Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.170
      1 /*	$NetBSD: uvm_glue.c,v 1.170 2019/11/21 17:47:53 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     37  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.170 2019/11/21 17:47:53 ad Exp $");
     66 
     67 #include "opt_kgdb.h"
     68 #include "opt_kstack.h"
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_glue.c: glue functions
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/kernel.h>
     77 
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/buf.h>
     82 #include <sys/syncobj.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/lwp.h>
     86 #include <sys/asan.h>
     87 
     88 #include <uvm/uvm.h>
     89 
     90 /*
     91  * uvm_kernacc: test if kernel can access a memory region.
     92  *
     93  * => Currently used only by /dev/kmem driver (dev/mm.c).
     94  */
     95 bool
     96 uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
     97 {
     98 	vaddr_t saddr = trunc_page((vaddr_t)addr);
     99 	vaddr_t eaddr = round_page(saddr + len);
    100 	bool rv;
    101 
    102 	vm_map_lock_read(kernel_map);
    103 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    104 	vm_map_unlock_read(kernel_map);
    105 
    106 	return rv;
    107 }
    108 
    109 #ifdef KGDB
    110 /*
    111  * Change protections on kernel pages from addr to addr+len
    112  * (presumably so debugger can plant a breakpoint).
    113  *
    114  * We force the protection change at the pmap level.  If we were
    115  * to use vm_map_protect a change to allow writing would be lazily-
    116  * applied meaning we would still take a protection fault, something
    117  * we really don't want to do.  It would also fragment the kernel
    118  * map unnecessarily.  We cannot use pmap_protect since it also won't
    119  * enforce a write-enable request.  Using pmap_enter is the only way
    120  * we can ensure the change takes place properly.
    121  */
    122 void
    123 uvm_chgkprot(void *addr, size_t len, int rw)
    124 {
    125 	vm_prot_t prot;
    126 	paddr_t pa;
    127 	vaddr_t sva, eva;
    128 
    129 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    130 	eva = round_page((vaddr_t)addr + len);
    131 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    132 		/*
    133 		 * Extract physical address for the page.
    134 		 */
    135 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    136 			panic("%s: invalid page", __func__);
    137 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    138 	}
    139 	pmap_update(pmap_kernel());
    140 }
    141 #endif
    142 
    143 /*
    144  * uvm_vslock: wire user memory for I/O
    145  *
    146  * - called from physio and sys___sysctl
    147  * - XXXCDC: consider nuking this (or making it a macro?)
    148  */
    149 
    150 int
    151 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    152 {
    153 	struct vm_map *map;
    154 	vaddr_t start, end;
    155 	int error;
    156 
    157 	map = &vs->vm_map;
    158 	start = trunc_page((vaddr_t)addr);
    159 	end = round_page((vaddr_t)addr + len);
    160 	error = uvm_fault_wire(map, start, end, access_type, 0);
    161 	return error;
    162 }
    163 
    164 /*
    165  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    166  *
    167  * - called from physio and sys___sysctl
    168  * - XXXCDC: consider nuking this (or making it a macro?)
    169  */
    170 
    171 void
    172 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    173 {
    174 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    175 		round_page((vaddr_t)addr + len));
    176 }
    177 
    178 /*
    179  * uvm_proc_fork: fork a virtual address space
    180  *
    181  * - the address space is copied as per parent map's inherit values
    182  */
    183 void
    184 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    185 {
    186 
    187 	if (shared == true) {
    188 		p2->p_vmspace = NULL;
    189 		uvmspace_share(p1, p2);
    190 	} else {
    191 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    192 	}
    193 
    194 	cpu_proc_fork(p1, p2);
    195 }
    196 
    197 /*
    198  * uvm_lwp_fork: fork a thread
    199  *
    200  * - a new PCB structure is allocated for the child process,
    201  *	and filled in by MD layer
    202  * - if specified, the child gets a new user stack described by
    203  *	stack and stacksize
    204  * - NOTE: the kernel stack may be at a different location in the child
    205  *	process, and thus addresses of automatic variables may be invalid
    206  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    207  *	after cpu_lwp_fork returns.
