Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.139
      1 /*	$NetBSD: uvm_glue.c,v 1.139 2009/08/09 22:19:09 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.139 2009/08/09 22:19:09 matt Exp $");
     71 
     72 #include "opt_kgdb.h"
     73 #include "opt_kstack.h"
     74 #include "opt_uvmhist.h"
     75 
     76 /*
     77  * uvm_glue.c: glue functions
     78  */
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/buf.h>
     85 #include <sys/user.h>
     86 #include <sys/syncobj.h>
     87 #include <sys/cpu.h>
     88 #include <sys/atomic.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 /*
     93  * local prototypes
     94  */
     95 
     96 static int uarea_swapin(vaddr_t);
     97 static void uvm_swapout(struct lwp *);
     98 
     99 /*
    100  * XXXCDC: do these really belong here?
    101  */
    102 
    103 /*
    104  * uvm_kernacc: can the kernel access a region of memory
    105  *
    106  * - used only by /dev/kmem driver (mem.c)
    107  */
    108 
    109 bool
    110 uvm_kernacc(void *addr, size_t len, int rw)
    111 {
    112 	bool rv;
    113 	vaddr_t saddr, eaddr;
    114 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    115 
    116 	saddr = trunc_page((vaddr_t)addr);
    117 	eaddr = round_page((vaddr_t)addr + len);
    118 	vm_map_lock_read(kernel_map);
    119 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    120 	vm_map_unlock_read(kernel_map);
    121 
    122 	return(rv);
    123 }
    124 
    125 #ifdef KGDB
    126 /*
    127  * Change protections on kernel pages from addr to addr+len
    128  * (presumably so debugger can plant a breakpoint).
    129  *
    130  * We force the protection change at the pmap level.  If we were
    131  * to use vm_map_protect a change to allow writing would be lazily-
    132  * applied meaning we would still take a protection fault, something
    133  * we really don't want to do.  It would also fragment the kernel
    134  * map unnecessarily.  We cannot use pmap_protect since it also won't
    135  * enforce a write-enable request.  Using pmap_enter is the only way
    136  * we can ensure the change takes place properly.
    137  */
    138 void
    139 uvm_chgkprot(void *addr, size_t len, int rw)
    140 {
    141 	vm_prot_t prot;
    142 	paddr_t pa;
    143 	vaddr_t sva, eva;
    144 
    145 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    146 	eva = round_page((vaddr_t)addr + len);
    147 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    148 		/*
    149 		 * Extract physical address for the page.
    150 		 */
    151 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    152 			panic("%s: invalid page", __func__);
    153 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    154 	}
    155 	pmap_update(pmap_kernel());
    156 }
    157 #endif
    158 
    159 /*
    160  * uvm_vslock: wire user memory for I/O
    161  *
    162  * - called from physio and sys___sysctl
    163  * - XXXCDC: consider nuking this (or making it a macro?)
    164  */
    165 
    166 int
    167 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    168 {
    169 	struct vm_map *map;
    170 	vaddr_t start, end;
    171 	int error;
    172 
    173 	map = &vs->vm_map;
    174 	start = trunc_page((vaddr_t)addr);
    175 	end = round_page((vaddr_t)addr + len);
    176 	error = uvm_fault_wire(map, start, end, access_type, 0);
    177 	return error;
    178 }
    179 
    180 /*
    181  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    182  *
    183  * - called from physio and sys___sysctl
    184  * - XXXCDC: consider nuking this (or making it a macro?)
    185  */
    186 
    187 void
    188 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    189 {
    190 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    191 		round_page((vaddr_t)addr + len));
    192 }
    193 
    194 /*
    195  * uvm_proc_fork: fork a virtual address space
    196  *
    197  * - the address space is copied as per parent map's inherit values
    198  */
    199 void
    200 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    201 {
    202 
    203 	if (shared == true) {
    204 		p2->p_vmspace = NULL;
    205 		uvmspace_share(p1, p2);
    206 	} else {
    207 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    208 	}
    209 
    210 	cpu_proc_fork(p1, p2);
    211 }
    212 
    213 
    214 /*
    215  * uvm_lwp_fork: fork a thread
    216  *
    217  * - a new "user" structure is allocated for the child process
    218  *	[filled in by MD layer...]
