uvm_glue.c revision 1.163.18.2 1 /* $NetBSD: uvm_glue.c,v 1.163.18.2 2020/04/08 14:09:04 martin Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
37 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.163.18.2 2020/04/08 14:09:04 martin Exp $");
66
67 #include "opt_kgdb.h"
68 #include "opt_kstack.h"
69 #include "opt_uvmhist.h"
70 #include "opt_kasan.h"
71
72 /*
73 * uvm_glue.c: glue functions
74 */
75
76 #include <sys/param.h>
77 #include <sys/kernel.h>
78
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/resourcevar.h>
82 #include <sys/buf.h>
83 #include <sys/syncobj.h>
84 #include <sys/cpu.h>
85 #include <sys/atomic.h>
86 #include <sys/lwp.h>
87 #include <sys/asan.h>
88
89 #include <uvm/uvm.h>
90 #include <uvm/uvm_pdpolicy.h>
91 #include <uvm/uvm_pgflcache.h>
92
93 /*
94 * uvm_kernacc: test if kernel can access a memory region.
95 *
96 * => Currently used only by /dev/kmem driver (dev/mm.c).
97 */
98 bool
99 uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
100 {
101 vaddr_t saddr = trunc_page((vaddr_t)addr);
102 vaddr_t eaddr = round_page(saddr + len);
103 bool rv;
104
105 vm_map_lock_read(kernel_map);
106 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
107 vm_map_unlock_read(kernel_map);
108
109 return rv;
110 }
111
112 #ifdef KGDB
113 /*
114 * Change protections on kernel pages from addr to addr+len
115 * (presumably so debugger can plant a breakpoint).
116 *
117 * We force the protection change at the pmap level. If we were
118 * to use vm_map_protect a change to allow writing would be lazily-
119 * applied meaning we would still take a protection fault, something
120 * we really don't want to do. It would also fragment the kernel
121 * map unnecessarily. We cannot use pmap_protect since it also won't
122 * enforce a write-enable request. Using pmap_enter is the only way
123 * we can ensure the change takes place properly.
124 */
125 void
126 uvm_chgkprot(void *addr, size_t len, int rw)
127 {
128 vm_prot_t prot;
129 paddr_t pa;
130 vaddr_t sva, eva;
131
132 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
133 eva = round_page((vaddr_t)addr + len);
134 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
135 /*
136 * Extract physical address for the page.
137 */
138 if (pmap_extract(pmap_kernel(), sva, &pa) == false)
139 panic("%s: invalid page", __func__);
140 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
141 }
142 pmap_update(pmap_kernel());
143 }
144 #endif
145
146 /*
147 * uvm_vslock: wire user memory for I/O
148 *
149 * - called from physio and sys___sysctl
150 * - XXXCDC: consider nuking this (or making it a macro?)
151 */
152
153 int
154 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
155 {
156 struct vm_map *map;
157 vaddr_t start, end;
158 int error;
159
160 map = &vs->vm_map;
161 start = trunc_page((vaddr_t)addr);
162 end = round_page((vaddr_t)addr + len);
163 error = uvm_fault_wire(map, start, end, access_type, 0);
164 return error;
165 }
166
167 /*
168 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
169 *
170 * - called from physio and sys___sysctl
171 * - XXXCDC: consider nuking this (or making it a macro?)
172 */
173
174 void
175 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
176 {
177 uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
178 round_page((vaddr_t)addr + len));
179 }
180
181 /*
182 * uvm_proc_fork: fork a virtual address space
183 *
184 * - the address space is copied as per parent map's inherit values
185 */
186 void
187 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
188 {
189
190 if (shared == true) {
191 p2->p_vmspace = NULL;
192 uvmspace_share(p1, p2);
193 } else {
194 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
195 }
196
197 cpu_proc_fork(p1, p2);
198 }
199
200 /*
201 * uvm_lwp_fork: fork a thread
202 *
203 * - a new PCB structure is allocated for the child process,
204 * and filled in by MD layer
205 * - if specified, the child gets a new user stack described by
206 * stack and stacksize
207 * - NOTE: the kernel stack may be at a different location in the child
208 * process, and thus addresses of automatic variables may be invalid
209 * after cpu_lwp_fork returns in the child process. We do nothing here
210 * after cpu_lwp_fork returns.
