uvm_glue.c revision 1.135.2.1 1 /* $NetBSD: uvm_glue.c,v 1.135.2.1 2009/05/13 17:23:10 jym Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.135.2.1 2009/05/13 17:23:10 jym Exp $");
71
72 #include "opt_kgdb.h"
73 #include "opt_kstack.h"
74 #include "opt_uvmhist.h"
75
76 /*
77 * uvm_glue.c: glue functions
78 */
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/user.h>
86 #include <sys/syncobj.h>
87 #include <sys/cpu.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout(struct lwp *);
97 static int uarea_swapin(vaddr_t);
98
99 /*
100 * XXXCDC: do these really belong here?
101 */
102
103 /*
104 * uvm_kernacc: can the kernel access a region of memory
105 *
106 * - used only by /dev/kmem driver (mem.c)
107 */
108
109 bool
110 uvm_kernacc(void *addr, size_t len, int rw)
111 {
112 bool rv;
113 vaddr_t saddr, eaddr;
114 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115
116 saddr = trunc_page((vaddr_t)addr);
117 eaddr = round_page((vaddr_t)addr + len);
118 vm_map_lock_read(kernel_map);
119 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 vm_map_unlock_read(kernel_map);
121
122 return(rv);
123 }
124
125 #ifdef KGDB
126 /*
127 * Change protections on kernel pages from addr to addr+len
128 * (presumably so debugger can plant a breakpoint).
129 *
130 * We force the protection change at the pmap level. If we were
131 * to use vm_map_protect a change to allow writing would be lazily-
132 * applied meaning we would still take a protection fault, something
133 * we really don't want to do. It would also fragment the kernel
134 * map unnecessarily. We cannot use pmap_protect since it also won't
135 * enforce a write-enable request. Using pmap_enter is the only way
136 * we can ensure the change takes place properly.
137 */
138 void
139 uvm_chgkprot(void *addr, size_t len, int rw)
140 {
141 vm_prot_t prot;
142 paddr_t pa;
143 vaddr_t sva, eva;
144
145 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 eva = round_page((vaddr_t)addr + len);
147 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 /*
149 * Extract physical address for the page.
150 */
151 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 panic("%s: invalid page", __func__);
153 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 }
155 pmap_update(pmap_kernel());
156 }
157 #endif
158
159 /*
160 * uvm_vslock: wire user memory for I/O
161 *
162 * - called from physio and sys___sysctl
163 * - XXXCDC: consider nuking this (or making it a macro?)
164 */
165
166 int
167 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 {
169 struct vm_map *map;
170 vaddr_t start, end;
171 int error;
172
173 map = &vs->vm_map;
174 start = trunc_page((vaddr_t)addr);
175 end = round_page((vaddr_t)addr + len);
176 error = uvm_fault_wire(map, start, end, access_type, 0);
177 return error;
178 }
179
180 /*
181 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 *
183 * - called from physio and sys___sysctl
184 * - XXXCDC: consider nuking this (or making it a macro?)
185 */
186
187 void
188 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 {
190 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 round_page((vaddr_t)addr + len));
192 }
193
194 /*
195 * uvm_proc_fork: fork a virtual address space
196 *
197 * - the address space is copied as per parent map's inherit values
198 */
199 void
200 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 {
202
203 if (shared == true) {
204 p2->p_vmspace = NULL;
205 uvmspace_share(p1, p2);
206 } else {
207 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 }
209
210 cpu_proc_fork(p1, p2);
211 }
212
213
214 /*
215 * uvm_lwp_fork: fork a thread
216 *
217 * - a new "user" structure is allocated for the child process
218 * [filled in by MD layer...]
219 * - if specified, the child gets a new user stack described by
220 * stack and stacksize
221 * - NOTE: the kernel stack may be at a different location in the child
222 * process, and thus addresses of automatic variables may be invalid
223 * after cpu_lwp_fork returns in the child process. We do nothing here
224 * after cpu_lwp_fork returns.