    219  * - if specified, the child gets a new user stack described by
    220  *	stack and stacksize
    221  * - NOTE: the kernel stack may be at a different location in the child
    222  *	process, and thus addresses of automatic variables may be invalid
    223  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    224  *	after cpu_lwp_fork returns.
    225  * - XXXCDC: we need a way for this to return a failure value rather
    226  *   than just hang
    227  */
    228 void
    229 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    230     void (*func)(void *), void *arg)
    231 {
    232 
    233 	/*
    234 	 * Wire down the U-area for the process, which contains the PCB
    235 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    236 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    237 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    238 	 * L_INMEM will already be set and we don't need to do anything.
    239 	 *
    240 	 * Note the kernel stack gets read/write accesses right off the bat.
    241 	 */
    242 
    243 	if ((l2->l_flag & LW_INMEM) == 0) {
    244 #ifdef VMSWAP_UAREA
    245 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    246 		int error;
    247 
    248 		if ((error = uarea_swapin(uarea)) != 0)
    249 			panic("%s: uvm_fault_wire failed: %d", __func__, error);
    250 #ifdef PMAP_UAREA
    251 		/* Tell the pmap this is a u-area mapping */
    252 		PMAP_UAREA(uarea);
    253 #endif
    254 #endif /* VMSWAP_UAREA */
    255 		l2->l_flag |= LW_INMEM;
    256 	}
    257 
    258 	/* Fill stack with magic number. */
    259 	kstack_setup_magic(l2);
    260 
    261 	/*
    262 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    263  	 * to run.  If this is a normal user fork, the child will exit
    264 	 * directly to user mode via child_return() on its first time
    265 	 * slice and will not return here.  If this is a kernel thread,
    266 	 * the specified entry point will be executed.
    267 	 */
    268 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    269 
    270 	/* Inactive emap for new LWP. */
    271 	l2->l_emap_gen = UVM_EMAP_INACTIVE;
    272 }
    273 
    274 static int
    275 uarea_swapin(vaddr_t addr)
    276 {
    277 
    278 	return uvm_fault_wire(kernel_map, addr, addr + USPACE,
    279 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    280 }
    281 
    282 #ifdef VMSWAP_UAREA
    283 static void
    284 uarea_swapout(vaddr_t addr)
    285 {
    286 
    287 	uvm_fault_unwire(kernel_map, addr, addr + USPACE);
    288 }
    289 #endif /* VMSWAP_UAREA */
    290 
    291 #ifndef USPACE_ALIGN
    292 #define	USPACE_ALIGN	0
    293 #endif
    294 
    295 static pool_cache_t uvm_uarea_cache;
    296 
    297 static int
    298 uarea_ctor(void *arg, void *obj, int flags)
    299 {
    300 #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
    301 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0)
    302 		return 0;
    303 #endif
    304 	KASSERT((flags & PR_WAITOK) != 0);
    305 	return uarea_swapin((vaddr_t)obj);
    306 }
    307 
    308 static void *
    309 uarea_poolpage_alloc(struct pool *pp, int flags)
    310 {
    311 #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
    312 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    313 		struct vm_page *pg;
    314 		vaddr_t va;
    315 
    316 		pg = uvm_pagealloc(NULL, 0, NULL,
    317 		   ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
    318 		if (pg == NULL)
    319 			return NULL;
    320 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    321 		if (va == 0)
    322 			uvm_pagefree(pg);
    323 		return (void *)va;
    324 	}
    325 #endif
    326 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    327 	    USPACE_ALIGN, UVM_KMF_PAGEABLE |
    328 	    ((flags & PR_WAITOK) != 0 ? UVM_KMF_WAITVA :
    329 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    330 }
    331 
    332 static void
    333 uarea_poolpage_free(struct pool *pp, void *addr)
    334 {
    335 #if defined(PMAP_MAP_POOLPAGE) && !defined(VMSWAP_UAREA)
    336 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    337 		paddr_t pa;
    338 
    339 		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
    340 		KASSERT(pa != 0);
    341 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    342 		return;
    343 	}
    344 #endif
    345 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    346 	    UVM_KMF_PAGEABLE);
    347 }
    348 
    349 static struct pool_allocator uvm_uarea_allocator = {
    350 	.pa_alloc = uarea_poolpage_alloc,
    351 	.pa_free = uarea_poolpage_free,
    352 	.pa_pagesz = USPACE,
    353 };
    354 
    355 void
    356 uvm_uarea_init(void)
    357 {
    358 	int flags = PR_NOTOUCH;
    359 
    360 	/*
    361 	 * specify PR_NOALIGN unless the alignment provided by
    362 	 * the backend (USPACE_ALIGN) is sufficient to provide
    363 	 * pool page size (UPSACE) alignment.
