uvm_glue.c revision 1.155 1 /* $NetBSD: uvm_glue.c,v 1.155 2012/02/11 23:16:18 martin Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
37 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.155 2012/02/11 23:16:18 martin Exp $");
66
67 #include "opt_kgdb.h"
68 #include "opt_kstack.h"
69 #include "opt_uvmhist.h"
70
71 /*
72 * uvm_glue.c: glue functions
73 */
74
75 #include <sys/param.h>
76 #include <sys/kernel.h>
77
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/syncobj.h>
83 #include <sys/cpu.h>
84 #include <sys/atomic.h>
85 #include <sys/lwp.h>
86
87 #include <uvm/uvm.h>
88
89 /*
90 * uvm_kernacc: test if kernel can access a memory region.
91 *
92 * => Currently used only by /dev/kmem driver (dev/mm.c).
93 */
94 bool
95 uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
96 {
97 vaddr_t saddr = trunc_page((vaddr_t)addr);
98 vaddr_t eaddr = round_page(saddr + len);
99 bool rv;
100
101 vm_map_lock_read(kernel_map);
102 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
103 vm_map_unlock_read(kernel_map);
104
105 return rv;
106 }
107
108 #ifdef KGDB
109 /*
110 * Change protections on kernel pages from addr to addr+len
111 * (presumably so debugger can plant a breakpoint).
112 *
113 * We force the protection change at the pmap level. If we were
114 * to use vm_map_protect a change to allow writing would be lazily-
115 * applied meaning we would still take a protection fault, something
116 * we really don't want to do. It would also fragment the kernel
117 * map unnecessarily. We cannot use pmap_protect since it also won't
118 * enforce a write-enable request. Using pmap_enter is the only way
119 * we can ensure the change takes place properly.
120 */
121 void
122 uvm_chgkprot(void *addr, size_t len, int rw)
123 {
124 vm_prot_t prot;
125 paddr_t pa;
126 vaddr_t sva, eva;
127
128 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
129 eva = round_page((vaddr_t)addr + len);
130 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
131 /*
132 * Extract physical address for the page.
133 */
134 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
135 panic("%s: invalid page", __func__);
136 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
137 }
138 pmap_update(pmap_kernel());
139 }
140 #endif
141
142 /*
143 * uvm_vslock: wire user memory for I/O
144 *
145 * - called from physio and sys___sysctl
146 * - XXXCDC: consider nuking this (or making it a macro?)
147 */
148
149 int
150 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
151 {
152 struct vm_map *map;
153 vaddr_t start, end;
154 int error;
155
156 map = &vs->vm_map;
157 start = trunc_page((vaddr_t)addr);
158 end = round_page((vaddr_t)addr + len);
159 error = uvm_fault_wire(map, start, end, access_type, 0);
160 return error;
161 }
162
163 /*
164 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
165 *
166 * - called from physio and sys___sysctl
167 * - XXXCDC: consider nuking this (or making it a macro?)
168 */
169
170 void
171 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
172 {
173 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
174 round_page((vaddr_t)addr + len));
175 }
176
177 /*
178 * uvm_proc_fork: fork a virtual address space
179 *
180 * - the address space is copied as per parent map's inherit values
181 */
182 void
183 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
184 {
185
186 if (shared == true) {
187 p2->p_vmspace = NULL;
188 uvmspace_share(p1, p2);
189 } else {
190 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
191 }
192
193 cpu_proc_fork(p1, p2);
194 }
195
196 /*
197 * uvm_lwp_fork: fork a thread
198 *
199 * - a new PCB structure is allocated for the child process,
200 * and filled in by MD layer
201 * - if specified, the child gets a new user stack described by
202 * stack and stacksize
203 * - NOTE: the kernel stack may be at a different location in the child
204 * process, and thus addresses of automatic variables may be invalid
205 * after cpu_lwp_fork returns in the child process. We do nothing here
206 * after cpu_lwp_fork returns.
207 */
208 void
209 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
210 void (*func)(void *), void *arg)
211 {
212
213 /* Fill stack with magic number. */
214 kstack_setup_magic(l2);
215
216 /*
217 * cpu_lwp_fork() copy and update the pcb, and make the child ready
218 * to run. If this is a normal user fork, the child will exit
219 * directly to user mode via child_return() on its first time
220 * slice and will not return here. If this is a kernel thread,
221 * the specified entry point will be executed.