225 * - XXXCDC: we need a way for this to return a failure value rather
226 * than just hang
227 */
228 void
229 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 void (*func)(void *), void *arg)
231 {
232 int error;
233
234 /*
235 * Wire down the U-area for the process, which contains the PCB
236 * and the kernel stack. Wired state is stored in l->l_flag's
237 * L_INMEM bit rather than in the vm_map_entry's wired count
238 * to prevent kernel_map fragmentation. If we reused a cached U-area,
239 * L_INMEM will already be set and we don't need to do anything.
240 *
241 * Note the kernel stack gets read/write accesses right off the bat.
242 */
243
244 if ((l2->l_flag & LW_INMEM) == 0) {
245 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246
247 if ((error = uarea_swapin(uarea)) != 0)
248 panic("%s: uvm_fault_wire failed: %d", __func__, error);
249 #ifdef PMAP_UAREA
250 /* Tell the pmap this is a u-area mapping */
251 PMAP_UAREA(uarea);
252 #endif
253 l2->l_flag |= LW_INMEM;
254 }
255
256 /* Fill stack with magic number. */
257 kstack_setup_magic(l2);
258
259 /*
260 * cpu_lwp_fork() copy and update the pcb, and make the child ready
261 * to run. If this is a normal user fork, the child will exit
262 * directly to user mode via child_return() on its first time
263 * slice and will not return here. If this is a kernel thread,
264 * the specified entry point will be executed.
265 */
266 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
267 }
268
269 static int
270 uarea_swapin(vaddr_t addr)
271 {
272
273 return uvm_fault_wire(kernel_map, addr, addr + USPACE,
274 VM_PROT_READ | VM_PROT_WRITE, 0);
275 }
276
277 static void
278 uarea_swapout(vaddr_t addr)
279 {
280
281 uvm_fault_unwire(kernel_map, addr, addr + USPACE);
282 }
283
284 #ifndef USPACE_ALIGN
285 #define USPACE_ALIGN 0
286 #endif
287
288 static pool_cache_t uvm_uarea_cache;
289
290 static int
291 uarea_ctor(void *arg, void *obj, int flags)
292 {
293
294 KASSERT((flags & PR_WAITOK) != 0);
295 return uarea_swapin((vaddr_t)obj);
296 }
297
298 static void *
299 uarea_poolpage_alloc(struct pool *pp, int flags)
300 {
301
302 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
303 USPACE_ALIGN, UVM_KMF_PAGEABLE |
304 ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
305 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
306 }
307
308 static void
309 uarea_poolpage_free(struct pool *pp, void *addr)
310 {
311
312 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
313 UVM_KMF_PAGEABLE);
314 }
315
316 static struct pool_allocator uvm_uarea_allocator = {
317 .pa_alloc = uarea_poolpage_alloc,
318 .pa_free = uarea_poolpage_free,
319 .pa_pagesz = USPACE,
320 };
321
322 void
323 uvm_uarea_init(void)
324 {
325 int flags = PR_NOTOUCH;
326
327 /*
328 * specify PR_NOALIGN unless the alignment provided by
329 * the backend (USPACE_ALIGN) is sufficient to provide
330 * pool page size (UPSACE) alignment.
331 */
332
333 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
334 (USPACE_ALIGN % USPACE) != 0) {
335 flags |= PR_NOALIGN;
336 }
337
338 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
339 "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
340 }
341
342 /*
343 * uvm_uarea_alloc: allocate a u-area
344 */
345
346 bool
347 uvm_uarea_alloc(vaddr_t *uaddrp)
348 {
349
350 *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
351 return true;
352 }
353
354 /*
355 * uvm_uarea_free: free a u-area
356 */
357
358 void
359 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
360 {
361
362 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
363 }
364
365 /*
366 * uvm_proc_exit: exit a virtual address space
367 *
368 * - borrow proc0's address space because freeing the vmspace
369 * of the dead process may block.
370 */
371
372 void
373 uvm_proc_exit(struct proc *p)
374 {
375 struct lwp *l = curlwp; /* XXX */
376 struct vmspace *ovm;
377
378 KASSERT(p == l->l_proc);
379 ovm = p->p_vmspace;
380
381 /*
382 * borrow proc0's address space.
