uvm_glue.c revision 1.136 1 /* $NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $");
71
72 #include "opt_kgdb.h"
73 #include "opt_kstack.h"
74 #include "opt_uvmhist.h"
75
76 /*
77 * uvm_glue.c: glue functions
78 */
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/user.h>
86 #include <sys/syncobj.h>
87 #include <sys/cpu.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout(struct lwp *);
97 static int uarea_swapin(vaddr_t);
98
99 /*
100 * XXXCDC: do these really belong here?
101 */
102
103 /*
104 * uvm_kernacc: can the kernel access a region of memory
105 *
106 * - used only by /dev/kmem driver (mem.c)
107 */
108
109 bool
110 uvm_kernacc(void *addr, size_t len, int rw)
111 {
112 bool rv;
113 vaddr_t saddr, eaddr;
114 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115
116 saddr = trunc_page((vaddr_t)addr);
117 eaddr = round_page((vaddr_t)addr + len);
118 vm_map_lock_read(kernel_map);
119 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 vm_map_unlock_read(kernel_map);
121
122 return(rv);
123 }
124
125 #ifdef KGDB
126 /*
127 * Change protections on kernel pages from addr to addr+len
128 * (presumably so debugger can plant a breakpoint).
129 *
130 * We force the protection change at the pmap level. If we were
131 * to use vm_map_protect a change to allow writing would be lazily-
132 * applied meaning we would still take a protection fault, something
133 * we really don't want to do. It would also fragment the kernel
134 * map unnecessarily. We cannot use pmap_protect since it also won't
135 * enforce a write-enable request. Using pmap_enter is the only way
136 * we can ensure the change takes place properly.
137 */
138 void
139 uvm_chgkprot(void *addr, size_t len, int rw)
140 {
141 vm_prot_t prot;
142 paddr_t pa;
143 vaddr_t sva, eva;
144
145 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 eva = round_page((vaddr_t)addr + len);
147 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 /*
149 * Extract physical address for the page.
150 */
151 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 panic("%s: invalid page", __func__);
153 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 }
155 pmap_update(pmap_kernel());
156 }
157 #endif
158
159 /*
160 * uvm_vslock: wire user memory for I/O
161 *
162 * - called from physio and sys___sysctl
163 * - XXXCDC: consider nuking this (or making it a macro?)
164 */
165
166 int
167 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 {
169 struct vm_map *map;
170 vaddr_t start, end;
171 int error;
172
173 map = &vs->vm_map;
174 start = trunc_page((vaddr_t)addr);
175 end = round_page((vaddr_t)addr + len);
176 error = uvm_fault_wire(map, start, end, access_type, 0);
177 return error;
178 }
179
180 /*
181 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 *
183 * - called from physio and sys___sysctl
184 * - XXXCDC: consider nuking this (or making it a macro?)
185 */
186
187 void
188 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 {
190 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 round_page((vaddr_t)addr + len));
192 }
193
194 /*
195 * uvm_proc_fork: fork a virtual address space
196 *
197 * - the address space is copied as per parent map's inherit values
198 */
199 void
200 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 {
202
203 if (shared == true) {
204 p2->p_vmspace = NULL;
205 uvmspace_share(p1, p2);
206 } else {
207 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 }
209
210 cpu_proc_fork(p1, p2);
211 }
212
213
214 /*
215 * uvm_lwp_fork: fork a thread
216 *
217 * - a new "user" structure is allocated for the child process
218 * [filled in by MD layer...]
219 * - if specified, the child gets a new user stack described by
220 * stack and stacksize
221 * - NOTE: the kernel stack may be at a different location in the child
222 * process, and thus addresses of automatic variables may be invalid
223 * after cpu_lwp_fork returns in the child process. We do nothing here
224 * after cpu_lwp_fork returns.
225 * - XXXCDC: we need a way for this to return a failure value rather
226 * than just hang
227 */
228 void
229 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 void (*func)(void *), void *arg)
231 {
232 int error;
233
234 /*
235 * Wire down the U-area for the process, which contains the PCB
236 * and the kernel stack. Wired state is stored in l->l_flag's
237 * L_INMEM bit rather than in the vm_map_entry's wired count
238 * to prevent kernel_map fragmentation. If we reused a cached U-area,
239 * L_INMEM will already be set and we don't need to do anything.
