Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.136
      1 /*	$NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.136 2009/03/29 01:02:51 mrg Exp $");
     71 
     72 #include "opt_kgdb.h"
     73 #include "opt_kstack.h"
     74 #include "opt_uvmhist.h"
     75 
     76 /*
     77  * uvm_glue.c: glue functions
     78  */
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/user.h>
     86 #include <sys/syncobj.h>
     87 #include <sys/cpu.h>
     88 #include <sys/atomic.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 /*
     93  * local prototypes
     94  */
     95 
     96 static void uvm_swapout(struct lwp *);
     97 static int uarea_swapin(vaddr_t);
     98 
     99 /*
    100  * XXXCDC: do these really belong here?
    101  */
    102 
    103 /*
    104  * uvm_kernacc: can the kernel access a region of memory
    105  *
    106  * - used only by /dev/kmem driver (mem.c)
    107  */
    108 
    109 bool
    110 uvm_kernacc(void *addr, size_t len, int rw)
    111 {
    112 	bool rv;
    113 	vaddr_t saddr, eaddr;
    114 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    115 
    116 	saddr = trunc_page((vaddr_t)addr);
    117 	eaddr = round_page((vaddr_t)addr + len);
    118 	vm_map_lock_read(kernel_map);
    119 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    120 	vm_map_unlock_read(kernel_map);
    121 
    122 	return(rv);
    123 }
    124 
    125 #ifdef KGDB
    126 /*
    127  * Change protections on kernel pages from addr to addr+len
    128  * (presumably so debugger can plant a breakpoint).
    129  *
    130  * We force the protection change at the pmap level.  If we were
    131  * to use vm_map_protect a change to allow writing would be lazily-
    132  * applied meaning we would still take a protection fault, something
    133  * we really don't want to do.  It would also fragment the kernel
    134  * map unnecessarily.  We cannot use pmap_protect since it also won't
    135  * enforce a write-enable request.  Using pmap_enter is the only way
    136  * we can ensure the change takes place properly.
    137  */
    138 void
    139 uvm_chgkprot(void *addr, size_t len, int rw)
    140 {
    141 	vm_prot_t prot;
    142 	paddr_t pa;
    143 	vaddr_t sva, eva;
    144 
    145 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    146 	eva = round_page((vaddr_t)addr + len);
    147 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    148 		/*
    149 		 * Extract physical address for the page.
    150 		 */
    151 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    152 			panic("%s: invalid page", __func__);
    153 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    154 	}
    155 	pmap_update(pmap_kernel());
    156 }
    157 #endif
    158 
    159 /*
    160  * uvm_vslock: wire user memory for I/O
    161  *
    162  * - called from physio and sys___sysctl
    163  * - XXXCDC: consider nuking this (or making it a macro?)
    164  */
    165 
    166 int
    167 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    168 {
    169 	struct vm_map *map;
    170 	vaddr_t start, end;
    171 	int error;
    172 
    173 	map = &vs->vm_map;
    174 	start = trunc_page((vaddr_t)addr);
    175 	end = round_page((vaddr_t)addr + len);
    176 	error = uvm_fault_wire(map, start, end, access_type, 0);
    177 	return error;
    178 }
    179 
    180 /*
    181  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    182  *
    183  * - called from physio and sys___sysctl
    184  * - XXXCDC: consider nuking this (or making it a macro?)
    185  */
    186 
    187 void
    188 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    189 {
    190 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    191 		round_page((vaddr_t)addr + len));
    192 }
    193 
    194 /*
    195  * uvm_proc_fork: fork a virtual address space
    196  *
    197  * - the address space is copied as per parent map's inherit values
    198  */
    199 void
    200 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    201 {
    202 
    203 	if (shared == true) {
    204 		p2->p_vmspace = NULL;
    205 		uvmspace_share(p1, p2);
    206 	} else {
    207 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    208 	}
    209 
    210 	cpu_proc_fork(p1, p2);
    211 }
    212 
    213 
    214 /*
    215  * uvm_lwp_fork: fork a thread
    216  *
    217  * - a new "user" structure is allocated for the child process
    218  *	[filled in by MD layer...]
    219  * - if specified, the child gets a new user stack described by
    220  *	stack and stacksize
    221  * - NOTE: the kernel stack may be at a different location in the child
    222  *	process, and thus addresses of automatic variables may be invalid
    223  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    224  *	after cpu_lwp_fork returns.
    225  * - XXXCDC: we need a way for this to return a failure value rather
    226  *   than just hang
    227  */
    228 void
    229 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    230     void (*func)(void *), void *arg)
    231 {
    232 	int error;
    233 
    234 	/*
    235 	 * Wire down the U-area for the process, which contains the PCB
    236 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    237 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    238 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    239 	 * L_INMEM will already be set and we don't need to do anything.