383 */
384 KPREEMPT_DISABLE(l);
385 pmap_deactivate(l);
386 p->p_vmspace = proc0.p_vmspace;
387 pmap_activate(l);
388 KPREEMPT_ENABLE(l);
389
390 uvmspace_free(ovm);
391 }
392
393 void
394 uvm_lwp_exit(struct lwp *l)
395 {
396 vaddr_t va = USER_TO_UAREA(l->l_addr);
397
398 l->l_flag &= ~LW_INMEM;
399 uvm_uarea_free(va, l->l_cpu);
400 l->l_addr = NULL;
401 }
402
403 /*
404 * uvm_init_limit: init per-process VM limits
405 *
406 * - called for process 0 and then inherited by all others.
407 */
408
409 void
410 uvm_init_limits(struct proc *p)
411 {
412
413 /*
414 * Set up the initial limits on process VM. Set the maximum
415 * resident set size to be all of (reasonably) available memory.
416 * This causes any single, large process to start random page
417 * replacement once it fills memory.
418 */
419
420 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
421 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
422 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
423 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
424 p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
425 p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
426 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
427 }
428
429 #ifdef DEBUG
430 int enableswap = 1;
431 int swapdebug = 0;
432 #define SDB_FOLLOW 1
433 #define SDB_SWAPIN 2
434 #define SDB_SWAPOUT 4
435 #endif
436
437 /*
438 * uvm_swapin: swap in an lwp's u-area.
439 *
440 * - must be called with the LWP's swap lock held.
441 * - naturally, must not be called with l == curlwp
442 */
443
444 void
445 uvm_swapin(struct lwp *l)
446 {
447 int error;
448
449 KASSERT(mutex_owned(&l->l_swaplock));
450 KASSERT(l != curlwp);
451
452 error = uarea_swapin(USER_TO_UAREA(l->l_addr));
453 if (error) {
454 panic("%s: rewiring stack failed: %d", __func__, error);
455 }
456
457 /*
458 * Some architectures need to be notified when the user area has
459 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
460 */
461 cpu_swapin(l);
462 lwp_lock(l);
463 if (l->l_stat == LSRUN)
464 sched_enqueue(l, false);
465 l->l_flag |= LW_INMEM;
466 l->l_swtime = 0;
467 lwp_unlock(l);
468 ++uvmexp.swapins;
469 }
470
471 /*
472 * uvm_kick_scheduler: kick the scheduler into action if not running.
473 *
474 * - called when swapped out processes have been awoken.
475 */
476
477 void
478 uvm_kick_scheduler(void)
479 {
480
481 if (uvm.swap_running == false)
482 return;
483
484 mutex_enter(&uvm_scheduler_mutex);
485 uvm.scheduler_kicked = true;
486 cv_signal(&uvm.scheduler_cv);
487 mutex_exit(&uvm_scheduler_mutex);
488 }
489
490 /*
491 * uvm_scheduler: process zero main loop
492 *
493 * - attempt to swapin every swaped-out, runnable process in order of
494 * priority.
495 * - if not enough memory, wake the pagedaemon and let it clear space.
496 */
497
498 void
499 uvm_scheduler(void)
500 {
501 struct lwp *l, *ll;
502 int pri;
503 int ppri;
504
505 l = curlwp;
506 lwp_lock(l);
507 l->l_priority = PRI_VM;
508 l->l_class = SCHED_FIFO;
509 lwp_unlock(l);
510
511 for (;;) {
512 #ifdef DEBUG
513 mutex_enter(&uvm_scheduler_mutex);
514 while (!enableswap)
515 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
516 mutex_exit(&uvm_scheduler_mutex);
517 #endif
518 ll = NULL; /* process to choose */
519 ppri = INT_MIN; /* its priority */
520
521 mutex_enter(proc_lock);
522 LIST_FOREACH(l, &alllwp, l_list) {
523 /* is it a runnable swapped out process? */
524 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
525 pri = l->l_swtime + l->l_slptime -
526 (l->l_proc->p_nice - NZERO) * 8;
527 if (pri > ppri) { /* higher priority? */
528 ll = l;
529 ppri = pri;
530 }
531 }
532 }
533 #ifdef DEBUG
534 if (swapdebug & SDB_FOLLOW)
535 printf("%s: running, procp %p pri %d\n", __func__, ll,
536 ppri);
537 #endif
538 /*
539 * Nothing to do, back to sleep
540 */
541 if ((l = ll) == NULL) {
542 mutex_exit(proc_lock);
543 mutex_enter(&uvm_scheduler_mutex);
544 if (uvm.scheduler_kicked == false)
545 cv_wait(&uvm.scheduler_cv,
546 &uvm_scheduler_mutex);
547 uvm.scheduler_kicked = false;
548 mutex_exit(&uvm_scheduler_mutex);
549 continue;
550 }
551
552 /*
553 * we have found swapped out process which we would like
554 * to bring back in.