    208  */
    209 void
    210 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    211     void (*func)(void *), void *arg)
    212 {
    213 
    214 	/* Fill stack with magic number. */
    215 	kstack_setup_magic(l2);
    216 
    217 	/*
    218 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    219  	 * to run.  If this is a normal user fork, the child will exit
    220 	 * directly to user mode via child_return() on its first time
    221 	 * slice and will not return here.  If this is a kernel thread,
    222 	 * the specified entry point will be executed.
    223 	 */
    224 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    225 
    226 	/* Inactive emap for new LWP. */
    227 	l2->l_emap_gen = UVM_EMAP_INACTIVE;
    228 }
    229 
    230 #ifndef USPACE_ALIGN
    231 #define	USPACE_ALIGN	0
    232 #endif
    233 
    234 static pool_cache_t uvm_uarea_cache;
    235 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    236 static pool_cache_t uvm_uarea_system_cache;
    237 #else
    238 #define uvm_uarea_system_cache uvm_uarea_cache
    239 #endif
    240 
    241 static void *
    242 uarea_poolpage_alloc(struct pool *pp, int flags)
    243 {
    244 
    245 	KASSERT((flags & PR_WAITOK) != 0);
    246 
    247 #if defined(PMAP_MAP_POOLPAGE)
    248 	while (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    249 		struct vm_page *pg;
    250 		vaddr_t va;
    251 #if defined(PMAP_ALLOC_POOLPAGE)
    252 		pg = PMAP_ALLOC_POOLPAGE(0);
    253 #else
    254 		pg = uvm_pagealloc(NULL, 0, NULL, 0);
    255 #endif
    256 		if (pg == NULL) {
    257 			uvm_wait("uarea");
    258 			continue;
    259 		}
    260 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    261 		KASSERT(va != 0);
    262 		return (void *)va;
    263 	}
    264 #endif
    265 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    266 	void *va = cpu_uarea_alloc(false);
    267 	if (va)
    268 		return (void *)va;
    269 #endif
    270 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    271 	    USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA);
    272 }
    273 
    274 static void
    275 uarea_poolpage_free(struct pool *pp, void *addr)
    276 {
    277 #if defined(PMAP_MAP_POOLPAGE)
    278 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    279 		paddr_t pa;
    280 
    281 		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
    282 		KASSERT(pa != 0);
    283 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    284 		return;
    285 	}
    286 #endif
    287 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    288 	if (cpu_uarea_free(addr))
    289 		return;
    290 #endif
    291 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    292 	    UVM_KMF_WIRED);
    293 }
    294 
    295 static struct pool_allocator uvm_uarea_allocator = {
    296 	.pa_alloc = uarea_poolpage_alloc,
    297 	.pa_free = uarea_poolpage_free,
    298 	.pa_pagesz = USPACE,
    299 };
    300 
    301 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    302 static void *
    303 uarea_system_poolpage_alloc(struct pool *pp, int flags)
    304 {
    305 	void * const va = cpu_uarea_alloc(true);
    306 	if (va != NULL)
    307 		return va;
    308 
    309 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    310 	    USPACE_ALIGN, UVM_KMF_WIRED |
    311 	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
    312 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    313 }
    314 
    315 static void
    316 uarea_system_poolpage_free(struct pool *pp, void *addr)
    317 {
    318 	if (cpu_uarea_free(addr))
    319 		return;
    320 
    321 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    322 	    UVM_KMF_WIRED);
    323 }
    324 
    325 static struct pool_allocator uvm_uarea_system_allocator = {
    326 	.pa_alloc = uarea_system_poolpage_alloc,
    327 	.pa_free = uarea_system_poolpage_free,
    328 	.pa_pagesz = USPACE,
    329 };
    330 #endif /* __HAVE_CPU_UAREA_ROUTINES */
    331 
    332 void
    333 uvm_uarea_init(void)
    334 {
    335 	int flags = PR_NOTOUCH;
    336 
    337 	/*
    338 	 * specify PR_NOALIGN unless the alignment provided by
    339 	 * the backend (USPACE_ALIGN) is sufficient to provide
    340 	 * pool page size (UPSACE) alignment.
