uvm_glue.c revision 1.135.2.2 1 /* $NetBSD: uvm_glue.c,v 1.135.2.2 2009/07/23 23:33:04 jym Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.135.2.2 2009/07/23 23:33:04 jym Exp $");
71
72 #include "opt_kgdb.h"
73 #include "opt_kstack.h"
74 #include "opt_uvmhist.h"
75
76 /*
77 * uvm_glue.c: glue functions
78 */
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/user.h>
86 #include <sys/syncobj.h>
87 #include <sys/cpu.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout(struct lwp *);
97 static int uarea_swapin(vaddr_t);
98
99 /*
100 * XXXCDC: do these really belong here?
101 */
102
103 /*
104 * uvm_kernacc: can the kernel access a region of memory
105 *
106 * - used only by /dev/kmem driver (mem.c)
107 */
108
109 bool
110 uvm_kernacc(void *addr, size_t len, int rw)
111 {
112 bool rv;
113 vaddr_t saddr, eaddr;
114 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115
116 saddr = trunc_page((vaddr_t)addr);
117 eaddr = round_page((vaddr_t)addr + len);
118 vm_map_lock_read(kernel_map);
119 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 vm_map_unlock_read(kernel_map);
121
122 return(rv);
123 }
124
125 #ifdef KGDB
126 /*
127 * Change protections on kernel pages from addr to addr+len
128 * (presumably so debugger can plant a breakpoint).
129 *
130 * We force the protection change at the pmap level. If we were
131 * to use vm_map_protect a change to allow writing would be lazily-
132 * applied meaning we would still take a protection fault, something
133 * we really don't want to do. It would also fragment the kernel
134 * map unnecessarily. We cannot use pmap_protect since it also won't
135 * enforce a write-enable request. Using pmap_enter is the only way
136 * we can ensure the change takes place properly.
137 */
138 void
139 uvm_chgkprot(void *addr, size_t len, int rw)
140 {
141 vm_prot_t prot;
142 paddr_t pa;
143 vaddr_t sva, eva;
144
145 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 eva = round_page((vaddr_t)addr + len);
147 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 /*
149 * Extract physical address for the page.
150 */
151 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 panic("%s: invalid page", __func__);
153 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 }
155 pmap_update(pmap_kernel());
156 }
157 #endif
158
159 /*
160 * uvm_vslock: wire user memory for I/O
161 *
162 * - called from physio and sys___sysctl
163 * - XXXCDC: consider nuking this (or making it a macro?)
164 */
165
166 int
167 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 {
169 struct vm_map *map;
170 vaddr_t start, end;
171 int error;
172
173 map = &vs->vm_map;
174 start = trunc_page((vaddr_t)addr);
175 end = round_page((vaddr_t)addr + len);
176 error = uvm_fault_wire(map, start, end, access_type, 0);
177 return error;
178 }
179
180 /*
181 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 *
183 * - called from physio and sys___sysctl
184 * - XXXCDC: consider nuking this (or making it a macro?)
185 */
186
187 void
188 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 {
190 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 round_page((vaddr_t)addr + len));
192 }
193
194 /*
195 * uvm_proc_fork: fork a virtual address space
196 *
197 * - the address space is copied as per parent map's inherit values
198 */
199 void
200 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 {
202
203 if (shared == true) {
204 p2->p_vmspace = NULL;
205 uvmspace_share(p1, p2);
206 } else {
207 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 }
209
210 cpu_proc_fork(p1, p2);
211 }
212
213
214 /*
215 * uvm_lwp_fork: fork a thread
216 *
217 * - a new "user" structure is allocated for the child process
218 * [filled in by MD layer...]
219 * - if specified, the child gets a new user stack described by
220 * stack and stacksize
221 * - NOTE: the kernel stack may be at a different location in the child
222 * process, and thus addresses of automatic variables may be invalid
223 * after cpu_lwp_fork returns in the child process. We do nothing here
224 * after cpu_lwp_fork returns.
