uvm_glue.c revision 1.139 1 /* $NetBSD: uvm_glue.c,v 1.139 2009/08/09 22:19:09 matt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.139 2009/08/09 22:19:09 matt Exp $");
71
72 #include "opt_kgdb.h"
73 #include "opt_kstack.h"
74 #include "opt_uvmhist.h"
75
76 /*
77 * uvm_glue.c: glue functions
78 */
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/user.h>
86 #include <sys/syncobj.h>
87 #include <sys/cpu.h>
88 #include <sys/atomic.h>
89
90 #include <uvm/uvm.h>
91
92 /*
93 * local prototypes
94 */
95
96 static int uarea_swapin(vaddr_t);
97 static void uvm_swapout(struct lwp *);
98
99 /*
100 * XXXCDC: do these really belong here?
101 */
102
103 /*
104 * uvm_kernacc: can the kernel access a region of memory
105 *
106 * - used only by /dev/kmem driver (mem.c)
107 */
108
109 bool
110 uvm_kernacc(void *addr, size_t len, int rw)
111 {
112 bool rv;
113 vaddr_t saddr, eaddr;
114 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
115
116 saddr = trunc_page((vaddr_t)addr);
117 eaddr = round_page((vaddr_t)addr + len);
118 vm_map_lock_read(kernel_map);
119 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
120 vm_map_unlock_read(kernel_map);
121
122 return(rv);
123 }
124
125 #ifdef KGDB
126 /*
127 * Change protections on kernel pages from addr to addr+len
128 * (presumably so debugger can plant a breakpoint).
129 *
130 * We force the protection change at the pmap level. If we were
131 * to use vm_map_protect a change to allow writing would be lazily-
132 * applied meaning we would still take a protection fault, something
133 * we really don't want to do. It would also fragment the kernel
134 * map unnecessarily. We cannot use pmap_protect since it also won't
135 * enforce a write-enable request. Using pmap_enter is the only way
136 * we can ensure the change takes place properly.
137 */
138 void
139 uvm_chgkprot(void *addr, size_t len, int rw)
140 {
141 vm_prot_t prot;
142 paddr_t pa;
143 vaddr_t sva, eva;
144
145 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
146 eva = round_page((vaddr_t)addr + len);
147 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
148 /*
149 * Extract physical address for the page.
150 */
151 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
152 panic("%s: invalid page", __func__);
153 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
154 }
155 pmap_update(pmap_kernel());
156 }
157 #endif
158
159 /*
160 * uvm_vslock: wire user memory for I/O
161 *
162 * - called from physio and sys___sysctl
163 * - XXXCDC: consider nuking this (or making it a macro?)
164 */
165
166 int
167 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
168 {
169 struct vm_map *map;
170 vaddr_t start, end;
171 int error;
172
173 map = &vs->vm_map;
174 start = trunc_page((vaddr_t)addr);
175 end = round_page((vaddr_t)addr + len);
176 error = uvm_fault_wire(map, start, end, access_type, 0);
177 return error;
178 }
179
180 /*
181 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
182 *
183 * - called from physio and sys___sysctl
184 * - XXXCDC: consider nuking this (or making it a macro?)
185 */
186
187 void
188 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
189 {
190 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
191 round_page((vaddr_t)addr + len));
192 }
193
194 /*
195 * uvm_proc_fork: fork a virtual address space
196 *
197 * - the address space is copied as per parent map's inherit values
198 */
199 void
200 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
201 {
202
203 if (shared == true) {
204 p2->p_vmspace = NULL;
205 uvmspace_share(p1, p2);
206 } else {
207 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
208 }
209
210 cpu_proc_fork(p1, p2);
211 }
212
213
214 /*
215 * uvm_lwp_fork: fork a thread
216 *
217 * - a new "user" structure is allocated for the child process
218 * [filled in by MD layer...]
219 * - if specified, the child gets a new user stack described by
220 * stack and stacksize
221 * - NOTE: the kernel stack may be at a different location in the child
222 * process, and thus addresses of automatic variables may be invalid
223 * after cpu_lwp_fork returns in the child process. We do nothing here
224 * after cpu_lwp_fork returns.