555 *
556 * XXX: this part is really bogus cuz we could deadlock
557 * on memory despite our feeble check
558 */
559 if (uvmexp.free > atop(USPACE)) {
560 #ifdef DEBUG
561 if (swapdebug & SDB_SWAPIN)
562 printf("swapin: pid %d(%s)@%p, pri %d "
563 "free %d\n", l->l_proc->p_pid,
564 l->l_proc->p_comm, l->l_addr, ppri,
565 uvmexp.free);
566 #endif
567 mutex_enter(&l->l_swaplock);
568 mutex_exit(proc_lock);
569 uvm_swapin(l);
570 mutex_exit(&l->l_swaplock);
571 continue;
572 } else {
573 /*
574 * not enough memory, jab the pageout daemon and
575 * wait til the coast is clear
576 */
577 mutex_exit(proc_lock);
578 #ifdef DEBUG
579 if (swapdebug & SDB_FOLLOW)
580 printf("%s: no room for pid %d(%s),"
581 " free %d\n", __func__, l->l_proc->p_pid,
582 l->l_proc->p_comm, uvmexp.free);
583 #endif
584 uvm_wait("schedpwait");
585 #ifdef DEBUG
586 if (swapdebug & SDB_FOLLOW)
587 printf("%s: room again, free %d\n", __func__,
588 uvmexp.free);
589 #endif
590 }
591 }
592 }
593
594 /*
595 * swappable: is LWP "l" swappable?
596 */
597
598 static bool
599 swappable(struct lwp *l)
600 {
601
602 if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
603 return false;
604 if ((l->l_pflag & LP_RUNNING) != 0)
605 return false;
606 if (l->l_holdcnt != 0)
607 return false;
608 if (l->l_class != SCHED_OTHER)
609 return false;
610 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
611 return false;
612 if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
613 return false;
614 return true;
615 }
616
617 /*
618 * swapout_threads: find threads that can be swapped and unwire their
619 * u-areas.
620 *
621 * - called by the pagedaemon
622 * - try and swap at least one processs
623 * - processes that are sleeping or stopped for maxslp or more seconds
624 * are swapped... otherwise the longest-sleeping or stopped process
625 * is swapped, otherwise the longest resident process...
626 */
627
628 void
629 uvm_swapout_threads(void)
630 {
631 struct lwp *l;
632 struct lwp *outl, *outl2;
633 int outpri, outpri2;
634 int didswap = 0;
635 extern int maxslp;
636 bool gotit;
637
638 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
639
640 #ifdef DEBUG
641 if (!enableswap)
642 return;
643 #endif
644
645 /*
646 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
647 * outl2/outpri2: the longest resident thread (its swap time)
648 */
649 outl = outl2 = NULL;
650 outpri = outpri2 = 0;
651
652 restart:
653 mutex_enter(proc_lock);
654 LIST_FOREACH(l, &alllwp, l_list) {
655 KASSERT(l->l_proc != NULL);
656 if (!mutex_tryenter(&l->l_swaplock))
657 continue;
658 if (!swappable(l)) {
659 mutex_exit(&l->l_swaplock);
660 continue;
661 }
662 switch (l->l_stat) {
663 case LSONPROC:
664 break;
665
666 case LSRUN:
667 if (l->l_swtime > outpri2) {
668 outl2 = l;
669 outpri2 = l->l_swtime;
670 }
671 break;
672
673 case LSSLEEP:
674 case LSSTOP:
675 if (l->l_slptime >= maxslp) {
676 mutex_exit(proc_lock);
677 uvm_swapout(l);
678 /*
679 * Locking in the wrong direction -
680 * try to prevent the LWP from exiting.