225 * - XXXCDC: we need a way for this to return a failure value rather
226 * than just hang
227 */
228 void
229 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 void (*func)(void *), void *arg)
231 {
232 int error;
233
234 /*
235 * Wire down the U-area for the process, which contains the PCB
236 * and the kernel stack. Wired state is stored in l->l_flag's
237 * L_INMEM bit rather than in the vm_map_entry's wired count
238 * to prevent kernel_map fragmentation. If we reused a cached U-area,
239 * L_INMEM will already be set and we don't need to do anything.
240 *
241 * Note the kernel stack gets read/write accesses right off the bat.
242 */
243
244 if ((l2->l_flag & LW_INMEM) == 0) {
245 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246
247 if ((error = uarea_swapin(uarea)) != 0)
248 panic("%s: uvm_fault_wire failed: %d", __func__, error);
249 #ifdef PMAP_UAREA
250 /* Tell the pmap this is a u-area mapping */
251 PMAP_UAREA(uarea);
252 #endif
253 l2->l_flag |= LW_INMEM;
254 }
255
256 /* Fill stack with magic number. */
257 kstack_setup_magic(l2);
258
259 /*
260 * cpu_lwp_fork() copy and update the pcb, and make the child ready
261 * to run. If this is a normal user fork, the child will exit
262 * directly to user mode via child_return() on its first time
263 * slice and will not return here. If this is a kernel thread,
264 * the specified entry point will be executed.
265 */
266 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
267
268 /* Inactive emap for new LWP. */
269 l2->l_emap_gen = UVM_EMAP_INACTIVE;
270 }
271
272 static int
273 uarea_swapin(vaddr_t addr)
274 {
275
276 return uvm_fault_wire(kernel_map, addr, addr + USPACE,
277 VM_PROT_READ | VM_PROT_WRITE, 0);
278 }
279
280 static void
281 uarea_swapout(vaddr_t addr)
282 {
283
284 uvm_fault_unwire(kernel_map, addr, addr + USPACE);
285 }
286
287 #ifndef USPACE_ALIGN
288 #define USPACE_ALIGN 0
289 #endif
290
291 static pool_cache_t uvm_uarea_cache;
292
293 static int
294 uarea_ctor(void *arg, void *obj, int flags)
295 {
296
297 KASSERT((flags & PR_WAITOK) != 0);
298 return uarea_swapin((vaddr_t)obj);
299 }
300
301 static void *
302 uarea_poolpage_alloc(struct pool *pp, int flags)
303 {
304
305 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
306 USPACE_ALIGN, UVM_KMF_PAGEABLE |
307 ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
308 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
309 }
310
311 static void
312 uarea_poolpage_free(struct pool *pp, void *addr)
313 {
314
315 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
316 UVM_KMF_PAGEABLE);
317 }
318
319 static struct pool_allocator uvm_uarea_allocator = {
320 .pa_alloc = uarea_poolpage_alloc,
321 .pa_free = uarea_poolpage_free,
322 .pa_pagesz = USPACE,
323 };
324
325 void
326 uvm_uarea_init(void)
327 {
328 int flags = PR_NOTOUCH;
329
330 /*
331 * specify PR_NOALIGN unless the alignment provided by
332 * the backend (USPACE_ALIGN) is sufficient to provide
333 * pool page size (UPSACE) alignment.
334 */
335
336 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
337 (USPACE_ALIGN % USPACE) != 0) {
338 flags |= PR_NOALIGN;
339 }
340
341 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
342 "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
343 }
344
345 /*
346 * uvm_uarea_alloc: allocate a u-area
347 */
348
349 bool
350 uvm_uarea_alloc(vaddr_t *uaddrp)
351 {
352
353 *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
354 return true;
355 }
356
357 /*
358 * uvm_uarea_free: free a u-area
359 */
360
361 void
362 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
363 {
364
365 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
366 }
367
368 /*
369 * uvm_proc_exit: exit a virtual address space
370 *
371 * - borrow proc0's address space because freeing the vmspace
372 * of the dead process may block.
373 */
374
375 void
376 uvm_proc_exit(struct proc *p)
377 {
378 struct lwp *l = curlwp; /* XXX */
379 struct vmspace *ovm;
380
381 KASSERT(p == l->l_proc);
382 ovm = p->p_vmspace;
383
384 /*
385 * borrow proc0's address space.
