uvm_glue.c revision 1.153 1 /* $NetBSD: uvm_glue.c,v 1.153 2012/01/27 19:48:41 para Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
37 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.153 2012/01/27 19:48:41 para Exp $");
66
67 #include "opt_kgdb.h"
68 #include "opt_kstack.h"
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_glue.c: glue functions
73 */
74
75 #include <sys/param.h>
76 #include <sys/kernel.h>
77
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/syncobj.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/lwp.h>
86
87 #include <uvm/uvm.h>
88
89 /*
90 * uvm_kernacc: test if kernel can access a memory region.
91 *
92 * => Currently used only by /dev/kmem driver (dev/mm.c).
93 */
94 bool
95 uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
96 {
97 vaddr_t saddr = trunc_page((vaddr_t)addr);
98 vaddr_t eaddr = round_page(saddr + len);
99 bool rv;
100
101 vm_map_lock_read(kernel_map);
102 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
103 vm_map_unlock_read(kernel_map);
104
105 return rv;
106 }
107
108 #ifdef KGDB
109 /*
110 * Change protections on kernel pages from addr to addr+len
111 * (presumably so debugger can plant a breakpoint).
112 *
113 * We force the protection change at the pmap level. If we were
114 * to use vm_map_protect a change to allow writing would be lazily-
115 * applied meaning we would still take a protection fault, something
116 * we really don't want to do. It would also fragment the kernel
117 * map unnecessarily. We cannot use pmap_protect since it also won't
118 * enforce a write-enable request. Using pmap_enter is the only way
119 * we can ensure the change takes place properly.
120 */
121 void
122 uvm_chgkprot(void *addr, size_t len, int rw)
123 {
124 vm_prot_t prot;
125 paddr_t pa;
126 vaddr_t sva, eva;
127
128 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
129 eva = round_page((vaddr_t)addr + len);
130 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
131 /*
132 * Extract physical address for the page.
133 */
134 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
135 panic("%s: invalid page", __func__);
136 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
137 }
138 pmap_update(pmap_kernel());
139 }
140 #endif
141
142 /*
143 * uvm_vslock: wire user memory for I/O
144 *
145 * - called from physio and sys___sysctl
146 * - XXXCDC: consider nuking this (or making it a macro?)
147 */
148
149 int
150 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
151 {
152 struct vm_map *map;
153 vaddr_t start, end;
154 int error;
155
156 map = &vs->vm_map;
157 start = trunc_page((vaddr_t)addr);
158 end = round_page((vaddr_t)addr + len);
159 error = uvm_fault_wire(map, start, end, access_type, 0);
160 return error;
161 }
162
163 /*
164 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
165 *
166 * - called from physio and sys___sysctl
167 * - XXXCDC: consider nuking this (or making it a macro?)
168 */
169
170 void
171 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
172 {
173 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
174 round_page((vaddr_t)addr + len));
175 }
176
177 /*
178 * uvm_proc_fork: fork a virtual address space
179 *
180 * - the address space is copied as per parent map's inherit values
181 */
182 void
183 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
184 {
185
186 if (shared == true) {
187 p2->p_vmspace = NULL;
188 uvmspace_share(p1, p2);
189 } else {
190 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
191 }
192
193 cpu_proc_fork(p1, p2);
194 }
195
196 /*
197 * uvm_lwp_fork: fork a thread
198 *
199 * - a new PCB structure is allocated for the child process,
200 * and filled in by MD layer
201 * - if specified, the child gets a new user stack described by
202 * stack and stacksize
203 * - NOTE: the kernel stack may be at a different location in the child
204 * process, and thus addresses of automatic variables may be invalid
205 * after cpu_lwp_fork returns in the child process. We do nothing here
206 * after cpu_lwp_fork returns.
207 */
208 void
209 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
210 void (*func)(void *), void *arg)
211 {
212
213 /* Fill stack with magic number. */
214 kstack_setup_magic(l2);
215
216 /*
217 * cpu_lwp_fork() copy and update the pcb, and make the child ready
218 * to run. If this is a normal user fork, the child will exit
219 * directly to user mode via child_return() on its first time
220 * slice and will not return here. If this is a kernel thread,
221 * the specified entry point will be executed.