681 */
682 gotit = mutex_tryenter(proc_lock);
683 mutex_exit(&l->l_swaplock);
684 didswap++;
685 if (!gotit)
686 goto restart;
687 continue;
688 } else if (l->l_slptime > outpri) {
689 outl = l;
690 outpri = l->l_slptime;
691 }
692 break;
693 }
694 mutex_exit(&l->l_swaplock);
695 }
696
697 /*
698 * If we didn't get rid of any real duds, toss out the next most
699 * likely sleeping/stopped or running candidate. We only do this
700 * if we are real low on memory since we don't gain much by doing
701 * it (USPACE bytes).
702 */
703 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
704 if ((l = outl) == NULL)
705 l = outl2;
706 #ifdef DEBUG
707 if (swapdebug & SDB_SWAPOUT)
708 printf("%s: no duds, try procp %p\n", __func__, l);
709 #endif
710 if (l) {
711 mutex_enter(&l->l_swaplock);
712 mutex_exit(proc_lock);
713 if (swappable(l))
714 uvm_swapout(l);
715 mutex_exit(&l->l_swaplock);
716 return;
717 }
718 }
719
720 mutex_exit(proc_lock);
721 }
722
723 /*
724 * uvm_swapout: swap out lwp "l"
725 *
726 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
727 * the pmap.
728 * - must be called with l->l_swaplock held.
729 * - XXXCDC: should deactivate all process' private anonymous memory
730 */
731
732 static void
733 uvm_swapout(struct lwp *l)
734 {
735 struct vm_map *map;
736
737 KASSERT(mutex_owned(&l->l_swaplock));
738
739 #ifdef DEBUG
740 if (swapdebug & SDB_SWAPOUT)
741 printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
742 __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
743 l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
744 #endif
745
746 /*
747 * Mark it as (potentially) swapped out.
748 */
749 lwp_lock(l);
750 if (!swappable(l)) {
751 KDASSERT(l->l_cpu != curcpu());
752 lwp_unlock(l);
753 return;
754 }
755 l->l_flag &= ~LW_INMEM;
756 l->l_swtime = 0;
757 if (l->l_stat == LSRUN)
758 sched_dequeue(l);
759 lwp_unlock(l);
760 l->l_ru.ru_nswap++;
761 ++uvmexp.swapouts;
762
763 /*
764 * Do any machine-specific actions necessary before swapout.
765 * This can include saving floating point state, etc.
766 */
767 cpu_swapout(l);
768
769 /*
770 * Unwire the to-be-swapped process's user struct and kernel stack.
771 */
772 uarea_swapout(USER_TO_UAREA(l->l_addr));
773 map = &l->l_proc->p_vmspace->vm_map;
774 if (vm_map_lock_try(map)) {
775 pmap_collect(vm_map_pmap(map));
776 vm_map_unlock(map);
777 }
778 }
779
780 /*
781 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
782 * back into memory if it is currently swapped.
783 */
784
785 void
786 uvm_lwp_hold(struct lwp *l)
787 {
788
789 if (l == curlwp) {
790 atomic_inc_uint(&l->l_holdcnt);
791 } else {
792 mutex_enter(&l->l_swaplock);
793 if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
794 (l->l_flag & LW_INMEM) == 0)
795 uvm_swapin(l);
796 mutex_exit(&l->l_swaplock);
797 }
798 }
799
800 /*
801 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
802 * drops to zero, it's eligable to be swapped.
803 */
804
805 void
806 uvm_lwp_rele(struct lwp *l)
807 {
808
809 KASSERT(l->l_holdcnt != 0);
810
811 atomic_dec_uint(&l->l_holdcnt);
812 }
813