
640 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
641
642 #ifdef DEBUG
643 if (!enableswap)
644 return;
645 #endif
646
647 /*
648 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
649 * outl2/outpri2: the longest resident thread (its swap time)
650 */
651 outl = outl2 = NULL;
652 outpri = outpri2 = 0;
653
654 restart:
655 mutex_enter(proc_lock);
656 LIST_FOREACH(l, &alllwp, l_list) {
657 KASSERT(l->l_proc != NULL);
658 if (!mutex_tryenter(&l->l_swaplock))
659 continue;
660 if (!swappable(l)) {
661 mutex_exit(&l->l_swaplock);
662 continue;
663 }
664 switch (l->l_stat) {
665 case LSONPROC:
666 break;
667
668 case LSRUN:
669 if (l->l_swtime > outpri2) {
670 outl2 = l;
671 outpri2 = l->l_swtime;
672 }
673 break;
674
675 case LSSLEEP:
676 case LSSTOP:
677 if (l->l_slptime >= maxslp) {
678 mutex_exit(proc_lock);
679 uvm_swapout(l);
680 /*
681 * Locking in the wrong direction -
682 * try to prevent the LWP from exiting.
683 */
684 gotit = mutex_tryenter(proc_lock);
685 mutex_exit(&l->l_swaplock);
686 didswap++;
687 if (!gotit)
688 goto restart;
689 continue;
690 } else if (l->l_slptime > outpri) {
691 outl = l;
692 outpri = l->l_slptime;
693 }
694 break;
695 }
696 mutex_exit(&l->l_swaplock);
697 }
698
699 /*
700 * If we didn't get rid of any real duds, toss out the next most
701 * likely sleeping/stopped or running candidate. We only do this
702 * if we are real low on memory since we don't gain much by doing
703 * it (USPACE bytes).
704 */
705 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
706 if ((l = outl) == NULL)
707 l = outl2;
708 #ifdef DEBUG
709 if (swapdebug & SDB_SWAPOUT)
710 printf("%s: no duds, try procp %p\n", __func__, l);
711 #endif
712 if (l) {
713 mutex_enter(&l->l_swaplock);
714 mutex_exit(proc_lock);
715 if (swappable(l))
716 uvm_swapout(l);
717 mutex_exit(&l->l_swaplock);
718 return;
719 }
720 }
721
722 mutex_exit(proc_lock);
723 }
724
725 /*
726 * uvm_swapout: swap out lwp "l"
727 *
728 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
729 * the pmap.
730 * - must be called with l->l_swaplock held.
731 * - XXXCDC: should deactivate all process' private anonymous memory
732 */
733
734 static void
735 uvm_swapout(struct lwp *l)
736 {
737 struct vm_map *map;
738
739 KASSERT(mutex_owned(&l->l_swaplock));
740
741 #ifdef DEBUG
742 if (swapdebug & SDB_SWAPOUT)
743 printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
744 __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
745 l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
746 #endif
747
748 /*
749 * Mark it as (potentially) swapped out.
750 */
751 lwp_lock(l);
752 if (!swappable(l)) {
753 KDASSERT(l->l_cpu != curcpu());
754 lwp_unlock(l);
755 return;
756 }
757 l->l_flag &= ~LW_INMEM;
758 l->l_swtime = 0;
759 if (l->l_stat == LSRUN)
760 sched_dequeue(l);
761 lwp_unlock(l);
762 l->l_ru.ru_nswap++;
763 ++uvmexp.swapouts;
764
765 /*
766 * Do any machine-specific actions necessary before swapout.
767 * This can include saving floating point state, etc.
768 */
769 cpu_swapout(l);
770
771 /*
772 * Unwire the to-be-swapped process's user struct and kernel stack.
773 */
774 uarea_swapout(USER_TO_UAREA(l->l_addr));
775 map = &l->l_proc->p_vmspace->vm_map;
776 if (vm_map_lock_try(map)) {
777 pmap_collect(vm_map_pmap(map));
778 vm_map_unlock(map);
779 }
780 }
781
782 /*
783 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
784 * back into memory if it is currently swapped.
785 */
786
787 void
788 uvm_lwp_hold(struct lwp *l)
789 {
790
791 if (l == curlwp) {
792 atomic_inc_uint(&l->l_holdcnt);
793 } else {
794 mutex_enter(&l->l_swaplock);
795 if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
796 (l->l_flag & LW_INMEM) == 0)
797 uvm_swapin(l);
798 mutex_exit(&l->l_swaplock);
799 }
800 }
801
802 /*
803 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
804 * drops to zero, it's eligable to be swapped.
805 */
806
807 void
808 uvm_lwp_rele(struct lwp *l)
809 {
810
811 KASSERT(l->l_holdcnt != 0);
812
813 atomic_dec_uint(&l->l_holdcnt);
814 }
815