211 */
212 void
213 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
214 void (*func)(void *), void *arg)
215 {
216
217 /* Fill stack with magic number. */
218 kstack_setup_magic(l2);
219
220 /*
221 * cpu_lwp_fork() copy and update the pcb, and make the child ready
222 * to run. If this is a normal user fork, the child will exit
223 * directly to user mode via child_return() on its first time
224 * slice and will not return here. If this is a kernel thread,
225 * the specified entry point will be executed.
226 */
227 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
228 }
229
230 #ifndef USPACE_ALIGN
231 #define USPACE_ALIGN 0
232 #endif
233
234 static pool_cache_t uvm_uarea_cache;
235 #if defined(__HAVE_CPU_UAREA_ROUTINES)
236 static pool_cache_t uvm_uarea_system_cache;
237 #else
238 #define uvm_uarea_system_cache uvm_uarea_cache
239 #endif
240
241 static void *
242 uarea_poolpage_alloc(struct pool *pp, int flags)
243 {
244
245 KASSERT((flags & PR_WAITOK) != 0);
246
247 #if defined(PMAP_MAP_POOLPAGE)
248 while (USPACE == PAGE_SIZE &&
249 (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
250 struct vm_page *pg;
251 vaddr_t va;
252 #if defined(PMAP_ALLOC_POOLPAGE)
253 pg = PMAP_ALLOC_POOLPAGE(0);
254 #else
255 pg = uvm_pagealloc(NULL, 0, NULL, 0);
256 #endif
257 if (pg == NULL) {
258 uvm_wait("uarea");
259 continue;
260 }
261 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
262 KASSERT(va != 0);
263 return (void *)va;
264 }
265 #endif
266 #if defined(__HAVE_CPU_UAREA_ROUTINES)
267 void *va = cpu_uarea_alloc(false);
268 if (va)
269 return (void *)va;
270 #endif
271 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
272 USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA);
273 }
274
275 static void
276 uarea_poolpage_free(struct pool *pp, void *addr)
277 {
278 #if defined(PMAP_MAP_POOLPAGE)
279 if (USPACE == PAGE_SIZE &&
280 (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
281 paddr_t pa;
282
283 pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
284 KASSERT(pa != 0);
285 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
286 return;
287 }
288 #endif
289 #if defined(__HAVE_CPU_UAREA_ROUTINES)
290 if (cpu_uarea_free(addr))
291 return;
292 #endif
293 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
294 UVM_KMF_WIRED);
295 }
296
297 static struct pool_allocator uvm_uarea_allocator = {
298 .pa_alloc = uarea_poolpage_alloc,
299 .pa_free = uarea_poolpage_free,
300 .pa_pagesz = USPACE,
301 };
302
303 #if defined(__HAVE_CPU_UAREA_ROUTINES)
304 static void *
305 uarea_system_poolpage_alloc(struct pool *pp, int flags)
306 {
307 void * const va = cpu_uarea_alloc(true);
308 if (va != NULL)
309 return va;
310
311 return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
312 USPACE_ALIGN, UVM_KMF_WIRED |
313 ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
314 (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
315 }
316
317 static void
318 uarea_system_poolpage_free(struct pool *pp, void *addr)
319 {
320 if (cpu_uarea_free(addr))
321 return;
322
323 uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
324 UVM_KMF_WIRED);
325 }
326
327 static struct pool_allocator uvm_uarea_system_allocator = {
328 .pa_alloc = uarea_system_poolpage_alloc,
329 .pa_free = uarea_system_poolpage_free,
330 .pa_pagesz = USPACE,
331 };
332 #endif /* __HAVE_CPU_UAREA_ROUTINES */
333
334 void
335 uvm_uarea_init(void)
336 {
337 int flags = PR_NOTOUCH;
338
339 /*
340 * specify PR_NOALIGN unless the alignment provided by
341 * the backend (USPACE_ALIGN) is sufficient to provide
342 * pool page size (UPSACE) alignment.