    240 	 *
    241 	 * Note the kernel stack gets read/write accesses right off the bat.
    242 	 */
    243 
    244 	if ((l2->l_flag & LW_INMEM) == 0) {
    245 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    246 
    247 		if ((error = uarea_swapin(uarea)) != 0)
    248 			panic("%s: uvm_fault_wire failed: %d", __func__, error);
    249 #ifdef PMAP_UAREA
    250 		/* Tell the pmap this is a u-area mapping */
    251 		PMAP_UAREA(uarea);
    252 #endif
    253 		l2->l_flag |= LW_INMEM;
    254 	}
    255 
    256 #ifdef KSTACK_CHECK_MAGIC
    257 	/*
    258 	 * fill stack with magic number
    259 	 */
    260 	kstack_setup_magic(l2);
    261 #endif
    262 
    263 	/*
    264 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    265  	 * to run.  If this is a normal user fork, the child will exit
    266 	 * directly to user mode via child_return() on its first time
    267 	 * slice and will not return here.  If this is a kernel thread,
    268 	 * the specified entry point will be executed.
    269 	 */
    270 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    271 }
    272 
    273 static int
    274 uarea_swapin(vaddr_t addr)
    275 {
    276 
    277 	return uvm_fault_wire(kernel_map, addr, addr + USPACE,
    278 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    279 }
    280 
    281 static void
    282 uarea_swapout(vaddr_t addr)
    283 {
    284 
    285 	uvm_fault_unwire(kernel_map, addr, addr + USPACE);
    286 }
    287 
    288 #ifndef USPACE_ALIGN
    289 #define	USPACE_ALIGN	0
    290 #endif
    291 
    292 static pool_cache_t uvm_uarea_cache;
    293 
    294 static int
    295 uarea_ctor(void *arg, void *obj, int flags)
    296 {
    297 
    298 	KASSERT((flags & PR_WAITOK) != 0);
    299 	return uarea_swapin((vaddr_t)obj);
    300 }
    301 
    302 static void *
    303 uarea_poolpage_alloc(struct pool *pp, int flags)
    304 {
    305 
    306 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    307 	    USPACE_ALIGN, UVM_KMF_PAGEABLE |
    308 	    ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
    309 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    310 }
    311 
    312 static void
    313 uarea_poolpage_free(struct pool *pp, void *addr)
    314 {
    315 
    316 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    317 	    UVM_KMF_PAGEABLE);
    318 }
    319 
    320 static struct pool_allocator uvm_uarea_allocator = {
    321 	.pa_alloc = uarea_poolpage_alloc,
    322 	.pa_free = uarea_poolpage_free,
    323 	.pa_pagesz = USPACE,
    324 };
    325 
    326 void
    327 uvm_uarea_init(void)
    328 {
    329 	int flags = PR_NOTOUCH;
    330 
    331 	/*
    332 	 * specify PR_NOALIGN unless the alignment provided by
    333 	 * the backend (USPACE_ALIGN) is sufficient to provide
    334 	 * pool page size (UPSACE) alignment.
    335 	 */
    336 
    337 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    338 	    (USPACE_ALIGN % USPACE) != 0) {
    339 		flags |= PR_NOALIGN;
    340 	}
    341 
    342 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    343 	    "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
    344 }
    345 
    346 /*
    347  * uvm_uarea_alloc: allocate a u-area
    348  */
    349 
    350 bool
    351 uvm_uarea_alloc(vaddr_t *uaddrp)
    352 {
    353 
    354 	*uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    355 	return true;
    356 }
    357 
    358 /*
    359  * uvm_uarea_free: free a u-area
    360  */
    361 
    362 void
    363 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
    364 {
    365 
    366 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    367 }
    368 
    369 /*
    370  * uvm_proc_exit: exit a virtual address space
    371  *
    372  * - borrow proc0's address space because freeing the vmspace
    373  *   of the dead process may block.
    374  */
    375 
    376 void
    377 uvm_proc_exit(struct proc *p)
    378 {
    379 	struct lwp *l = curlwp; /* XXX */
    380 	struct vmspace *ovm;
    381 
    382 	KASSERT(p == l->l_proc);
    383 	ovm = p->p_vmspace;
    384 
    385 	/*
    386 	 * borrow proc0's address space.