225 * - XXXCDC: we need a way for this to return a failure value rather
226 * than just hang
227 */
228 void
229 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
230 void (*func)(void *), void *arg)
231 {
232
233 /*
234 * Wire down the U-area for the process, which contains the PCB
235 * and the kernel stack. Wired state is stored in l->l_flag's
236 * L_INMEM bit rather than in the vm_map_entry's wired count
237 * to prevent kernel_map fragmentation. If we reused a cached U-area,
238 * L_INMEM will already be set and we don't need to do anything.
239 *
240 * Note the kernel stack gets read/write accesses right off the bat.
241 */
242
243 if ((l2->l_flag & LW_INMEM) == 0) {
244 #ifdef VMSWAP_UAREA
245 vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
246 int error;
247
248 if ((error = uarea_swapin(uarea)) != 0)
249 panic("%s: uvm_fault_wire failed: %d", __func__, error);
250 #ifdef PMAP_UAREA
251 /* Tell the pmap this is a u-area mapping */
252 PMAP_UAREA(uarea);
253 #endif
254 #endif /* VMSWAP_UAREA */
255 l2->l_flag |= LW_INMEM;
256 }
257
258 /* Fill stack with magic number. */
259 kstack_setup_magic(l2);
260
261 /*
262 * cpu_lwp_fork() copy and update the pcb, and make the child ready
263 * to run. If this is a normal user fork, the child will exit
264 * directly to user mode via child_return() on its first time
265 * slice and will not return here. If this is a kernel thread,
266 * the specified entry point will be executed.
267 */
268 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
269
270 /* Inactive emap for new LWP. */
271 l2->l_emap_gen = UVM_EMAP_INACTIVE;
272 }
273
274 static int
275 uarea_swapin(vaddr_t addr)
276 {
277
278 return uvm_fault_wire(kernel_map, addr, addr + USPACE,
279 VM_PROT_READ | VM_PROT_WRITE, 0);
280 }
281
282 #ifdef VMSWAP_UAREA
283 static void
284 uarea_swapout(vaddr_t addr)
285 {
286
287 uvm_fault_unwire(kernel_map, addr, addr + USPACE);
288 }
289 #endif /* VMSWAP_UAREA */
290
291 #ifndef USPACE_ALIGN
292 #define USPACE_ALIGN 0
293 #endif
294
295 static pool_cache_t uvm_uarea_cache;
296
297 static int
298 uarea_ctor(void *arg, void *obj, int flags)
299 {
300 #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
301 if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0)
302 return 0;
303 #endif
304 KASSERT((flags & PR_WAITOK) != 0);
305 return uarea_swapin((vaddr_t)obj);
306 }
307
308 static void *
309 uarea_poolpage_alloc(struct pool *pp, int flags)
310 {
311 #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
312 if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
313 struct vm_page *pg;
314 vaddr_t va;
315
316 pg = uvm_pagealloc(NULL, 0, NULL,
317 ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
318 if (pg == NULL)
319 return NULL;
320 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
321 if (va == 0)
322 uvm_pagefree(pg);
323 return (void *)va;
324 }
325 #endif
326 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
327 USPACE_ALIGN, UVM_KMF_PAGEABLE |
328 ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
329 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
330 }
331
332 static void
333 uarea_poolpage_free(struct pool *pp, void *addr)
334 {
335 #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
336 if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
337 paddr_t pa;
338
339 pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
340 KASSERT(pa != 0);
341 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
342 return;
343 }
344 #endif
345 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
346 UVM_KMF_PAGEABLE);
347 }
348
349 static struct pool_allocator uvm_uarea_allocator = {
350 .pa_alloc = uarea_poolpage_alloc,
351 .pa_free = uarea_poolpage_free,
352 .pa_pagesz = USPACE,
353 };
354
355 void
356 uvm_uarea_init(void)
357 {
358 int flags = PR_NOTOUCH;
359
360 /*
361 * specify PR_NOALIGN unless the alignment provided by
362 * the backend (USPACE_ALIGN) is sufficient to provide
363 * pool page size (UPSACE) alignment.
364 */
365
366 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
367 (USPACE_ALIGN % USPACE) != 0) {
368 flags |= PR_NOALIGN;
369 }
370
371 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
372 "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
373 }
374
375 /*
376 * uvm_uarea_alloc: allocate a u-area
377 */
378
379 bool
380 uvm_uarea_alloc(vaddr_t *uaddrp)
381 {
382
383 *uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
384 return true;
385 }
386
387 /*
388 * uvm_uarea_free: free a u-area
389 */
390
391 void
392 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
393 {
394
395 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
396 }
397
398 /*
399 * uvm_proc_exit: exit a virtual address space
400 *
401 * - borrow proc0's address space because freeing the vmspace
402 * of the dead process may block.