    364 	 */
    365 
    366 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    367 	    (USPACE_ALIGN % USPACE) != 0) {
    368 		flags |= PR_NOALIGN;
    369 	}
    370 
    371 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    372 	    "uarea", &uvm_uarea_allocator, IPL_NONE, uarea_ctor, NULL, NULL);
    373 }
    374 
    375 /*
    376  * uvm_uarea_alloc: allocate a u-area
    377  */
    378 
    379 bool
    380 uvm_uarea_alloc(vaddr_t *uaddrp)
    381 {
    382 
    383 	*uaddrp = (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    384 	return true;
    385 }
    386 
    387 /*
    388  * uvm_uarea_free: free a u-area
    389  */
    390 
    391 void
    392 uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
    393 {
    394 
    395 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    396 }
    397 
    398 /*
    399  * uvm_proc_exit: exit a virtual address space
    400  *
    401  * - borrow proc0's address space because freeing the vmspace
    402  *   of the dead process may block.
    403  */
    404 
    405 void
    406 uvm_proc_exit(struct proc *p)
    407 {
    408 	struct lwp *l = curlwp; /* XXX */
    409 	struct vmspace *ovm;
    410 
    411 	KASSERT(p == l->l_proc);
    412 	ovm = p->p_vmspace;
    413 
    414 	/*
    415 	 * borrow proc0's address space.
    416 	 */
    417 	KPREEMPT_DISABLE(l);
    418 	pmap_deactivate(l);
    419 	p->p_vmspace = proc0.p_vmspace;
    420 	pmap_activate(l);
    421 	KPREEMPT_ENABLE(l);
    422 
    423 	uvmspace_free(ovm);
    424 }
    425 
    426 void
    427 uvm_lwp_exit(struct lwp *l)
    428 {
    429 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    430 
    431 	l->l_flag &= ~LW_INMEM;
    432 	uvm_uarea_free(va, l->l_cpu);
    433 	l->l_addr = NULL;
    434 }
    435 
    436 /*
    437  * uvm_init_limit: init per-process VM limits
    438  *
    439  * - called for process 0 and then inherited by all others.
    440  */
    441 
    442 void
    443 uvm_init_limits(struct proc *p)
    444 {
    445 
    446 	/*
    447 	 * Set up the initial limits on process VM.  Set the maximum
    448 	 * resident set size to be all of (reasonably) available memory.
    449 	 * This causes any single, large process to start random page
    450 	 * replacement once it fills memory.
    451 	 */
    452 
    453 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    454 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    455 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    456 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    457 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
    458 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
    459 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    460 }
    461 
    462 #ifdef DEBUG
    463 int	enableswap = 1;
    464 int	swapdebug = 0;
    465 #define	SDB_FOLLOW	1
    466 #define SDB_SWAPIN	2
    467 #define SDB_SWAPOUT	4
    468 #endif
    469 
    470 /*
    471  * uvm_swapin: swap in an lwp's u-area.
    472  *
    473  * - must be called with the LWP's swap lock held.