    387 	 */
    388 	KPREEMPT_DISABLE(l);
    389 	pmap_deactivate(l);
    390 	p->p_vmspace = proc0.p_vmspace;
    391 	pmap_activate(l);
    392 	KPREEMPT_ENABLE(l);
    393 
    394 	uvmspace_free(ovm);
    395 }
    396 
    397 void
    398 uvm_lwp_exit(struct lwp *l)
    399 {
    400 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    401 
    402 	l->l_flag &= ~LW_INMEM;
    403 	uvm_uarea_free(va, l->l_cpu);
    404 	l->l_addr = NULL;
    405 }
    406 
    407 /*
    408  * uvm_init_limit: init per-process VM limits
    409  *
    410  * - called for process 0 and then inherited by all others.
    411  */
    412 
    413 void
    414 uvm_init_limits(struct proc *p)
    415 {
    416 
    417 	/*
    418 	 * Set up the initial limits on process VM.  Set the maximum
    419 	 * resident set size to be all of (reasonably) available memory.
    420 	 * This causes any single, large process to start random page
    421 	 * replacement once it fills memory.
    422 	 */
    423 
    424 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    425 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    426 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    427 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    428 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
    429 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
    430 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    431 }
    432 
    433 #ifdef DEBUG
    434 int	enableswap = 1;
    435 int	swapdebug = 0;
    436 #define	SDB_FOLLOW	1
    437 #define SDB_SWAPIN	2
    438 #define SDB_SWAPOUT	4
    439 #endif
    440 
    441 /*
    442  * uvm_swapin: swap in an lwp's u-area.
    443  *
    444  * - must be called with the LWP's swap lock held.
    445  * - naturally, must not be called with l == curlwp
    446  */
    447 
    448 void
    449 uvm_swapin(struct lwp *l)
    450 {
    451 	int error;
    452 
    453 	KASSERT(mutex_owned(&l->l_swaplock));
    454 	KASSERT(l != curlwp);
    455 
    456 	error = uarea_swapin(USER_TO_UAREA(l->l_addr));
    457 	if (error) {
    458 		panic("%s: rewiring stack failed: %d", __func__, error);
    459 	}
    460 
    461 	/*
    462 	 * Some architectures need to be notified when the user area has
    463 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    464 	 */
    465 	cpu_swapin(l);
    466 	lwp_lock(l);
    467 	if (l->l_stat == LSRUN)
    468 		sched_enqueue(l, false);
    469 	l->l_flag |= LW_INMEM;
    470 	l->l_swtime = 0;
    471 	lwp_unlock(l);
    472 	++uvmexp.swapins;
    473 }
    474 
    475 /*
    476  * uvm_kick_scheduler: kick the scheduler into action if not running.
    477  *
    478  * - called when swapped out processes have been awoken.
    479  */
    480 
    481 void
    482 uvm_kick_scheduler(void)
    483 {
    484 
    485 	if (uvm.swap_running == false)
    486 		return;
    487 
    488 	mutex_enter(&uvm_scheduler_mutex);
    489 	uvm.scheduler_kicked = true;
    490 	cv_signal(&uvm.scheduler_cv);
    491 	mutex_exit(&uvm_scheduler_mutex);
    492 }
    493 
    494 /*
    495  * uvm_scheduler: process zero main loop
    496  *
    497  * - attempt to swapin every swaped-out, runnable process in order of
    498  *	priority.
    499  * - if not enough memory, wake the pagedaemon and let it clear space.
    500  */
    501 
    502 void
    503 uvm_scheduler(void)
    504 {
    505 	struct lwp *l, *ll;
    506 	int pri;
    507 	int ppri;
    508 
    509 	l = curlwp;
    510 	lwp_lock(l);
    511 	l->l_priority = PRI_VM;
    512 	l->l_class = SCHED_FIFO;
    513 	lwp_unlock(l);
    514 
    515 	for (;;) {
    516 #ifdef DEBUG
    517 		mutex_enter(&uvm_scheduler_mutex);
    518 		while (!enableswap)
    519 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
    520 		mutex_exit(&uvm_scheduler_mutex);
    521 #endif
    522 		ll = NULL;		/* process to choose */
    523 		ppri = INT_MIN;		/* its priority */
    524 
    525 		mutex_enter(proc_lock);
    526 		LIST_FOREACH(l, &alllwp, l_list) {
    527 			/* is it a runnable swapped out process? */
    528 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
    529 				pri = l->l_swtime + l->l_slptime -
    530 				    (l->l_proc->p_nice - NZERO) * 8;
    531 				if (pri > ppri) {   /* higher priority? */
    532 					ll = l;
    533 					ppri = pri;
    534 				}
    535 			}
    536 		}
    537 #ifdef DEBUG
    538 		if (swapdebug & SDB_FOLLOW)
    539 			printf("%s: running, procp %p pri %d\n", __func__, ll,
    540 			    ppri);
    541 #endif
    542 		/*
    543 		 * Nothing to do, back to sleep
    544 		 */
    545 		if ((l = ll) == NULL) {
    546 			mutex_exit(proc_lock);
    547 			mutex_enter(&uvm_scheduler_mutex);
    548 			if (uvm.scheduler_kicked == false)
    549 				cv_wait(&uvm.scheduler_cv,
    550 				    &uvm_scheduler_mutex);
    551 			uvm.scheduler_kicked = false;
    552 			mutex_exit(&uvm_scheduler_mutex);
    553 			continue;
    554 		}
    555 
    556 		/*
    557 		 * we have found swapped out process which we would like
    558 		 * to bring back in.