240 *
241 * Note the kernel stack gets read/write accesses right off the bat.
242 */
243
244 if ((l2->l_flag & LW_INMEM) == 0) {
245 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246
247 if ((error = uarea_swapin(uarea)) != 0)
248 panic("%s: uvm_fault_wire failed: %d", __func__, error);
249 #ifdef PMAP_UAREA
250 /* Tell the pmap this is a u-area mapping */
251 PMAP_UAREA(uarea);
252 #endif
253 l2->l_flag |= LW_INMEM;
254 }
255
256 #ifdef KSTACK_CHECK_MAGIC
257 /*
258 * fill stack with magic number
259 */
260 kstack_setup_magic(l2);
261 #endif
262
263 /*
264 * cpu_lwp_fork() copy and update the pcb, and make the child ready
265 * to run. If this is a normal user fork, the child will exit
266 * directly to user mode via child_return() on its first time
267 * slice and will not return here. If this is a kernel thread,
268 * the specified entry point will be executed.
269 */
270 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
271 }
272
273 static int
274 uarea_swapin(vaddr_t addr)
275 {
276
277 return uvm_fault_wire(kernel_map, addr, addr + USPACE,
278 VM_PROT_READ | VM_PROT_WRITE, 0);
279 }
280
281 static void
282 uarea_swapout(vaddr_t addr)
283 {
284
285 uvm_fault_unwire(kernel_map, addr, addr + USPACE);
286 }
287
288 #ifndef USPACE_ALIGN
289 #define USPACE_ALIGN 0
290 #endif
291
292 static pool_cache_t uvm_uarea_cache;
293
294 static int
295 uarea_ctor(void *arg, void *obj, int flags)
296 {
297
298 KASSERT((flags & PR_WAITOK) != 0);
299 return uarea_swapin((vaddr_t)obj);
300 }
301
302 static void *
303 uarea_poolpage_alloc(struct pool *pp, int flags)
304 {
305
306 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
307 USPACE_ALIGN, UVM_KMF_PAGEABLE |
308 ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
309 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
310 }
311
312 static void
313 uarea_poolpage_free(struct pool *pp, void *addr)
314 {
315
316 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
317 UVM_KMF_PAGEABLE);
318 }
319
320 static struct pool_allocator uvm_uarea_allocator = {
321 .pa_alloc = uarea_poolpage_alloc,
322 .pa_free = uarea_poolpage_free,
323 .pa_pagesz = USPACE,
324 };
325
326 void
327 uvm_uarea_init(void)
328 {
329 int flags = PR_NOTOUCH;
330
331 /*
332 * specify PR_NOALIGN unless the alignment provided by
333 * the backend (USPACE_ALIGN) is sufficient to provide
334 * pool page size (UPSACE) alignment.
335 */
336
337 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
338 (USPACE_ALIGN % USPACE) != 0) {
339 flags |= PR_NOALIGN;
340 }
341
342 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
343 "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
344 }
345
346 /*
347 * uvm_uarea_alloc: allocate a u-area
348 */
349
350 bool
351 uvm_uarea_alloc(vaddr_t *uaddrp)
352 {
353
354 *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
355 return true;
356 }
357
358 /*
359 * uvm_uarea_free: free a u-area
360 */
361
362 void
363 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
364 {
365
366 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
367 }
368
369 /*
370 * uvm_proc_exit: exit a virtual address space
371 *
372 * - borrow proc0's address space because freeing the vmspace
373 * of the dead process may block.
374 */
375
376 void
377 uvm_proc_exit(struct proc *p)
378 {
379 struct lwp *l = curlwp; /* XXX */
380 struct vmspace *ovm;
381
382 KASSERT(p == l->l_proc);
383 ovm = p->p_vmspace;
384
385 /*
386 * borrow proc0's address space.