    474  * - naturally, must not be called with l == curlwp
    475  */
    476 
    477 void
    478 uvm_swapin(struct lwp *l)
    479 {
    480 #ifdef VMSWAP_UAREA
    481 	int error;
    482 #endif
    483 
    484 	KASSERT(mutex_owned(&l->l_swaplock));
    485 	KASSERT(l != curlwp);
    486 
    487 #ifdef VMSWAP_UAREA
    488 	error = uarea_swapin(USER_TO_UAREA(l->l_addr));
    489 	if (error) {
    490 		panic("%s: rewiring stack failed: %d", __func__, error);
    491 	}
    492 
    493 	/*
    494 	 * Some architectures need to be notified when the user area has
    495 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    496 	 */
    497 	cpu_swapin(l);
    498 #endif
    499 	lwp_lock(l);
    500 	if (l->l_stat == LSRUN)
    501 		sched_enqueue(l, false);
    502 	l->l_flag |= LW_INMEM;
    503 	l->l_swtime = 0;
    504 	lwp_unlock(l);
    505 	++uvmexp.swapins;
    506 }
    507 
    508 /*
    509  * uvm_kick_scheduler: kick the scheduler into action if not running.
    510  *
    511  * - called when swapped out processes have been awoken.
    512  */
    513 
    514 void
    515 uvm_kick_scheduler(void)
    516 {
    517 
    518 	if (uvm.swap_running == false)
    519 		return;
    520 
    521 	mutex_enter(&uvm_scheduler_mutex);
    522 	uvm.scheduler_kicked = true;
    523 	cv_signal(&uvm.scheduler_cv);
    524 	mutex_exit(&uvm_scheduler_mutex);
    525 }
    526 
    527 /*
    528  * uvm_scheduler: process zero main loop
    529  *
    530  * - attempt to swapin every swaped-out, runnable process in order of
    531  *	priority.
    532  * - if not enough memory, wake the pagedaemon and let it clear space.
    533  */
    534 
    535 void
    536 uvm_scheduler(void)
    537 {
    538 	struct lwp *l, *ll;
    539 	int pri;
    540 	int ppri;
    541 
    542 	l = curlwp;
    543 	lwp_lock(l);
    544 	l->l_priority = PRI_VM;
    545 	l->l_class = SCHED_FIFO;
    546 	lwp_unlock(l);
    547 
    548 	for (;;) {
    549 #ifdef DEBUG
    550 		mutex_enter(&uvm_scheduler_mutex);
    551 		while (!enableswap)
    552 			cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
    553 		mutex_exit(&uvm_scheduler_mutex);
    554 #endif
    555 		ll = NULL;		/* process to choose */
    556 		ppri = INT_MIN;		/* its priority */
    557 
    558 		mutex_enter(proc_lock);
    559 		LIST_FOREACH(l, &alllwp, l_list) {
    560 			/* is it a runnable swapped out process? */
    561 			if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
    562 				pri = l->l_swtime + l->l_slptime -
    563 				    (l->l_proc->p_nice - NZERO) * 8;
    564 				if (pri > ppri) {   /* higher priority? */
    565 					ll = l;
    566 					ppri = pri;
    567 				}
    568 			}
    569 		}
    570 #ifdef DEBUG
    571 		if (swapdebug & SDB_FOLLOW)
    572 			printf("%s: running, procp %p pri %d\n", __func__, ll,
    573 			    ppri);
    574 #endif
    575 		/*
    576 		 * Nothing to do, back to sleep
    577 		 */
    578 		if ((l = ll) == NULL) {
    579 			mutex_exit(proc_lock);
    580 			mutex_enter(&uvm_scheduler_mutex);
    581 			if (uvm.scheduler_kicked == false)
    582 				cv_wait(&uvm.scheduler_cv,
    583 				    &uvm_scheduler_mutex);
    584 			uvm.scheduler_kicked = false;
    585 			mutex_exit(&uvm_scheduler_mutex);
    586 			continue;
    587 		}
    588 
    589 		/*
    590 		 * we have found swapped out process which we would like
    591 		 * to bring back in.