386 */
387 KPREEMPT_DISABLE(l);
388 pmap_deactivate(l);
389 p->p_vmspace = proc0.p_vmspace;
390 pmap_activate(l);
391 KPREEMPT_ENABLE(l);
392
393 uvmspace_free(ovm);
394 }
395
396 void
397 uvm_lwp_exit(struct lwp *l)
398 {
399 vaddr_t va = USER_TO_UAREA(l->l_addr);
400
401 l->l_flag &= ~LW_INMEM;
402 uvm_uarea_free(va, l->l_cpu);
403 l->l_addr = NULL;
404 }
405
406 /*
407 * uvm_init_limit: init per-process VM limits
408 *
409 * - called for process 0 and then inherited by all others.
410 */
411
412 void
413 uvm_init_limits(struct proc *p)
414 {
415
416 /*
417 * Set up the initial limits on process VM. Set the maximum
418 * resident set size to be all of (reasonably) available memory.
419 * This causes any single, large process to start random page
420 * replacement once it fills memory.
421 */
422
423 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
424 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
425 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
426 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
427 p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
428 p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
429 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
430 }
431
432 #ifdef DEBUG
433 int enableswap = 1;
434 int swapdebug = 0;
435 #define SDB_FOLLOW 1
436 #define SDB_SWAPIN 2
437 #define SDB_SWAPOUT 4
438 #endif
439
440 /*
441 * uvm_swapin: swap in an lwp's u-area.
442 *
443 * - must be called with the LWP's swap lock held.
444 * - naturally, must not be called with l == curlwp
445 */
446
447 void
448 uvm_swapin(struct lwp *l)
449 {
450 int error;
451
452 KASSERT(mutex_owned(&l->l_swaplock));
453 KASSERT(l != curlwp);
454
455 error = uarea_swapin(USER_TO_UAREA(l->l_addr));
456 if (error) {
457 panic("%s: rewiring stack failed: %d", __func__, error);
458 }
459
460 /*
461 * Some architectures need to be notified when the user area has
462 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
463 */
464 cpu_swapin(l);
465 lwp_lock(l);
466 if (l->l_stat == LSRUN)
467 sched_enqueue(l, false);
468 l->l_flag |= LW_INMEM;
469 l->l_swtime = 0;
470 lwp_unlock(l);
471 ++uvmexp.swapins;
472 }
473
474 /*
475 * uvm_kick_scheduler: kick the scheduler into action if not running.
476 *
477 * - called when swapped out processes have been awoken.
478 */
479
480 void
481 uvm_kick_scheduler(void)
482 {
483
484 if (uvm.swap_running == false)
485 return;
486
487 mutex_enter(&uvm_scheduler_mutex);
488 uvm.scheduler_kicked = true;
489 cv_signal(&uvm.scheduler_cv);
490 mutex_exit(&uvm_scheduler_mutex);
491 }
492
493 /*
494 * uvm_scheduler: process zero main loop
495 *
496 * - attempt to swapin every swaped-out, runnable process in order of
497 * priority.
498 * - if not enough memory, wake the pagedaemon and let it clear space.
499 */
500
501 void
502 uvm_scheduler(void)
503 {
504 struct lwp *l, *ll;
505 int pri;
506 int ppri;
507
508 l = curlwp;
509 lwp_lock(l);
510 l->l_priority = PRI_VM;
511 l->l_class = SCHED_FIFO;
512 lwp_unlock(l);
513
514 for (;;) {
515 #ifdef DEBUG
516 mutex_enter(&uvm_scheduler_mutex);
517 while (!enableswap)
518 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
519 mutex_exit(&uvm_scheduler_mutex);
520 #endif
521 ll = NULL; /* process to choose */
522 ppri = INT_MIN; /* its priority */
523
524 mutex_enter(proc_lock);
525 LIST_FOREACH(l, &alllwp, l_list) {
526 /* is it a runnable swapped out process? */
527 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
528 pri = l->l_swtime + l->l_slptime -
529 (l->l_proc->p_nice - NZERO) * 8;
530 if (pri > ppri) { /* higher priority? */
531 ll = l;
532 ppri = pri;
533 }
534 }
535 }
536 #ifdef DEBUG
537 if (swapdebug & SDB_FOLLOW)
538 printf("%s: running, procp %p pri %d\n", __func__, ll,
539 ppri);
540 #endif
541 /*
542 * Nothing to do, back to sleep
543 */
544 if ((l = ll) == NULL) {
545 mutex_exit(proc_lock);
546 mutex_enter(&uvm_scheduler_mutex);
547 if (uvm.scheduler_kicked == false)
548 cv_wait(&uvm.scheduler_cv,
549 &uvm_scheduler_mutex);
550 uvm.scheduler_kicked = false;
551 mutex_exit(&uvm_scheduler_mutex);
552 continue;
553 }
554
555 /*
556 * we have found swapped out process which we would like
557 * to bring back in.