403 */
404
405 void
406 uvm_proc_exit(struct proc *p)
407 {
408 struct lwp *l = curlwp; /* XXX */
409 struct vmspace *ovm;
410
411 KASSERT(p == l->l_proc);
412 ovm = p->p_vmspace;
413
414 /*
415 * borrow proc0's address space.
416 */
417 KPREEMPT_DISABLE(l);
418 pmap_deactivate(l);
419 p->p_vmspace = proc0.p_vmspace;
420 pmap_activate(l);
421 KPREEMPT_ENABLE(l);
422
423 uvmspace_free(ovm);
424 }
425
426 void
427 uvm_lwp_exit(struct lwp *l)
428 {
429 vaddr_t va = USER_TO_UAREA(l->l_addr);
430
431 l->l_flag &= ~LW_INMEM;
432 uvm_uarea_free(va, l->l_cpu);
433 l->l_addr = NULL;
434 }
435
436 /*
437 * uvm_init_limit: init per-process VM limits
438 *
439 * - called for process 0 and then inherited by all others.
440 */
441
442 void
443 uvm_init_limits(struct proc *p)
444 {
445
446 /*
447 * Set up the initial limits on process VM. Set the maximum
448 * resident set size to be all of (reasonably) available memory.
449 * This causes any single, large process to start random page
450 * replacement once it fills memory.
451 */
452
453 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
454 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
455 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
456 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
457 p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
458 p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
459 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
460 }
461
462 #ifdef DEBUG
463 int enableswap = 1;
464 int swapdebug = 0;
465 #define SDB_FOLLOW 1
466 #define SDB_SWAPIN 2
467 #define SDB_SWAPOUT 4
468 #endif
469
470 /*
471 * uvm_swapin: swap in an lwp's u-area.
472 *
473 * - must be called with the LWP's swap lock held.
474 * - naturally, must not be called with l == curlwp
475 */
476
477 void
478 uvm_swapin(struct lwp *l)
479 {
480 #ifdef VMSWAP_UAREA
481 int error;
482 #endif
483
484 KASSERT(mutex_owned(&l->l_swaplock));
485 KASSERT(l != curlwp);
486
487 #ifdef VMSWAP_UAREA
488 error = uarea_swapin(USER_TO_UAREA(l->l_addr));
489 if (error) {
490 panic("%s: rewiring stack failed: %d", __func__, error);
491 }
492
493 /*
494 * Some architectures need to be notified when the user area has
495 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
496 */
497 cpu_swapin(l);
498 #endif
499 lwp_lock(l);
500 if (l->l_stat == LSRUN)
501 sched_enqueue(l, false);
502 l->l_flag |= LW_INMEM;
503 l->l_swtime = 0;
504 lwp_unlock(l);
505 ++uvmexp.swapins;
506 }
507
508 /*
509 * uvm_kick_scheduler: kick the scheduler into action if not running.
510 *
511 * - called when swapped out processes have been awoken.
512 */
513
514 void
515 uvm_kick_scheduler(void)
516 {
517
518 if (uvm.swap_running == false)
519 return;
520
521 mutex_enter(&uvm_scheduler_mutex);
522 uvm.scheduler_kicked = true;
523 cv_signal(&uvm.scheduler_cv);
524 mutex_exit(&uvm_scheduler_mutex);
525 }
526
527 /*
528 * uvm_scheduler: process zero main loop
529 *
530 * - attempt to swapin every swaped-out, runnable process in order of
531 * priority.
532 * - if not enough memory, wake the pagedaemon and let it clear space.