387 */
388 KPREEMPT_DISABLE(l);
389 pmap_deactivate(l);
390 p->p_vmspace = proc0.p_vmspace;
391 pmap_activate(l);
392 KPREEMPT_ENABLE(l);
393
394 uvmspace_free(ovm);
395 }
396
397 void
398 uvm_lwp_exit(struct lwp *l)
399 {
400 vaddr_t va = USER_TO_UAREA(l->l_addr);
401
402 l->l_flag &= ~LW_INMEM;
403 uvm_uarea_free(va, l->l_cpu);
404 l->l_addr = NULL;
405 }
406
407 /*
408 * uvm_init_limit: init per-process VM limits
409 *
410 * - called for process 0 and then inherited by all others.
411 */
412
413 void
414 uvm_init_limits(struct proc *p)
415 {
416
417 /*
418 * Set up the initial limits on process VM. Set the maximum
419 * resident set size to be all of (reasonably) available memory.
420 * This causes any single, large process to start random page
421 * replacement once it fills memory.
422 */
423
424 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
425 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
426 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
427 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
428 p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
429 p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
430 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
431 }
432
433 #ifdef DEBUG
434 int enableswap = 1;
435 int swapdebug = 0;
436 #define SDB_FOLLOW 1
437 #define SDB_SWAPIN 2
438 #define SDB_SWAPOUT 4
439 #endif
440
441 /*
442 * uvm_swapin: swap in an lwp's u-area.
443 *
444 * - must be called with the LWP's swap lock held.
445 * - naturally, must not be called with l == curlwp
446 */
447
448 void
449 uvm_swapin(struct lwp *l)
450 {
451 int error;
452
453 KASSERT(mutex_owned(&l->l_swaplock));
454 KASSERT(l != curlwp);
455
456 error = uarea_swapin(USER_TO_UAREA(l->l_addr));
457 if (error) {
458 panic("%s: rewiring stack failed: %d", __func__, error);
459 }
460
461 /*
462 * Some architectures need to be notified when the user area has
463 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
464 */
465 cpu_swapin(l);
466 lwp_lock(l);
467 if (l->l_stat == LSRUN)
468 sched_enqueue(l, false);
469 l->l_flag |= LW_INMEM;
470 l->l_swtime = 0;
471 lwp_unlock(l);
472 ++uvmexp.swapins;
473 }
474
475 /*
476 * uvm_kick_scheduler: kick the scheduler into action if not running.
477 *
478 * - called when swapped out processes have been awoken.
479 */
480
481 void
482 uvm_kick_scheduler(void)
483 {
484
485 if (uvm.swap_running == false)
486 return;
487
488 mutex_enter(&uvm_scheduler_mutex);
489 uvm.scheduler_kicked = true;
490 cv_signal(&uvm.scheduler_cv);
491 mutex_exit(&uvm_scheduler_mutex);
492 }
493
494 /*
495 * uvm_scheduler: process zero main loop
496 *
497 * - attempt to swapin every swaped-out, runnable process in order of
498 * priority.
499 * - if not enough memory, wake the pagedaemon and let it clear space.
500 */
501
502 void
503 uvm_scheduler(void)
504 {
505 struct lwp *l, *ll;
506 int pri;
507 int ppri;
508
509 l = curlwp;
510 lwp_lock(l);
511 l->l_priority = PRI_VM;
512 l->l_class = SCHED_FIFO;
513 lwp_unlock(l);
514
515 for (;;) {
516 #ifdef DEBUG
517 mutex_enter(&uvm_scheduler_mutex);
518 while (!enableswap)
519 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
520 mutex_exit(&uvm_scheduler_mutex);
521 #endif
522 ll = NULL; /* process to choose */
523 ppri = INT_MIN; /* its priority */
524
525 mutex_enter(proc_lock);
526 LIST_FOREACH(l, &alllwp, l_list) {
527 /* is it a runnable swapped out process? */
528 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
529 pri = l->l_swtime + l->l_slptime -
530 (l->l_proc->p_nice - NZERO) * 8;
531 if (pri > ppri) { /* higher priority? */
532 ll = l;
533 ppri = pri;
534 }
535 }
536 }
537 #ifdef DEBUG
538 if (swapdebug & SDB_FOLLOW)
539 printf("%s: running, procp %p pri %d\n", __func__, ll,
540 ppri);
541 #endif
542 /*
543 * Nothing to do, back to sleep
544 */
545 if ((l = ll) == NULL) {
546 mutex_exit(proc_lock);
547 mutex_enter(&uvm_scheduler_mutex);
548 if (uvm.scheduler_kicked == false)
549 cv_wait(&uvm.scheduler_cv,
550 &uvm_scheduler_mutex);
551 uvm.scheduler_kicked = false;
552 mutex_exit(&uvm_scheduler_mutex);
553 continue;
554 }
555
556 /*
557 * we have found swapped out process which we would like
558 * to bring back in.