222 */
223 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
224
225 /* Inactive emap for new LWP. */
226 l2->l_emap_gen = UVM_EMAP_INACTIVE;
227 }
228
229 #ifndef USPACE_ALIGN
230 #define USPACE_ALIGN 0
231 #endif
232
233 static pool_cache_t uvm_uarea_cache;
234 #if defined(__HAVE_CPU_UAREA_ROUTINES)
235 static pool_cache_t uvm_uarea_system_cache;
236 #else
237 #define uvm_uarea_system_cache uvm_uarea_cache
238 #endif
239
240 static void *
241 uarea_poolpage_alloc(struct pool *pp, int flags)
242 {
243 #if defined(PMAP_MAP_POOLPAGE)
244 if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
245 struct vm_page *pg;
246 vaddr_t va;
247
248 #if defined(PMAP_ALLOC_POOLPAGE)
249 pg = PMAP_ALLOC_POOLPAGE(
250 ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
251 #else
252 pg = uvm_pagealloc(NULL, 0, NULL,
253 ((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
254 #endif
255 if (pg == NULL)
256 return NULL;
257 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
258 if (va == 0)
259 uvm_pagefree(pg);
260 return (void *)va;
261 }
262 #endif
263 #if defined(__HAVE_CPU_UAREA_ROUTINES)
264 void *va = cpu_uarea_alloc(false);
265 if (va)
266 return (void *)va;
267 #endif
268 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
269 USPACE_ALIGN, UVM_KMF_WIRED |
270 ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
271 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
272 }
273
274 static void
275 uarea_poolpage_free(struct pool *pp, void *addr)
276 {
277 #if defined(PMAP_MAP_POOLPAGE)
278 if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
279 paddr_t pa;
280
281 pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
282 KASSERT(pa != 0);
283 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
284 return;
285 }
286 #endif
287 #if defined(__HAVE_CPU_UAREA_ROUTINES)
288 if (cpu_uarea_free(addr))
289 return;
290 #endif
291 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
292 UVM_KMF_WIRED);
293 }
294
295 static struct pool_allocator uvm_uarea_allocator = {
296 .pa_alloc = uarea_poolpage_alloc,
297 .pa_free = uarea_poolpage_free,
298 .pa_pagesz = USPACE,
299 };
300
301 #if defined(__HAVE_CPU_UAREA_ROUTINES)
302 static void *
303 uarea_system_poolpage_alloc(struct pool *pp, int flags)
304 {
305 void * const va = cpu_uarea_alloc(true);
306 if (va != NULL)
307 return va;
308
309 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
310 USPACE_ALIGN, UVM_KMF_WIRED |
311 ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
312 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
313 }
314
315 static void
316 uarea_system_poolpage_free(struct pool *pp, void *addr)
317 {
318 if (!cpu_uarea_free(addr))
319 panic("%s: failed to free uarea %p", __func__, addr);
320 }
321
322 static struct pool_allocator uvm_uarea_system_allocator = {
323 .pa_alloc = uarea_system_poolpage_alloc,
324 .pa_free = uarea_system_poolpage_free,
325 .pa_pagesz = USPACE,
326 };
327 #endif /* __HAVE_CPU_UAREA_ROUTINES */
328
329 void
330 uvm_uarea_init(void)
331 {
332 int flags = PR_NOTOUCH;
333
334 /*
335 * specify PR_NOALIGN unless the alignment provided by
336 * the backend (USPACE_ALIGN) is sufficient to provide
337 * pool page size (UPSACE) alignment.
338 */
339
340 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
341 (USPACE_ALIGN % USPACE) != 0) {
342 flags |= PR_NOALIGN;
343 }
344
345 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
346 "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
347 #if defined(__HAVE_CPU_UAREA_ROUTINES)
348 uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
349 0, flags, "uareasys", &uvm_uarea_system_allocator,
350 IPL_NONE, NULL, NULL, NULL);
351 #endif
352 }
353
354 /*
355 * uvm_uarea_alloc: allocate a u-area
356 */
357
358 vaddr_t
359 uvm_uarea_alloc(void)
360 {
361
362 return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
363 }
364
365 vaddr_t
366 uvm_uarea_system_alloc(void)
367 {
368
369 return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
370 }
371
372 /*
373 * uvm_uarea_free: free a u-area
374 */
375
376 void
377 uvm_uarea_free(vaddr_t uaddr)
378 {
379
380 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
381 }
382
383 void
384 uvm_uarea_system_free(vaddr_t uaddr)
385 {
386
387 pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
388 }
389
390 vaddr_t
391 uvm_lwp_getuarea(lwp_t *l)
392 {
393
394 return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
395 }
396
397 void
398 uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
399 {
400
401 l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
402 }
403
404 /*
405 * uvm_proc_exit: exit a virtual address space
406 *
407 * - borrow proc0's address space because freeing the vmspace
408 * of the dead process may block.
409 */
410
411 void
412 uvm_proc_exit(struct proc *p)
413 {
414 struct lwp *l = curlwp; /* XXX */
415 struct vmspace *ovm;
416
417 KASSERT(p == l->l_proc);
418 ovm = p->p_vmspace;
419
420 /*
421 * borrow proc0's address space.
422 */
423 KPREEMPT_DISABLE(l);
424 pmap_deactivate(l);
425 p->p_vmspace = proc0.p_vmspace;
426 pmap_activate(l);
427 KPREEMPT_ENABLE(l);
428
429 if (__predict_true(ovm!=NULL))
430 uvmspace_free(ovm);
431 }
432
433 void
434 uvm_lwp_exit(struct lwp *l)
435 {
436 vaddr_t va = uvm_lwp_getuarea(l);
437 bool system = (l->l_flag & LW_SYSTEM) != 0;
438
439 if (system)
440 uvm_uarea_system_free(va);
441 else
442 uvm_uarea_free(va);
443 #ifdef DIAGNOSTIC
444 uvm_lwp_setuarea(l, (vaddr_t)NULL);
445 #endif
446 }
447
448 /*
449 * uvm_init_limit: init per-process VM limits
450 *
451 * - called for process 0 and then inherited by all others.
452 */
453
454 void
455 uvm_init_limits(struct proc *p)
456 {
457
458 /*
459 * Set up the initial limits on process VM. Set the maximum
460 * resident set size to be all of (reasonably) available memory.
461 * This causes any single, large process to start random page
462 * replacement once it fills memory.
463 */
464
465 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
466 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
467 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
468 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
469 p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
470 p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
471 p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
472 VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
473 }
474
475 /*
476 * uvm_scheduler: process zero main loop.
477 */
478
479 extern struct loadavg averunnable;
480
481 void
482 uvm_scheduler(void)
483 {
484 lwp_t *l = curlwp;
485
486 lwp_lock(l);
487 l->l_priority = PRI_VM;
488 l->l_class = SCHED_FIFO;
489 lwp_unlock(l);
490
491 for (;;) {
492 sched_pstats();
493 (void)kpause("uvm", false, hz, NULL);
494 }
495 }
496