533 */
534
535 void
536 uvm_scheduler(void)
537 {
538 struct lwp *l, *ll;
539 int pri;
540 int ppri;
541
542 l = curlwp;
543 lwp_lock(l);
544 l->l_priority = PRI_VM;
545 l->l_class = SCHED_FIFO;
546 lwp_unlock(l);
547
548 for (;;) {
549 #ifdef DEBUG
550 mutex_enter(&uvm_scheduler_mutex);
551 while (!enableswap)
552 cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
553 mutex_exit(&uvm_scheduler_mutex);
554 #endif
555 ll = NULL; /* process to choose */
556 ppri = INT_MIN; /* its priority */
557
558 mutex_enter(proc_lock);
559 LIST_FOREACH(l, &alllwp, l_list) {
560 /* is it a runnable swapped out process? */
561 if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
562 pri = l->l_swtime + l->l_slptime -
563 (l->l_proc->p_nice - NZERO) * 8;
564 if (pri > ppri) { /* higher priority? */
565 ll = l;
566 ppri = pri;
567 }
568 }
569 }
570 #ifdef DEBUG
571 if (swapdebug & SDB_FOLLOW)
572 printf("%s: running, procp %p pri %d\n", __func__, ll,
573 ppri);
574 #endif
575 /*
576 * Nothing to do, back to sleep
577 */
578 if ((l = ll) == NULL) {
579 mutex_exit(proc_lock);
580 mutex_enter(&uvm_scheduler_mutex);
581 if (uvm.scheduler_kicked == false)
582 cv_wait(&uvm.scheduler_cv,
583 &uvm_scheduler_mutex);
584 uvm.scheduler_kicked = false;
585 mutex_exit(&uvm_scheduler_mutex);
586 continue;
587 }
588
589 /*
590 * we have found swapped out process which we would like
591 * to bring back in.
592 *
593 * XXX: this part is really bogus cuz we could deadlock
594 * on memory despite our feeble check
595 */
596 if (uvmexp.free > atop(USPACE)) {
597 #ifdef DEBUG
598 if (swapdebug & SDB_SWAPIN)
599 printf("swapin: pid %d(%s)@%p, pri %d "
600 "free %d\n", l->l_proc->p_pid,
601 l->l_proc->p_comm, l->l_addr, ppri,
602 uvmexp.free);
603 #endif
604 mutex_enter(&l->l_swaplock);
605 mutex_exit(proc_lock);
606 uvm_swapin(l);
607 mutex_exit(&l->l_swaplock);
608 continue;
609 } else {
610 /*
611 * not enough memory, jab the pageout daemon and
612 * wait til the coast is clear
613 */
614 mutex_exit(proc_lock);
615 #ifdef DEBUG
616 if (swapdebug & SDB_FOLLOW)
617 printf("%s: no room for pid %d(%s),"
618 " free %d\n", __func__, l->l_proc->p_pid,
619 l->l_proc->p_comm, uvmexp.free);
620 #endif
621 uvm_wait("schedpwait");
622 #ifdef DEBUG
623 if (swapdebug & SDB_FOLLOW)
624 printf("%s: room again, free %d\n", __func__,
625 uvmexp.free);
626 #endif
627 }
628 }
629 }
630
631 /*
632 * swappable: is LWP "l" swappable?
633 */
634
635 static bool
636 swappable(struct lwp *l)
637 {
638
639 if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
640 return false;
641 if ((l->l_pflag & LP_RUNNING) != 0)
642 return false;
643 if (l->l_holdcnt != 0)
644 return false;
645 if (l->l_class != SCHED_OTHER)
646 return false;
647 if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
648 return false;
649 if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
650 return false;
651 return true;
652 }
653
654 /*
655 * swapout_threads: find threads that can be swapped and unwire their
656 * u-areas.
657 *
658 * - called by the pagedaemon
659 * - try and swap at least one processs
660 * - processes that are sleeping or stopped for maxslp or more seconds
661 * are swapped... otherwise the longest-sleeping or stopped process
662 * is swapped, otherwise the longest resident process...
663 */
664
665 void
666 uvm_swapout_threads(void)
667 {
668 struct lwp *l;
669 struct lwp *outl, *outl2;
670 int outpri, outpri2;
671 int didswap = 0;
672 extern int maxslp;
673 bool gotit;
674
675 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
676
677 #ifdef DEBUG
678 if (!enableswap)
679 return;
680 #endif
681
682 /*
683 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
684 * outl2/outpri2: the longest resident thread (its swap time)
685 */
686 outl = outl2 = NULL;
687 outpri = outpri2 = 0;
688
689 restart:
690 mutex_enter(proc_lock);
691 LIST_FOREACH(l, &alllwp, l_list) {
692 KASSERT(l->l_proc != NULL);
693 if (!mutex_tryenter(&l->l_swaplock))
694 continue;
695 if (!swappable(l)) {
696 mutex_exit(&l->l_swaplock);
697 continue;
698 }
699 switch (l->l_stat) {
700 case LSONPROC:
701 break;
702
703 case LSRUN:
704 if (l->l_swtime > outpri2) {
705 outl2 = l;
706 outpri2 = l->l_swtime;
707 }
708 break;
709
710 case LSSLEEP:
711 case LSSTOP:
712 if (l->l_slptime >= maxslp) {
713 mutex_exit(proc_lock);
714 uvm_swapout(l);
715 /*
716 * Locking in the wrong direction -
717 * try to prevent the LWP from exiting.