559 *
560 * XXX: this part is really bogus cuz we could deadlock
561 * on memory despite our feeble check
562 */
563 if (uvmexp.free > atop(USPACE)) {
564 #ifdef DEBUG
565 if (swapdebug & SDB_SWAPIN)
566 printf("swapin: pid %d(%s)@%p, pri %d "
567 "free %d\n", l->l_proc->p_pid,
568 l->l_proc->p_comm, l->l_addr, ppri,
569 uvmexp.free);
570 #endif
571 mutex_enter(&l->l_swaplock);
572 mutex_exit(proc_lock);
573 uvm_swapin(l);
574 mutex_exit(&l->l_swaplock);
575 continue;
576 } else {
577 /*
578 * not enough memory, jab the pageout daemon and
579 * wait til the coast is clear
580 */
581 mutex_exit(proc_lock);
582 #ifdef DEBUG
583 if (swapdebug & SDB_FOLLOW)
584 printf("%s: no room for pid %d(%s),"
585 " free %d\n", __func__, l->l_proc->p_pid,
586 l->l_proc->p_comm, uvmexp.free);
587 #endif
588 uvm_wait("schedpwait");
589 #ifdef DEBUG
590 if (swapdebug & SDB_FOLLOW)
591 printf("%s: room again, free %d\n", __func__,
592 uvmexp.free);
593 #endif
594 }
595 }
596 }
597
598 /*
599 * swappable: is LWP "l" swappable?
600 */
601
602 static bool
603 swappable(struct lwp *l)
604 {
605
606 if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
607 return false;
608 if ((l->l_pflag & LP_RUNNING) != 0)
609 return false;
610 if (l->l_holdcnt != 0)
611 return false;
612 if (l->l_class != SCHED_OTHER)
613 return false;
614 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
615 return false;
616 if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
617 return false;
618 return true;
619 }
620
621 /*
622 * swapout_threads: find threads that can be swapped and unwire their
623 * u-areas.
624 *
625 * - called by the pagedaemon
626 * - try and swap at least one processs
627 * - processes that are sleeping or stopped for maxslp or more seconds
628 * are swapped... otherwise the longest-sleeping or stopped process
629 * is swapped, otherwise the longest resident process...
630 */
631
632 void
633 uvm_swapout_threads(void)
634 {
635 struct lwp *l;
636 struct lwp *outl, *outl2;
637 int outpri, outpri2;
638 int didswap = 0;
639 extern int maxslp;
640 bool gotit;
641
642 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
643
644 #ifdef DEBUG
645 if (!enableswap)
646 return;
647 #endif
648
649 /*
650 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
651 * outl2/outpri2: the longest resident thread (its swap time)
652 */
653 outl = outl2 = NULL;
654 outpri = outpri2 = 0;
655
656 restart:
657 mutex_enter(proc_lock);
658 LIST_FOREACH(l, &alllwp, l_list) {
659 KASSERT(l->l_proc != NULL);
660 if (!mutex_tryenter(&l->l_swaplock))
661 continue;
662 if (!swappable(l)) {
663 mutex_exit(&l->l_swaplock);
664 continue;
665 }
666 switch (l->l_stat) {
667 case LSONPROC:
668 break;
669
670 case LSRUN:
671 if (l->l_swtime > outpri2) {
672 outl2 = l;
673 outpri2 = l->l_swtime;
674 }
675 break;
676
677 case LSSLEEP:
678 case LSSTOP:
679 if (l->l_slptime >= maxslp) {
680 mutex_exit(proc_lock);
681 uvm_swapout(l);
682 /*
683 * Locking in the wrong direction -
684 * try to prevent the LWP from exiting.