    559 		 *
    560 		 * XXX: this part is really bogus cuz we could deadlock
    561 		 * on memory despite our feeble check
    562 		 */
    563 		if (uvmexp.free > atop(USPACE)) {
    564 #ifdef DEBUG
    565 			if (swapdebug & SDB_SWAPIN)
    566 				printf("swapin: pid %d(%s)@%p, pri %d "
    567 				    "free %d\n", l->l_proc->p_pid,
    568 				    l->l_proc->p_comm, l->l_addr, ppri,
    569 				    uvmexp.free);
    570 #endif
    571 			mutex_enter(&l->l_swaplock);
    572 			mutex_exit(proc_lock);
    573 			uvm_swapin(l);
    574 			mutex_exit(&l->l_swaplock);
    575 			continue;
    576 		} else {
    577 			/*
    578 			 * not enough memory, jab the pageout daemon and
    579 			 * wait til the coast is clear
    580 			 */
    581 			mutex_exit(proc_lock);
    582 #ifdef DEBUG
    583 			if (swapdebug & SDB_FOLLOW)
    584 				printf("%s: no room for pid %d(%s),"
    585 				    " free %d\n", __func__, l->l_proc->p_pid,
    586 				    l->l_proc->p_comm, uvmexp.free);
    587 #endif
    588 			uvm_wait("schedpwait");
    589 #ifdef DEBUG
    590 			if (swapdebug & SDB_FOLLOW)
    591 				printf("%s: room again, free %d\n", __func__,
    592 				    uvmexp.free);
    593 #endif
    594 		}
    595 	}
    596 }
    597 
    598 /*
    599  * swappable: is LWP "l" swappable?
    600  */
    601 
    602 static bool
    603 swappable(struct lwp *l)
    604 {
    605 
    606 	if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
    607 		return false;
    608 	if ((l->l_pflag & LP_RUNNING) != 0)
    609 		return false;
    610 	if (l->l_holdcnt != 0)
    611 		return false;
    612 	if (l->l_class != SCHED_OTHER)
    613 		return false;
    614 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
    615 		return false;
    616 	if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
    617 		return false;
    618 	return true;
    619 }
    620 
    621 /*
    622  * swapout_threads: find threads that can be swapped and unwire their
    623  *	u-areas.
    624  *
    625  * - called by the pagedaemon
    626  * - try and swap at least one processs
    627  * - processes that are sleeping or stopped for maxslp or more seconds
    628  *   are swapped... otherwise the longest-sleeping or stopped process
    629  *   is swapped, otherwise the longest resident process...
    630  */
    631 
    632 void
    633 uvm_swapout_threads(void)
    634 {
    635 	struct lwp *l;
    636 	struct lwp *outl, *outl2;
    637 	int outpri, outpri2;
    638 	int didswap = 0;
    639 	extern int maxslp;
    640 	bool gotit;
    641 
    642 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    643 
    644 #ifdef DEBUG
    645 	if (!enableswap)
    646 		return;
    647 #endif
    648 
    649 	/*
    650 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    651 	 * outl2/outpri2: the longest resident thread (its swap time)
    652 	 */
    653 	outl = outl2 = NULL;
    654 	outpri = outpri2 = 0;
    655 
    656  restart:
    657 	mutex_enter(proc_lock);
    658 	LIST_FOREACH(l, &alllwp, l_list) {
    659 		KASSERT(l->l_proc != NULL);
    660 		if (!mutex_tryenter(&l->l_swaplock))
    661 			continue;
    662 		if (!swappable(l)) {
    663 			mutex_exit(&l->l_swaplock);
    664 			continue;
    665 		}
    666 		switch (l->l_stat) {
    667 		case LSONPROC:
    668 			break;
    669 
    670 		case LSRUN:
    671 			if (l->l_swtime > outpri2) {
    672 				outl2 = l;
    673 				outpri2 = l->l_swtime;
    674 			}
    675 			break;
    676 
    677 		case LSSLEEP:
    678 		case LSSTOP:
    679 			if (l->l_slptime >= maxslp) {
    680 				mutex_exit(proc_lock);
    681 				uvm_swapout(l);
    682 				/*
    683 				 * Locking in the wrong direction -
    684 				 * try to prevent the LWP from exiting.