343 */
344
345 if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
346 (USPACE_ALIGN % USPACE) != 0) {
347 flags |= PR_NOALIGN;
348 }
349
350 uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
351 "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
352 #if defined(__HAVE_CPU_UAREA_ROUTINES)
353 uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
354 0, flags, "uareasys", &uvm_uarea_system_allocator,
355 IPL_NONE, NULL, NULL, NULL);
356 #endif
357 }
358
359 /*
360 * uvm_uarea_alloc: allocate a u-area
361 */
362
363 vaddr_t
364 uvm_uarea_alloc(void)
365 {
366
367 return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
368 }
369
370 vaddr_t
371 uvm_uarea_system_alloc(struct cpu_info *ci)
372 {
373 #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
374 if (__predict_false(ci != NULL))
375 return cpu_uarea_alloc_idlelwp(ci);
376 #endif
377
378 return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
379 }
380
381 /*
382 * uvm_uarea_free: free a u-area
383 */
384
385 void
386 uvm_uarea_free(vaddr_t uaddr)
387 {
388
389 kasan_mark((void *)uaddr, USPACE, USPACE, 0);
390 pool_cache_put(uvm_uarea_cache, (void *)uaddr);
391 }
392
393 void
394 uvm_uarea_system_free(vaddr_t uaddr)
395 {
396
397 kasan_mark((void *)uaddr, USPACE, USPACE, 0);
398 pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
399 }
400
401 vaddr_t
402 uvm_lwp_getuarea(lwp_t *l)
403 {
404
405 return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
406 }
407
408 void
409 uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
410 {
411
412 l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
413 }
414
415 /*
416 * uvm_proc_exit: exit a virtual address space
417 *
418 * - borrow proc0's address space because freeing the vmspace
419 * of the dead process may block.
420 */
421
422 void
423 uvm_proc_exit(struct proc *p)
424 {
425 struct lwp *l = curlwp; /* XXX */
426 struct vmspace *ovm;
427
428 KASSERT(p == l->l_proc);
429 ovm = p->p_vmspace;
430 KASSERT(ovm != NULL);
431
432 if (__predict_false(ovm == proc0.p_vmspace))
433 return;
434
435 /*
436 * borrow proc0's address space.
437 */
438 kpreempt_disable();
439 pmap_deactivate(l);
440 p->p_vmspace = proc0.p_vmspace;
441 pmap_activate(l);
442 kpreempt_enable();
443
444 uvmspace_free(ovm);
445 }
446
447 void
448 uvm_lwp_exit(struct lwp *l)
449 {
450 vaddr_t va = uvm_lwp_getuarea(l);
451 bool system = (l->l_flag & LW_SYSTEM) != 0;
452
453 if (system)
454 uvm_uarea_system_free(va);
455 else
456 uvm_uarea_free(va);
457 #ifdef DIAGNOSTIC
458 uvm_lwp_setuarea(l, (vaddr_t)NULL);
459 #endif
460 }
461
462 /*
463 * uvm_init_limit: init per-process VM limits
464 *
465 * - called for process 0 and then inherited by all others.
466 */
467
468 void
469 uvm_init_limits(struct proc *p)
470 {
471
472 /*
473 * Set up the initial limits on process VM. Set the maximum
474 * resident set size to be all of (reasonably) available memory.
475 * This causes any single, large process to start random page
476 * replacement once it fills memory.
477 */
478
479 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
480 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
481 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
482 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
483 p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
484 p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
485 p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(VM_MAXUSER_ADDRESS,
486 ctob((rlim_t)uvm_availmem()));
487 }
488
489 /*
490 * uvm_scheduler: process zero main loop.
491 */
492
493 extern struct loadavg averunnable;
494
495 void
496 uvm_scheduler(void)
497 {
498 lwp_t *l = curlwp;
499
500 lwp_lock(l);
501 l->l_class = SCHED_FIFO;
502 lwp_changepri(l, PRI_VM);
503 lwp_unlock(l);
504
505 /* Start the freelist cache. */
506 uvm_pgflcache_start();
507
508 for (;;) {
509 /* Update legacy stats for post-mortem debugging. */
510 uvm_update_uvmexp();
511
512 /* See if the pagedaemon needs to generate some free pages. */
513 uvm_kick_pdaemon();
514
515 /* Calculate process statistics. */
516 sched_pstats();
517 (void)kpause("uvm", false, hz, NULL);
518 }
519 }
520
521 /*
522 * uvm_idle: called from the idle loop.
523 */
524
525 void
526 uvm_idle(void)
527 {
528 struct cpu_info *ci = curcpu();
529 struct uvm_cpu *ucpu = ci->ci_data.cpu_uvm;
530
531 KASSERT(kpreempt_disabled());
532
533 if (!ci->ci_want_resched)
534 uvmpdpol_idle(ucpu);
535 if (!ci->ci_want_resched)
536 uvm_pageidlezero();
537
538 }
539