222 */
223 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
224
225 /* Inactive emap for new LWP. */
226 l2->l_emap_gen = UVM_EMAP_INACTIVE;
227 }
228
229 #ifndef USPACE_ALIGN
230 #define USPACE_ALIGN 0
231 #endif
232
233 static pool_cache_t uvm_uarea_cache;
234 #if defined(__HAVE_CPU_UAREA_ROUTINES)
235 static pool_cache_t uvm_uarea_system_cache;
236 #else
237 #define uvm_uarea_system_cache uvm_uarea_cache
238 #endif
239
240 static void *
241 uarea_poolpage_alloc(struct pool *pp, int flags)
242 {
243 if (USPACE_ALIGN == 0) {
244 int rc;
245 vmem_addr_t va;
246
247 rc = uvm_km_kmem_alloc(kmem_va_arena, USPACE,
248 ((flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP) |
249 VM_INSTANTFIT, &va);
250 return (rc != 0) ? NULL : (void *)va;
251 }
252 #if defined(__HAVE_CPU_UAREA_ROUTINES)
253 void *va = cpu_uarea_alloc(false);
254 if (va)
255 return (void *)va;
256 #endif
257 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
258 USPACE_ALIGN, UVM_KMF_WIRED |
259 ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
260 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
261 }
262
263 static void
264 uarea_poolpage_free(struct pool *pp, void *addr)
265 {
266 if (USPACE_ALIGN == 0) {
267 uvm_km_kmem_free(kmem_va_arena, (vmem_addr_t)addr, USPACE);
268 return;
269 }
270 #if defined(__HAVE_CPU_UAREA_ROUTINES)
271 if (cpu_uarea_free(addr))
272 return;
273 #endif
274 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
275 UVM_KMF_WIRED);
276 }
277
278 static struct pool_allocator uvm_uarea_allocator = {
279 .pa_alloc = uarea_poolpage_alloc,
280 .pa_free = uarea_poolpage_free,
281 .pa_pagesz = USPACE,
282 };
283
284 #if defined(__HAVE_CPU_UAREA_ROUTINES)
285 static void *
286 uarea_system_poolpage_alloc(struct pool *pp, int flags)
287 {
288 void * const va = cpu_uarea_alloc(true);
289 if (va != NULL)
290 return va;
291
292 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
293 USPACE_ALIGN, UVM_KMF_WIRED |
294 ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
295 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
296 }
297
298 static void
299 uarea_system_poolpage_free(struct pool *pp, void *addr)
300 {
301 if (!cpu_uarea_free(addr))
302 panic("%s: failed to free uarea %p", __func__, addr);
303 }
304
305 static struct pool_allocator uvm_uarea_system_allocator = {
306 .pa_alloc = uarea_system_poolpage_alloc,
307 .pa_free = uarea_system_poolpage_free,
308 .pa_pagesz = USPACE,
309 };
310 #endif /* __HAVE_CPU_UAREA_ROUTINES */
311
312 void
313 uvm_uarea_init(void)
314 {
315 int flags = PR_NOTOUCH;
316
317 /*
318 * specify PR_NOALIGN unless the alignment provided by
319 * the backend (USPACE_ALIGN) is sufficient to provide
320 * pool page size (UPSACE) alignment.
321 */
322
323 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
324 (USPACE_ALIGN % USPACE) != 0) {
325 flags |= PR_NOALIGN;
326 }
327
328 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
329 "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
330 #if defined(__HAVE_CPU_UAREA_ROUTINES)
331 uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
332 0, flags, "uareasys", &uvm_uarea_system_allocator,
333 IPL_NONE, NULL, NULL, NULL);
334 #endif
335 }
336
337 /*
338 * uvm_uarea_alloc: allocate a u-area
339 */
340
341 vaddr_t
342 uvm_uarea_alloc(void)
343 {
344
345 return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
346 }
347
348 vaddr_t
349 uvm_uarea_system_alloc(void)
350 {
351
352 return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
353 }
354
355 /*
356 * uvm_uarea_free: free a u-area
357 */
358
359 void
360 uvm_uarea_free(vaddr_t uaddr)
361 {
362
363 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
364 }
365
366 void
367 uvm_uarea_system_free(vaddr_t uaddr)
368 {
369
370 pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
371 }
372
373 vaddr_t
374 uvm_lwp_getuarea(lwp_t *l)
375 {
376
377 return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
378 }
379
380 void
381 uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
382 {
383
384 l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
385 }
386
387 /*
388 * uvm_proc_exit: exit a virtual address space
389 *
390 * - borrow proc0's address space because freeing the vmspace
391 * of the dead process may block.
392 */
393
394 void
395 uvm_proc_exit(struct proc *p)
396 {
397 struct lwp *l = curlwp; /* XXX */
398 struct vmspace *ovm;
399
400 KASSERT(p == l->l_proc);
401 ovm = p->p_vmspace;
402
403 /*
404 * borrow proc0's address space.
405 */
406 KPREEMPT_DISABLE(l);
407 pmap_deactivate(l);
408 p->p_vmspace = proc0.p_vmspace;
409 pmap_activate(l);
410 KPREEMPT_ENABLE(l);
411
412 uvmspace_free(ovm);
413 }
414
415 void
416 uvm_lwp_exit(struct lwp *l)
417 {
418 vaddr_t va = uvm_lwp_getuarea(l);
419 bool system = (l->l_flag & LW_SYSTEM) != 0;
420
421 if (system)
422 uvm_uarea_system_free(va);
423 else
424 uvm_uarea_free(va);
425 #ifdef DIAGNOSTIC
426 uvm_lwp_setuarea(l, (vaddr_t)NULL);
427 #endif
428 }
429
430 /*
431 * uvm_init_limit: init per-process VM limits
432 *
433 * - called for process 0 and then inherited by all others.
434 */
435
436 void
437 uvm_init_limits(struct proc *p)
438 {
439
440 /*
441 * Set up the initial limits on process VM. Set the maximum
442 * resident set size to be all of (reasonably) available memory.
443 * This causes any single, large process to start random page
444 * replacement once it fills memory.
445 */
446
447 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
448 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
449 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
450 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
451 p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
452 p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
453 p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
454 VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
455 }
456
457 /*
458 * uvm_scheduler: process zero main loop.
459 */
460
461 extern struct loadavg averunnable;
462
463 void
464 uvm_scheduler(void)
465 {
466 lwp_t *l = curlwp;
467
468 lwp_lock(l);
469 l->l_priority = PRI_VM;
470 l->l_class = SCHED_FIFO;
471 lwp_unlock(l);
472
473 for (;;) {
474 sched_pstats();
475 (void)kpause("uvm", false, hz, NULL);
476 }
477 }
478