    592 		 *
    593 		 * XXX: this part is really bogus cuz we could deadlock
    594 		 * on memory despite our feeble check
    595 		 */
    596 		if (uvmexp.free > atop(USPACE)) {
    597 #ifdef DEBUG
    598 			if (swapdebug & SDB_SWAPIN)
    599 				printf("swapin: pid %d(%s)@%p, pri %d "
    600 				    "free %d\n", l->l_proc->p_pid,
    601 				    l->l_proc->p_comm, l->l_addr, ppri,
    602 				    uvmexp.free);
    603 #endif
    604 			mutex_enter(&l->l_swaplock);
    605 			mutex_exit(proc_lock);
    606 			uvm_swapin(l);
    607 			mutex_exit(&l->l_swaplock);
    608 			continue;
    609 		} else {
    610 			/*
    611 			 * not enough memory, jab the pageout daemon and
    612 			 * wait til the coast is clear
    613 			 */
    614 			mutex_exit(proc_lock);
    615 #ifdef DEBUG
    616 			if (swapdebug & SDB_FOLLOW)
    617 				printf("%s: no room for pid %d(%s),"
    618 				    " free %d\n", __func__, l->l_proc->p_pid,
    619 				    l->l_proc->p_comm, uvmexp.free);
    620 #endif
    621 			uvm_wait("schedpwait");
    622 #ifdef DEBUG
    623 			if (swapdebug & SDB_FOLLOW)
    624 				printf("%s: room again, free %d\n", __func__,
    625 				    uvmexp.free);
    626 #endif
    627 		}
    628 	}
    629 }
    630 
    631 /*
    632  * swappable: is LWP "l" swappable?
    633  */
    634 
    635 static bool
    636 swappable(struct lwp *l)
    637 {
    638 
    639 	if ((l->l_flag & (LW_INMEM|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
    640 		return false;
    641 	if ((l->l_pflag & LP_RUNNING) != 0)
    642 		return false;
    643 	if (l->l_holdcnt != 0)
    644 		return false;
    645 	if (l->l_class != SCHED_OTHER)
    646 		return false;
    647 	if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
    648 		return false;
    649 	if (l->l_proc->p_stat != SACTIVE && l->l_proc->p_stat != SSTOP)
    650 		return false;
    651 	return true;
    652 }
    653 
    654 /*
    655  * swapout_threads: find threads that can be swapped and unwire their
    656  *	u-areas.
    657  *
    658  * - called by the pagedaemon
    659  * - try and swap at least one processs
    660  * - processes that are sleeping or stopped for maxslp or more seconds
    661  *   are swapped... otherwise the longest-sleeping or stopped process
    662  *   is swapped, otherwise the longest resident process...
    663  */
    664 
    665 void
    666 uvm_swapout_threads(void)
    667 {
    668 	struct lwp *l;
    669 	struct lwp *outl, *outl2;
    670 	int outpri, outpri2;
    671 	int didswap = 0;
    672 	extern int maxslp;
    673 	bool gotit;
    674 
    675 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    676 
    677 #ifdef DEBUG
    678 	if (!enableswap)
    679 		return;
    680 #endif
    681 
    682 	/*
    683 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    684 	 * outl2/outpri2: the longest resident thread (its swap time)
    685 	 */
    686 	outl = outl2 = NULL;
    687 	outpri = outpri2 = 0;
    688 
    689  restart:
    690 	mutex_enter(proc_lock);
    691 	LIST_FOREACH(l, &alllwp, l_list) {
    692 		KASSERT(l->l_proc != NULL);
    693 		if (!mutex_tryenter(&l->l_swaplock))
    694 			continue;
    695 		if (!swappable(l)) {
    696 			mutex_exit(&l->l_swaplock);
    697 			continue;
    698 		}
    699 		switch (l->l_stat) {
    700 		case LSONPROC:
    701 			break;
    702 
    703 		case LSRUN:
    704 			if (l->l_swtime > outpri2) {
    705 				outl2 = l;
    706 				outpri2 = l->l_swtime;
    707 			}
    708 			break;
    709 
    710 		case LSSLEEP:
    711 		case LSSTOP:
    712 			if (l->l_slptime >= maxslp) {
    713 				mutex_exit(proc_lock);
    714 				uvm_swapout(l);
    715 				/*
    716 				 * Locking in the wrong direction -
    717 				 * try to prevent the LWP from exiting.