685 */
686 gotit = mutex_tryenter(proc_lock);
687 mutex_exit(&l->l_swaplock);
688 didswap++;
689 if (!gotit)
690 goto restart;
691 continue;
692 } else if (l->l_slptime > outpri) {
693 outl = l;
694 outpri = l->l_slptime;
695 }
696 break;
697 }
698 mutex_exit(&l->l_swaplock);
699 }
700
701 /*
702 * If we didn't get rid of any real duds, toss out the next most
703 * likely sleeping/stopped or running candidate. We only do this
704 * if we are real low on memory since we don't gain much by doing
705 * it (USPACE bytes).
706 */
707 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
708 if ((l = outl) == NULL)
709 l = outl2;
710 #ifdef DEBUG
711 if (swapdebug & SDB_SWAPOUT)
712 printf("%s: no duds, try procp %p\n", __func__, l);
713 #endif
714 if (l) {
715 mutex_enter(&l->l_swaplock);
716 mutex_exit(proc_lock);
717 if (swappable(l))
718 uvm_swapout(l);
719 mutex_exit(&l->l_swaplock);
720 return;
721 }
722 }
723
724 mutex_exit(proc_lock);
725 }
726
727 /*
728 * uvm_swapout: swap out lwp "l"
729 *
730 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
731 * the pmap.
732 * - must be called with l->l_swaplock held.
733 * - XXXCDC: should deactivate all process' private anonymous memory
734 */
735
736 static void
737 uvm_swapout(struct lwp *l)
738 {
739 struct vm_map *map;
740
741 KASSERT(mutex_owned(&l->l_swaplock));
742
743 #ifdef DEBUG
744 if (swapdebug & SDB_SWAPOUT)
745 printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
746 __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
747 l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
748 #endif
749
750 /*
751 * Mark it as (potentially) swapped out.
752 */
753 lwp_lock(l);
754 if (!swappable(l)) {
755 KDASSERT(l->l_cpu != curcpu());
756 lwp_unlock(l);
757 return;
758 }
759 l->l_flag &= ~LW_INMEM;
760 l->l_swtime = 0;
761 if (l->l_stat == LSRUN)
762 sched_dequeue(l);
763 lwp_unlock(l);
764 l->l_ru.ru_nswap++;
765 ++uvmexp.swapouts;
766
767 /*
768 * Do any machine-specific actions necessary before swapout.
769 * This can include saving floating point state, etc.
770 */
771 cpu_swapout(l);
772
773 /*
774 * Unwire the to-be-swapped process's user struct and kernel stack.
775 */
776 uarea_swapout(USER_TO_UAREA(l->l_addr));
777 map = &l->l_proc->p_vmspace->vm_map;
778 if (vm_map_lock_try(map)) {
779 pmap_collect(vm_map_pmap(map));
780 vm_map_unlock(map);
781 }
782 }
783
784 /*
785 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
786 * back into memory if it is currently swapped.
787 */
788
789 void
790 uvm_lwp_hold(struct lwp *l)
791 {
792
793 if (l == curlwp) {
794 atomic_inc_uint(&l->l_holdcnt);
795 } else {
796 mutex_enter(&l->l_swaplock);
797 if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
798 (l->l_flag & LW_INMEM) == 0)
799 uvm_swapin(l);
800 mutex_exit(&l->l_swaplock);
801 }
802 }
803
804 /*
805 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
806 * drops to zero, it's eligable to be swapped.
807 */
808
809 void
810 uvm_lwp_rele(struct lwp *l)
811 {
812
813 KASSERT(l->l_holdcnt != 0);
814
815 atomic_dec_uint(&l->l_holdcnt);
816 }
817