558 *
559 * XXX: this part is really bogus cuz we could deadlock
560 * on memory despite our feeble check
561 */
562 if (uvmexp.free > atop(USPACE)) {
563 #ifdef DEBUG
564 if (swapdebug & SDB_SWAPIN)
565 printf("swapin: pid %d(%s)@%p, pri %d "
566 "free %d\n", l->l_proc->p_pid,
567 l->l_proc->p_comm, l->l_addr, ppri,
568 uvmexp.free);
569 #endif
570 mutex_enter(&l->l_swaplock);
571 mutex_exit(proc_lock);
572 uvm_swapin(l);
573 mutex_exit(&l->l_swaplock);
574 continue;
575 } else {
576 /*
577 * not enough memory, jab the pageout daemon and
578 * wait til the coast is clear
579 */
580 mutex_exit(proc_lock);
581 #ifdef DEBUG
582 if (swapdebug & SDB_FOLLOW)
583 printf("%s: no room for pid %d(%s),"
584 " free %d\n", __func__, l->l_proc->p_pid,
585 l->l_proc->p_comm, uvmexp.free);
586 #endif
587 uvm_wait("schedpwait");
588 #ifdef DEBUG
589 if (swapdebug & SDB_FOLLOW)
590 printf("%s: room again, free %d\n", __func__,
591 uvmexp.free);
592 #endif
593 }
594 }
595 }
596
597 /*
598 * swappable: is LWP "l" swappable?
599 */
600
601 static bool
602 swappable(struct lwp *l)
603 {
604
605 if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
606 return false;
607 if ((l->l_pflag & LP_RUNNING) != 0)
608 return false;
609 if (l->l_holdcnt != 0)
610 return false;
611 if (l->l_class != SCHED_OTHER)
612 return false;
613 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
614 return false;
615 if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
616 return false;
617 return true;
618 }
619
620 /*
621 * swapout_threads: find threads that can be swapped and unwire their
622 * u-areas.
623 *
624 * - called by the pagedaemon
625 * - try and swap at least one processs
626 * - processes that are sleeping or stopped for maxslp or more seconds
627 * are swapped... otherwise the longest-sleeping or stopped process
628 * is swapped, otherwise the longest resident process...
629 */
630
631 void
632 uvm_swapout_threads(void)
633 {
634 struct lwp *l;
635 struct lwp *outl, *outl2;
636 int outpri, outpri2;
637 int didswap = 0;
638 extern int maxslp;
639 bool gotit;
640
641 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
642
643 #ifdef DEBUG
644 if (!enableswap)
645 return;
646 #endif
647
648 /*
649 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
650 * outl2/outpri2: the longest resident thread (its swap time)
651 */
652 outl = outl2 = NULL;
653 outpri = outpri2 = 0;
654
655 restart:
656 mutex_enter(proc_lock);
657 LIST_FOREACH(l, &alllwp, l_list) {
658 KASSERT(l->l_proc != NULL);
659 if (!mutex_tryenter(&l->l_swaplock))
660 continue;
661 if (!swappable(l)) {
662 mutex_exit(&l->l_swaplock);
663 continue;
664 }
665 switch (l->l_stat) {
666 case LSONPROC:
667 break;
668
669 case LSRUN:
670 if (l->l_swtime > outpri2) {
671 outl2 = l;
672 outpri2 = l->l_swtime;
673 }
674 break;
675
676 case LSSLEEP:
677 case LSSTOP:
678 if (l->l_slptime >= maxslp) {
679 mutex_exit(proc_lock);
680 uvm_swapout(l);
681 /*
682 * Locking in the wrong direction -
683 * try to prevent the LWP from exiting.