    718 				 */
    719 				gotit = mutex_tryenter(proc_lock);
    720 				mutex_exit(&l->l_swaplock);
    721 				didswap++;
    722 				if (!gotit)
    723 					goto restart;
    724 				continue;
    725 			} else if (l->l_slptime > outpri) {
    726 				outl = l;
    727 				outpri = l->l_slptime;
    728 			}
    729 			break;
    730 		}
    731 		mutex_exit(&l->l_swaplock);
    732 	}
    733 
    734 	/*
    735 	 * If we didn't get rid of any real duds, toss out the next most
    736 	 * likely sleeping/stopped or running candidate.  We only do this
    737 	 * if we are real low on memory since we don't gain much by doing
    738 	 * it (USPACE bytes).
    739 	 */
    740 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    741 		if ((l = outl) == NULL)
    742 			l = outl2;
    743 #ifdef DEBUG
    744 		if (swapdebug & SDB_SWAPOUT)
    745 			printf(__func__ ": no duds, try procp %p\n", l);
    746 #endif
    747 		if (l) {
    748 			mutex_enter(&l->l_swaplock);
    749 			mutex_exit(proc_lock);
    750 			if (swappable(l))
    751 				uvm_swapout(l);
    752 			mutex_exit(&l->l_swaplock);
    753 			return;
    754 		}
    755 	}
    756 
    757 	mutex_exit(proc_lock);
    758 }
    759 
    760 /*
    761  * uvm_swapout: swap out lwp "l"
    762  *
    763  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    764  *   the pmap.
    765  * - must be called with l->l_swaplock held.
    766  * - XXXCDC: should deactivate all process' private anonymous memory
    767  */
    768 
    769 static void
    770 uvm_swapout(struct lwp *l)
    771 {
    772 	struct vm_map *map;
    773 
    774 	KASSERT(mutex_owned(&l->l_swaplock));
    775 
    776 #ifdef DEBUG
    777 	if (swapdebug & SDB_SWAPOUT)
    778 		printf("%s: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    779 		   __func__, l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    780 		   l->l_addr, l->l_stat, l->l_slptime, uvmexp.free);
    781 #endif
    782 
    783 	/*
    784 	 * Mark it as (potentially) swapped out.
    785 	 */
    786 	lwp_lock(l);
    787 	if (!swappable(l)) {
    788 		KDASSERT(l->l_cpu != curcpu());
    789 		lwp_unlock(l);
    790 		return;
    791 	}
    792 	l->l_flag &= ~LW_INMEM;
    793 	l->l_swtime = 0;
    794 	if (l->l_stat == LSRUN)
    795 		sched_dequeue(l);
    796 	lwp_unlock(l);
    797 	l->l_ru.ru_nswap++;
    798 	++uvmexp.swapouts;
    799 
    800 #ifdef VMSWAP_UAREA
    801 	/*
    802 	 * Do any machine-specific actions necessary before swapout.
    803 	 * This can include saving floating point state, etc.
    804 	 */
    805 	cpu_swapout(l);
    806 
    807 	/*
    808 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    809 	 */
    810 	uarea_swapout(USER_TO_UAREA(l->l_addr));
    811 #endif
    812 	map = &l->l_proc->p_vmspace->vm_map;
    813 	if (vm_map_lock_try(map)) {
    814 		pmap_collect(vm_map_pmap(map));
    815 		vm_map_unlock(map);
    816 	}
    817 }
    818 
    819 /*
    820  * uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
    821  * back into memory if it is currently swapped.
    822  */
    823 
    824 void
    825 uvm_lwp_hold(struct lwp *l)
    826 {
    827 
    828 	if (l == curlwp) {
    829 		atomic_inc_uint(&l->l_holdcnt);
    830 	} else {
    831 		mutex_enter(&l->l_swaplock);
    832 		if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
    833 		    (l->l_flag & LW_INMEM) == 0)
    834 			uvm_swapin(l);
    835 		mutex_exit(&l->l_swaplock);
    836 	}
    837 }
    838 
    839 /*
    840  * uvm_lwp_rele: release a hold on lwp "l".  when the holdcount
    841  * drops to zero, it's eligable to be swapped.
    842  */
    843 
    844 void
    845 uvm_lwp_rele(struct lwp *l)
    846 {
    847 
    848 	KASSERT(l->l_holdcnt != 0);
    849 
    850 	atomic_dec_uint(&l->l_holdcnt);
    851 }
    852