    341 	 */
    342 
    343 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    344 	    (USPACE_ALIGN % USPACE) != 0) {
    345 		flags |= PR_NOALIGN;
    346 	}
    347 
    348 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    349 	    "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
    350 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    351 	uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
    352 	    0, flags, "uareasys", &uvm_uarea_system_allocator,
    353 	    IPL_NONE, NULL, NULL, NULL);
    354 #endif
    355 }
    356 
    357 /*
    358  * uvm_uarea_alloc: allocate a u-area
    359  */
    360 
    361 vaddr_t
    362 uvm_uarea_alloc(void)
    363 {
    364 
    365 	return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    366 }
    367 
    368 vaddr_t
    369 uvm_uarea_system_alloc(struct cpu_info *ci)
    370 {
    371 #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    372 	if (__predict_false(ci != NULL))
    373 		return cpu_uarea_alloc_idlelwp(ci);
    374 #endif
    375 
    376 	return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
    377 }
    378 
    379 /*
    380  * uvm_uarea_free: free a u-area
    381  */
    382 
    383 void
    384 uvm_uarea_free(vaddr_t uaddr)
    385 {
    386 
    387 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    388 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    389 }
    390 
    391 void
    392 uvm_uarea_system_free(vaddr_t uaddr)
    393 {
    394 
    395 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    396 	pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
    397 }
    398 
    399 vaddr_t
    400 uvm_lwp_getuarea(lwp_t *l)
    401 {
    402 
    403 	return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
    404 }
    405 
    406 void
    407 uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
    408 {
    409 
    410 	l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
    411 }
    412 
    413 /*
    414  * uvm_proc_exit: exit a virtual address space
    415  *
    416  * - borrow proc0's address space because freeing the vmspace
    417  *   of the dead process may block.
    418  */
    419 
    420 void
    421 uvm_proc_exit(struct proc *p)
    422 {
    423 	struct lwp *l = curlwp; /* XXX */
    424 	struct vmspace *ovm;
    425 
    426 	KASSERT(p == l->l_proc);
    427 	ovm = p->p_vmspace;
    428 	KASSERT(ovm != NULL);
    429 
    430 	if (__predict_false(ovm == proc0.p_vmspace))
    431 		return;
    432 
    433 	/*
    434 	 * borrow proc0's address space.
    435 	 */
    436 	kpreempt_disable();
    437 	pmap_deactivate(l);
    438 	p->p_vmspace = proc0.p_vmspace;
    439 	pmap_activate(l);
    440 	kpreempt_enable();
    441 
    442 	uvmspace_free(ovm);
    443 }
    444 
    445 void
    446 uvm_lwp_exit(struct lwp *l)
    447 {
    448 	vaddr_t va = uvm_lwp_getuarea(l);
    449 	bool system = (l->l_flag & LW_SYSTEM) != 0;
    450 
    451 	if (system)
    452 		uvm_uarea_system_free(va);
    453 	else
    454 		uvm_uarea_free(va);
    455 #ifdef DIAGNOSTIC
    456 	uvm_lwp_setuarea(l, (vaddr_t)NULL);
    457 #endif
    458 }
    459 
    460 /*
    461  * uvm_init_limit: init per-process VM limits
    462  *
    463  * - called for process 0 and then inherited by all others.
    464  */
    465 
    466 void
    467 uvm_init_limits(struct proc *p)
    468 {
    469 
    470 	/*
    471 	 * Set up the initial limits on process VM.  Set the maximum
    472 	 * resident set size to be all of (reasonably) available memory.
    473 	 * This causes any single, large process to start random page
    474 	 * replacement once it fills memory.
    475 	 */
    476 
    477 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    478 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    479 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    480 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    481 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
    482 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
    483 	p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
    484 	    VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
    485 }
    486 
    487 /*
    488  * uvm_scheduler: process zero main loop.
    489  */
    490 
    491 extern struct loadavg averunnable;
    492 
    493 void
    494 uvm_scheduler(void)
    495 {
    496 	lwp_t *l = curlwp;
    497 
    498 	lwp_lock(l);
    499 	l->l_class = SCHED_FIFO;
    500 	lwp_changepri(l, PRI_VM);
    501 	lwp_unlock(l);
    502 
    503 	for (;;) {
    504 		sched_pstats();
    505 		(void)kpause("uvm", false, hz, NULL);
    506 	}
    507 }
    508