718 */
719 gotit = mutex_tryenter(proc_lock);
720 mutex_exit(&l->l_swaplock);
721 didswap++;
722 if (!gotit)
723 goto restart;
724 continue;
725 } else if (l->l_slptime > outpri) {
726 outl = l;
727 outpri = l->l_slptime;
728 }
729 break;
730 }
731 mutex_exit(&l->l_swaplock);
732 }
733
734 /*
735 * If we didn't get rid of any real duds, toss out the next most
736 * likely sleeping/stopped or running candidate. We only do this
737 * if we are real low on memory since we don't gain much by doing
738 * it (USPACE bytes).
739 */
740 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
741 if ((l = outl) == NULL)
742 l = outl2;
743 #ifdef DEBUG
744 if (swapdebug & SDB_SWAPOUT)
745 printf(__func__ ": no duds, try procp %p\n", l);
746 #endif
747 if (l) {
748 mutex_enter(&l->l_swaplock);
749 mutex_exit(proc_lock);
750 if (swappable(l))
751 uvm_swapout(l);
752 mutex_exit(&l->l_swaplock);
753 return;
754 }
755 }
756
757 mutex_exit(proc_lock);
758 }
759
760 /*
761 * uvm_swapout: swap out lwp "l"
762 *
763 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
764 * the pmap.
765 * - must be called with l->l_swaplock held.
766 * - XXXCDC: should deactivate all process' private anonymous memory
767 */
768
769 static void
770 uvm_swapout(struct lwp *l)
771 {
772 struct vm_map *map;
773
774 KASSERT(mutex_owned(&l->l_swaplock));
775
776 #ifdef DEBUG
777 if (swapdebug & SDB_SWAPOUT)
778 printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
779 __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
780 l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
781 #endif
782
783 /*
784 * Mark it as (potentially) swapped out.
785 */
786 lwp_lock(l);
787 if (!swappable(l)) {
788 KDASSERT(l->l_cpu != curcpu());
789 lwp_unlock(l);
790 return;
791 }
792 l->l_flag &= ~LW_INMEM;
793 l->l_swtime = 0;
794 if (l->l_stat == LSRUN)
795 sched_dequeue(l);
796 lwp_unlock(l);
797 l->l_ru.ru_nswap++;
798 ++uvmexp.swapouts;
799
800 #ifdef VMSWAP_UAREA
801 /*
802 * Do any machine-specific actions necessary before swapout.
803 * This can include saving floating point state, etc.
804 */
805 cpu_swapout(l);
806
807 /*
808 * Unwire the to-be-swapped process's user struct and kernel stack.
809 */
810 uarea_swapout(USER_TO_UAREA(l->l_addr));
811 #endif
812 map = &l->l_proc->p_vmspace->vm_map;
813 if (vm_map_lock_try(map)) {
814 pmap_collect(vm_map_pmap(map));
815 vm_map_unlock(map);
816 }
817 }
818
819 /*
820 * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
821 * back into memory if it is currently swapped.
822 */
823
824 void
825 uvm_lwp_hold(struct lwp *l)
826 {
827
828 if (l == curlwp) {
829 atomic_inc_uint(&l->l_holdcnt);
830 } else {
831 mutex_enter(&l->l_swaplock);
832 if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
833 (l->l_flag & LW_INMEM) == 0)
834 uvm_swapin(l);
835 mutex_exit(&l->l_swaplock);
836 }
837 }
838
839 /*
840 * uvm_lwp_rele: release a hold on lwp "l". when the holdcount
841 * drops to zero, it's eligable to be swapped.
842 */
843
844 void
845 uvm_lwp_rele(struct lwp *l)
846 {
847
848 KASSERT(l->l_holdcnt != 0);
849
850 atomic_dec_uint(&l->l_holdcnt);
851 }
852