684 */
685 gotit = mutex_tryenter(proc_lock);
686 mutex_exit(&l->l_swaplock);
687 didswap++;
688 if (!gotit)
689 goto restart;
690 continue;
691 } else if (l->l_slptime > outpri) {
692 outl = l;
693 outpri = l->l_slptime;
694 }
695 break;
696 }
697 mutex_exit(&l->l_swaplock);
698 }
699
700 /*
701 * If we didn't get rid of any real duds, toss out the next most
702 * likely sleeping/stopped or running candidate. We only do this
703 * if we are real low on memory since we don't gain much by doing
704 * it (USPACE bytes).
705 */
706 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
707 if ((l = outl) == NULL)
708 l = outl2;
709 #ifdef DEBUG
710 if (swapdebug & SDB_SWAPOUT)
711 printf("%s: no duds, try procp %p\n", __func__, l);
712 #endif
713 if (l) {
714 mutex_enter(&l->l_swaplock);
715 mutex_exit(proc_lock);
716 if (swappable(l))
717 uvm_swapout(l);
718 mutex_exit(&l->l_swaplock);
719 return;
720 }
721 }
722
723 mutex_exit(proc_lock);
724 }
725
726 /*
727 * uvm_swapout: swap out lwp "l"
728 *
729 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
730 * the pmap.
731 * - must be called with l->l_swaplock held.
732 * - XXXCDC: should deactivate all process' private anonymous memory
733 */
734
735 static void
736 uvm_swapout(struct lwp *l)
737 {
738 struct vm_map *map;
739
740 KASSERT(mutex_owned(&l->l_swaplock));
741
742 #ifdef DEBUG
743 if (swapdebug & SDB_SWAPOUT)
744 printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
745 __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
746 l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
747 #endif
748
749 /*
750 * Mark it as (potentially) swapped out.
751 */
752 lwp_lock(l);
753 if (!swappable(l)) {
754 KDASSERT(l->l_cpu != curcpu());
755 lwp_unlock(l);
756 return;
757 }
758 l->l_flag &= ~LW_INMEM;
759 l->l_swtime = 0;
760 if (l->l_stat == LSRUN)
761 sched_dequeue(l);
762 lwp_unlock(l);
763 l->l_ru.ru_nswap++;
764 ++uvmexp.swapouts;
765
766 /*
767 * Do any machine-specific actions necessary before swapout.
768 * This can include saving floating point state, etc.
769 */
770 cpu_swapout(l);
771
772 /*
773 * Unwire the to-be-swapped process's user struct and kernel stack.
774 */
775 uarea_swapout(USER_TO_UAREA(l->l_addr));
776 map = &l->l_proc->p_vmspace->vm_map;
777 if (vm_map_lock_try(map)) {
778 pmap_collect(vm_map_pmap(map));
779 vm_map_unlock(map);
780 }
781 }
782
783 /*
784 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
785 * back into memory if it is currently swapped.
786 */
787
788 void
789 uvm_lwp_hold(struct lwp *l)
790 {
791
792 if (l == curlwp) {
793 atomic_inc_uint(&l->l_holdcnt);
794 } else {
795 mutex_enter(&l->l_swaplock);
796 if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
797 (l->l_flag & LW_INMEM) == 0)
798 uvm_swapin(l);
799 mutex_exit(&l->l_swaplock);
800 }
801 }
802
803 /*
804 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
805 * drops to zero, it's eligable to be swapped.
806 */
807
808 void
809 uvm_lwp_rele(struct lwp *l)
810 {
811
812 KASSERT(l->l_holdcnt != 0);
813
814 atomic_dec_uint(&l->l_holdcnt);
815 }
816