    685 				 */
    686 				gotit = mutex_tryenter(proc_lock);
    687 				mutex_exit(&l->l_swaplock);
    688 				didswap++;
    689 				if (!gotit)
    690 					goto restart;
    691 				continue;
    692 			} else if (l->l_slptime > outpri) {
    693 				outl = l;
    694 				outpri = l->l_slptime;
    695 			}
    696 			break;
    697 		}
    698 		mutex_exit(&l->l_swaplock);
    699 	}
    700 
    701 	/*
    702 	 * If we didn't get rid of any real duds, toss out the next most
    703 	 * likely sleeping/stopped or running candidate.  We only do this
    704 	 * if we are real low on memory since we don't gain much by doing
    705 	 * it (USPACE bytes).
    706 	 */
    707 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    708 		if ((l = outl) == NULL)
    709 			l = outl2;
    710 #ifdef DEBUG
    711 		if (swapdebug & SDB_SWAPOUT)
    712 			printf("%s: no duds, try procp %p\n", __func__, l);
    713 #endif
    714 		if (l) {
    715 			mutex_enter(&l->l_swaplock);
    716 			mutex_exit(proc_lock);
    717 			if (swappable(l))
    718 				uvm_swapout(l);
    719 			mutex_exit(&l->l_swaplock);
    720 			return;
    721 		}
    722 	}
    723 
    724 	mutex_exit(proc_lock);
    725 }
    726 
    727 /*
    728  * uvm_swapout: swap out lwp "l"
    729  *
    730  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    731  *   the pmap.
    732  * - must be called with l->l_swaplock held.
    733  * - XXXCDC: should deactivate all process' private anonymous memory
    734  */
    735 
    736 static void
    737 uvm_swapout(struct lwp *l)
    738 {
    739 	struct vm_map *map;
    740 
    741 	KASSERT(mutex_owned(&l->l_swaplock));
    742 
    743 #ifdef DEBUG
    744 	if (swapdebug & SDB_SWAPOUT)
    745 		printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    746 		   __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    747 		   l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
    748 #endif
    749 
    750 	/*
    751 	 * Mark it as (potentially) swapped out.
    752 	 */
    753 	lwp_lock(l);
    754 	if (!swappable(l)) {
    755 		KDASSERT(l->l_cpu != curcpu());
    756 		lwp_unlock(l);
    757 		return;
    758 	}
    759 	l->l_flag &= ~LW_INMEM;
    760 	l->l_swtime = 0;
    761 	if (l->l_stat == LSRUN)
    762 		sched_dequeue(l);
    763 	lwp_unlock(l);
    764 	l->l_ru.ru_nswap++;
    765 	++uvmexp.swapouts;
    766 
    767 	/*
    768 	 * Do any machine-specific actions necessary before swapout.
    769 	 * This can include saving floating point state, etc.
    770 	 */
    771 	cpu_swapout(l);
    772 
    773 	/*
    774 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    775 	 */
    776 	uarea_swapout(USER_TO_UAREA(l->l_addr));
    777 	map = &l->l_proc->p_vmspace->vm_map;
    778 	if (vm_map_lock_try(map)) {
    779 		pmap_collect(vm_map_pmap(map));
    780 		vm_map_unlock(map);
    781 	}
    782 }
    783 
    784 /*
    785  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
    786  * back into memory if it is currently swapped.
    787  */
    788 
    789 void
    790 uvm_lwp_hold(struct lwp *l)
    791 {
    792 
    793 	if (l == curlwp) {
    794 		atomic_inc_uint(&l->l_holdcnt);
    795 	} else {
    796 		mutex_enter(&l->l_swaplock);
    797 		if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
    798 		    (l->l_flag & LW_INMEM) == 0)
    799 			uvm_swapin(l);
    800 		mutex_exit(&l->l_swaplock);
    801 	}
    802 }
    803 
    804 /*
    805  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
    806  * drops to zero, it's eligable to be swapped.
    807  */
    808 
    809 void
    810 uvm_lwp_rele(struct lwp *l)
    811 {
    812 
    813 	KASSERT(l->l_holdcnt != 0);
    814 
    815 	atomic_dec_uint(&l->l_holdcnt);
    816 }
    817